Oxidative Drugs and microRNA: New Opportunities for Cancer Prevention
1. Introduction
2. Oxidative Drugs
3. microRNA
4. Conclusions
Funding
Conflicts of Interest
References
- Diehn, M.; Cho, R.W.; Lobo, N.A.; Kalisky, T.; Dorie, M.J.; Kulp, A.N.; Qian, D.; Lam, J.S.; Ailles, L.E.; Wong, M.; et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009, 458, 780–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izzotti, A.; Fracchia, E.; Au, W.; Colombo, M.; Pfeffer, U.; Emionite, L.; Pavan, S.; Miotto, D.; Lova, P.; Grasselli, E.; et al. Prevention of Covid-19 infection and related complications by ozonized oils. J. Pers. Med. 2021, 11, 226. [Google Scholar] [CrossRef] [PubMed]
- Semenza, G.L. Hypoxia-inducible factor 1 and cancer pathogenesis. IUBMB Life 2008, 60, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Pennacchietti, S.; Michieli, P.; Galluzzo, M.; Mazzone, M.; Giordano, S.; Comoglio, P.M. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 2003, 3, 347–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haydon, A.M.; Macinnis, R.J.; English, D.R.; Giles, G.G. Effect of physical activity and body size on survival after diagnosis with colorectal cancer. Gut 2006, 55, 62–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izzotti, A.; Fracchia, E.; Rosano, C.; Comite, A.; Belgioia, L.; Sciacca, S.; Khalid, Z.; Congiu, M.; Colorassi, C.; Blanco, G.; et al. Efficacy of high-ozonide oil in prevention of cancer relapses. Mechanisms and clinical evidence. Cancers 2022, 14, 1174. [Google Scholar] [CrossRef] [PubMed]
- Iorio, M.V.; Croce, C.M. microRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med. 2012, 4, 143–159. [Google Scholar] [CrossRef] [PubMed]
- Izzotti, A.; Pulliero, A. Molecular damage and lung tumors in cigarette smoke exposed mice. Ann. N. Y. Acad. Sci. 2015, 1340, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Izzotti, A.; Coronel Vargas, G.; Pulliero, A.; Coco, S.; Vanni, I.; Colorassi, C.; Blanco, G.; Agodi, A.; Barchitta, M.; Maugeri, A.; et al. Relationship between miRNA profiles and oncogenes mutations in non-smokers lung cancer. Relevance for lung cancer personalized screenings and treatments. J. Pers. Med. 2021, 11, 182. [Google Scholar] [CrossRef] [PubMed]
- Izzotti, A.; Calin, G.; Arrigo, P.; Steele, V.E.; Croce, C.; De Flora, S. Downregulation of microRNA expression in the lung of rats exposed to cigarette smoke. FASEB J. 2009, 23, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Izzotti, A.; Larghero, P.; Balansky, R.; Pfeffer, U.; Steele, V.; De Flora, S. Interplay between histopathological alterations, cigarette smoke and cancer chemopreventive agents in defining microRNA profiles in mouse lung. Mutat. Res. Fund. Mech. 2011, 717, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Izzotti, A. Molecular medicine and development of cancer chemopreventive agents. Ann. N. Y. Acad. Sci. 2012, 1259, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Pulliero, A.; Fazzi, E.; Cartiglia, C.; Orcesi, S.; Balottin, U.; Uggetti, C.; La Piana, R.; Olivieri, I.; Galli, J.; Izzotti, A. The Aicardi-Goutières Syndrome. Molecular and clinical features of RNAse deficiency and microRNA overload. Mutat. Res. Fund. Mech. 2011, 717, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Pan, J.; Xiong, D.; Wang, Y.; Miller, M.S.; Sei, S.; Shoemaker, R.H.; Izzotti, A.; You, M. Pulmonary aersol delivery of let-7b microRNA conferes a striking inhibitory effect on lung carcinogenesis through targeting the tumor immune microenvironment. Adv. Sci. 2021, 8, 2100629. [Google Scholar] [CrossRef] [PubMed]
- Izzotti, A.; Carozzo, S.; Pulliero, A.; Zhabayeva, D.; Ravetti, J.L.; Bersimbaev, R. Extracellular microRNA in liquid biopsy: Applicability in cancer diagnosis and prevention. Am. J. Cancer Res. 2016, 6, 1461–1493. [Google Scholar] [PubMed]
Body Compartment | Mechanism | Clinical Effect |
---|---|---|
Cancer cell cytoplasm | Oxidative damage | Necrosis |
Stem cancer cell cytoplasm | Antioxidant scavenging | Prevention of resistance to chemo-radio therapies |
Cancer cell mitochondrial membrane | Oxidative damage | Apoptosis |
Cancer tissue | Decreased hypoxia | Antiangiogenic effect limiting cancer growth |
Cancer tissue | Decreased hypoxia | Inhibition of metastatic spreading |
Tumour-associated macrophages | Inhibition of oxidative burst and activation | Decrease in cancer associated inflammation |
Skeletal muscle | Increased oxygen availability | Fatigue prevention |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izzotti, A. Oxidative Drugs and microRNA: New Opportunities for Cancer Prevention. Cancers 2023, 15, 132. https://doi.org/10.3390/cancers15010132
Izzotti A. Oxidative Drugs and microRNA: New Opportunities for Cancer Prevention. Cancers. 2023; 15(1):132. https://doi.org/10.3390/cancers15010132
Chicago/Turabian StyleIzzotti, Alberto. 2023. "Oxidative Drugs and microRNA: New Opportunities for Cancer Prevention" Cancers 15, no. 1: 132. https://doi.org/10.3390/cancers15010132
APA StyleIzzotti, A. (2023). Oxidative Drugs and microRNA: New Opportunities for Cancer Prevention. Cancers, 15(1), 132. https://doi.org/10.3390/cancers15010132