Endometriosis Stem Cells as a Possible Main Target for Carcinogenesis of Endometriosis-Associated Ovarian Cancer (EAOC)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Stem Cells Inside the Endometrium
2.1. Epithelial Stem Cells
2.2. Perivascular Progenitor/Stem CD34+KLF-4+ Cells
2.3. “Side Population” Cells
2.4. Bone Marrow-Derived Stem Cells (BMDSCs)
2.5. Menstrual Stem Cells (MeSCs)
3. Stem Cells and Endometriosis
3.1. Endometrium-Derived Stem Cells
3.2. Tubal-Derived Stem Cells
3.3. Bone Marrow-Derived Stem Cells (BMDSCs)
3.4. Endomeriosis Stem Cells Movement
4. Stem Cells in Endometrial Cancer
5. Stem Cells in Ovarian Cancer
6. ARID1A/PI3K/AKT Pathway in Endometriosis and EAOC
6.1. ARID1A/PI3K/AKT Pathway in Endometriosis
6.2. ARID1A/PI3K/AKT Pathway in EAOC
7. Other Gene Mutations in Endometriosis
8. Galectins in Endometriosis and EAOC
9. Chaperones in Endometriosis and Cancer Stem Cells
10. miRNA and Endometriosis
11. Transformation of Endometriosis into EAOC
12. Environmental Risk Factors—Endometriosis and Ovarian Cancer
13. Stem Cells and Environmental Risk Factors
14. Working Hypothesis
15. Conclusions and Future Direction
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABCG2 | ATP binding cassette subfamily G member 2 |
AKT | protein kinase B |
ARID1A | AT-rich interactive domain-containing protein 1A |
ATM | ATM serine/threonine kinase |
ATP | adenosine triphosphate |
Bax | bcl-2-like protein 4 apoptosis regulator |
Bcl-2 | B-cell lymphoma 2 apoptosis regulator |
Bcl-xL | B-cell lymphoma-extra large apoptosis regulator |
BRAF | B-Raf proto-oncogene |
BRCA | breast cancer suppressor gene |
CADM1 | cell adhesion molecule 1 coding gene |
CAR-T | chimeric antigen receptor T cells |
CCDC170 | coiled-coil domain containing 170 coding gene |
CDH1 | cadherin-1 coding gene |
CFTR | cystic fibrosis transmembrane conductance regulator coding gene |
c-KIT | tyrosine-protein kinase KIT |
COX-2 | cyclooxygenase-2 |
CXCL | the chemokine (C-X-C motif) ligand |
CXCR | CXC chemokine receptor |
CYP2C19 | cytochrome P450 family 2 subfamily C member 19 coding gene |
EGF | epithelial growth factor |
EGFR | epithelial growth factor receptor |
EMA | mucin-1 |
EMT | epithelial-mesenchymal transition |
EpCAM | epithelial cell adhesion molecule |
ER-α | estrogen receptor alpha |
ER-β | estrogen receptor beta |
ERK | extracellular signal-regulated kinase |
ESR1 | estrogen receptor 1 coding gene |
FIGO | the International Federation of Gynecology and Obstetrics |
FoxP3 | forkhead box P3 protein (scurfin) |
FSHB | follicle stimulating hormone subunit beta coding gene |
GATA | member of the GATA family of transcription factors |
GREB1 | growth regulating estrogen receptor binding 1 coding gene |
GTP | guanosine-5’-triphosphate |
HIF-1α | hypoxia-inducible factor-1 alpha |
HOXA10 | homeobox protein Hox-A10 |
IGF | insulin-like growth factor |
IFN-γ | interferon gamma |
JAK3 | Janus kinase-3 |
JNK | c-Jun N-terminal kinase |
KRAS | Kirsten rat sarcoma virus protein |
MAPK | mitogen-activated protein kinase |
MLH-1 | MutL homolog 1 |
MMP | metalloproteinase |
MSI-1 | Musashi homolog-1 |
mTOR | the mammalian target of rapamycin |
NANOG | homeobox protein NANOG |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
NOD | non-obese diabetic mice |
NOTCH | family of type-1 transmembrane proteins |
NRAS | neuroblastoma RAS viral oncogene homolog |
NR5A1 | nuclear receptor subfamily 5 group A member 1 |
NUMB | protein numb homolog |
OCT-4 | octamer-binding transcription factor 4 |
PAH | phenylalanine hydroxylase coding gene |
PDGFR | platelet-derived growth factor receptor |
PI3K | phosphoinositide 3-kinase |
PTEN | phosphatase and tensin homolog deleted on chromosome ten |
PYCARD | PYD And CARD domain containing coding gene |
RARB | retinoic acid receptor beta coding gene |
rASRM | revised American Society of Reproductive Medicine score |
RB1 | RB transcriptional co-repressor 1 gene |
RET | “rearranged during transfection” proto-oncogene |
SALL4 | sal-like protein-4 |
SCF | Skp, Cullin, F-box containing complex |
SCID | severe combined immune deficient mice |
SMO | Smoothened protein coding gene |
SOX-2 | sex determining region Y-box 2 |
SSEA-4 | stage specific embryo antigen-4 |
STAT3 | signal transducer and activator of transcription 3 |
STRO-1 | protein marker of mesenchymal stem cells |
TCLA1 | TCL1 family AKT co-activator A |
TGF-β | transforming growth factor beta |
TNF-α | tumor necrosis factor alpha |
TP53 | transcription factor protein p53 |
WNT4 | Wnt family member 4 coding gene |
References
- Burney, R.O.; Giudice, L.C. Pathogenesis and Pathophysiology of Endometriosis. Fertil. Steril. 2012, 98, 511–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, H.S.; Osteen, K.G.; Bruner-Tran, K.L.; Lockwood, C.J.; Krikun, G.; Sokalska, A.; Duleba, A.J. Novel Therapies Targeting Endometriosis. Reprod. Sci. 2011, 18, 814–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulun, S.E. Endometriosis. N. Engl. J. Med. 2009, 360, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Nissenblatt, M. Endometriosis-Associated Ovarian Carcinomas. N. Engl. J. Med. 2011, 364, 484–485. [Google Scholar] [CrossRef] [PubMed]
- Bulletti, C.; Coccia, M.E.; Battistoni, S.; Borini, A. Endometriosis and Infertility. J. Assist. Reprod. Genet. 2010, 27, 441–447. [Google Scholar] [CrossRef]
- Tanbo, T.; Fedorcsak, P. Endometriosis-Associated Infertility: Aspects of Pathophysiological Mechanisms and Treatment Options. Acta. Obstet. Gynecol. Scand. 2017, 96, 659–667. [Google Scholar] [CrossRef] [Green Version]
- Giudice, L.C.; Kao, L.C. Endometriosis. Lancet 2004, 364, 1789–1799. [Google Scholar] [CrossRef]
- Painter, J.N.; Anderson, C.A.; Nyholt, D.R.; Macgregor, S.; Lin, J.; Lee, S.H.; Lambert, A.; Zhao, Z.Z.; Roseman, F.; Guo, Q.; et al. Genome-Wide Association Study Identifies a Locus at 7p15.2 Associated with Endometriosis. Nat. Genet. 2011, 43, 51–54. [Google Scholar] [CrossRef]
- Painter, J.N.; Nyholt, D.R.; Morris, A.; Zhao, Z.Z.; Henders, A.K.; Lambert, A.; Wallace, L.; Martin, N.G.; Kennedy, S.H.; Treloar, S.A.; et al. High-Density Fine-Mapping of a Chromosome 10q26 Linkage Peak Suggests Association between Endometriosis and Variants Close to CYP2C19. Fertil. Steril. 2011, 95, 2236–2240. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, C.S.; Mäkinen, N.; Harris, H.R.; Rahmioglu, N.; Uimari, O.; Cook, J.P.; Shigesi, N.; Ferreira, T.; Velez-Edwards, D.R.; Edwards, T.L.; et al. Genome-Wide Association and Epidemiological Analyses Reveal Common Genetic Origins between Uterine Leiomyomata and Endometriosis. Nat. Commun. 2019, 10, 4857. [Google Scholar] [CrossRef]
- Darrow, S.L.; Vena, J.E.; Batt, R.E.; Zielezny, M.A.; Michalek, A.M.; Selman, S. Menstrual Cycle Characteristics and the Risk of Endometriosis. Epidemiology 1993, 4, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Brinton, L.A.; Gridley, G.; Persson, I.; Baron, J.; Bergqvist, A. Cancer Risk after a Hospital Discharge Diagnosis of Endometriosis. Am. J. Obstet. Gynecol. 1997, 176, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Somigliana, E.; Vigano’, P.; Parazzini, F.; Stoppelli, S.; Giambattista, E.; Vercellini, P. Association between Endometriosis and Cancer: A Comprehensive Review and a Critical Analysis of Clinical and Epidemiological Evidence. Gynecol. Oncol. 2006, 101, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Pearce, C.L.; Templeman, C.; Rossing, M.A.; Lee, A.; Near, A.M.; Webb, P.M.; Nagle, C.M.; Doherty, J.A.; Cushing-Haugen, K.L.; Wicklund, K.G.; et al. Association between Endometriosis and Risk of Histological Subtypes of Ovarian Cancer: A Pooled Analysis of Case-Control Studies. Lancet Oncol. 2012, 13, 385–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilbur, M.; Shih, I.-M.; Segars, J.; Fader, A. Cancer Implications for Patients with Endometriosis. Semin. Reprod. Med. 2017, 35, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Kaku, T.; Amada, S.; Kobayashi, H.; Hirakawa, T.; Ariyoshi, K.; Kamura, T.; Nakano, H. Ovarian Endometriosis Associated with Ovarian Carcinoma: A Clinicopathological and Immunohistochemical Study. Gynecol. Oncol. 2000, 77, 298–304. [Google Scholar] [CrossRef]
- Lim, M.C.; Chun, K.-C.; Shin, S.-J.; Lee, I.H.; Lim, K.T.; Cho, C.H.; Park, S.-Y.; Nam, J.-H. Clinical Presentation of Endometrioid Epithelial Ovarian Cancer with Concurrent Endometriosis: A Multicenter Retrospective Study. Cancer Epidemiol. Biomark. Prev. 2010, 19, 398–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, C.J.; Fakhreldin, M.; Maclean, A.; Dobson, L.; Nancarrow, L.; Bradfield, A.; Choi, F.; Daley, D.; Tempest, N.; Hapangama, D.K. Endometriosis and the Fallopian Tubes: Theories of Origin and Clinical Implications. J. Clin. Med. 2020, 9, 1905. [Google Scholar] [CrossRef]
- Hermens, M.; van Altena, A.M.; Bulten, J.; Siebers, A.G.; Bekkers, R.L.M. Increased Association of Ovarian Cancer in Women with Histological Proven Endosalpingiosis. Cancer Epidemiol. 2020, 65, 101700. [Google Scholar] [CrossRef]
- Batt, R.E. A History of Endometriosis; Springer: London, UK; New York, NY, USA, 2011. [Google Scholar]
- Hufnagel, D.; Li, F.; Cosar, E.; Krikun, G.; Taylor, H. The Role of Stem Cells in the Etiology and Pathophysiology of Endometriosis. Semin. Reprod. Med. 2015, 33, 333–340. [Google Scholar] [CrossRef]
- Taguchi, S.; Enomoto, Y.; Homma, Y. Bladder Endometriosis Developed after Long-Term Estrogen Therapy for Prostate Cancer: Letter to the Editor. Int. J. Urol. 2012, 19, 964–965. [Google Scholar] [CrossRef] [PubMed]
- Rei, C.; Williams, T.; Feloney, M. Endometriosis in a Man as a Rare Source of Abdominal Pain: A Case Report and Review of the Literature. Case Rep. Obstet. Gynecol. 2018, 2018, 2083121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhesi, A.S.; Morelli, S.S. Endometriosis: A Role for Stem Cells. Womens Health 2015, 11, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.W.S.; Schwab, K.E.; Gargett, C.E. Clonogenicity of Human Endometrial Epithelial and Stromal Cells. Biol. Reprod. 2004, 70, 1738–1750. [Google Scholar] [CrossRef]
- Gargett, C.E.; Schwab, K.E.; Zillwood, R.M.; Nguyen, H.P.T.; Wu, D. Isolation and Culture of Epithelial Progenitors and Mesenchymal Stem Cells from Human Endometrium1. Biol. Reprod. 2009, 80, 1136–1145. [Google Scholar] [CrossRef] [Green Version]
- Masuda, H.; Schwab, K.E.; Filby, C.E.; Tan, C.S.C.; Tsaltas, J.; Weston, G.C.; Gargett, C.E. Endometrial Stem/Progenitor Cells in Menstrual Blood and Peritoneal Fluid of Women with and without Endometriosis. Reprod. BioMed. Online 2021, 43, 3–13. [Google Scholar] [CrossRef]
- Valentijn, A.J.; Palial, K.; Al-Lamee, H.; Tempest, N.; Drury, J.; Von Zglinicki, T.; Saretzki, G.; Murray, P.; Gargett, C.E.; Hapangama, D.K. SSEA-1 Isolates Human Endometrial Basal Glandular Epithelial Cells: Phenotypic and Functional Characterization and Implications in the Pathogenesis of Endometriosis. Hum. Reprod. 2013, 28, 2695–2708. [Google Scholar] [CrossRef] [Green Version]
- Bentz, E.-K.; Kenning, M.; Schneeberger, C.; Kolbus, A.; Huber, J.C.; Hefler, L.A.; Tempfer, C.B. OCT-4 Expression in Follicular and Luteal Phase Endometrium: A Pilot Study. Reprod. Biol. Endocrinol. 2010, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- Cho, N.H.; Park, Y.K.; Kim, Y.T.; Yang, H.; Kim, S.K. Lifetime Expression of Stem Cell Markers in the Uterine Endometrium. Fertil. Steril. 2004, 81, 403–407. [Google Scholar] [CrossRef]
- Kato, K.; Yoshimoto, M.; Kato, K.; Adachi, S.; Yamayoshi, A.; Arima, T.; Asanoma, K.; Kyo, S.; Nakahata, T.; Wake, N. Characterization of Side-Population Cells in Human Normal Endometrium. Hum. Reprod. 2007, 22, 1214–1223. [Google Scholar] [CrossRef]
- Kim, J.Y.; Tavaré, S.; Shibata, D. Counting Human Somatic Cell Replications: Methylation Mirrors Endometrial Stem Cell Divisions. Proc. Natl. Acad. Sci. USA 2005, 102, 17739–17744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda, H.; Matsuzaki, Y.; Hiratsu, E.; Ono, M.; Nagashima, T.; Kajitani, T.; Arase, T.; Oda, H.; Uchida, H.; Asada, H.; et al. Stem Cell-like Properties of the Endometrial Side Population: Implication in Endometrial Regeneration. PLoS ONE 2010, 5, e10387. [Google Scholar] [CrossRef] [PubMed]
- Parasar, P.; Sacha, C.R.; Ng, N.; McGuirk, E.R.; Chinthala, S.; Ozcan, P.; Lindsey, J.; Salas, S.; Laufer, M.R.; Missmer, S.A.; et al. Differentiating Mouse Embryonic Stem Cells Express Markers of Human Endometrium. Reprod. Biol. Endocrinol. 2017, 15, 52. [Google Scholar] [CrossRef] [PubMed]
- Götte, M.; Wolf, M.; Staebler, A.; Buchweitz, O.; Kelsch, R.; Schüring, A.N.; Kiesel, L. Increased Expression of the Adult Stem Cell Marker Musashi-1 in Endometriosis and Endometrial Carcinoma. J. Pathol. 2008, 215, 317–329. [Google Scholar] [CrossRef]
- Matthai, C.; Horvat, R.; Noe, M.; Nagele, F.; Radjabi, A.; van Trotsenburg, M.; Huber, J.; Kolbus, A. Oct-4 Expression in Human Endometrium. Mol. Hum. Reprod. 2006, 12, 7–10. [Google Scholar] [CrossRef] [Green Version]
- Wilczyński, J.R.; Wilczyński, M.; Paradowska, E. Cancer Stem Cells in Ovarian Cancer—A Source of Tumor Success and a Challenging Target for Novel Therapies. Int. J. Mol. Sci. 2022, 23, 2496. [Google Scholar] [CrossRef]
- Majesky, M.W.; Horita, H.; Ostriker, A.; Lu, S.; Regan, J.N.; Bagchi, A.; Dong, X.R.; Poczobutt, J.; Nemenoff, R.A.; Weiser-Evans, M.C.M. Differentiated Smooth Muscle Cells Generate a Subpopulation of Resident Vascular Progenitor Cells in the Adventitia Regulated by Klf4. Circ. Res. 2017, 120, 296–311. [Google Scholar] [CrossRef]
- Sidney, L.E.; Branch, M.J.; Dunphy, S.E.; Dua, H.S.; Hopkinson, A. Concise Review: Evidence for CD34 as a Common Marker for Diverse Progenitors. Stem. Cells 2014, 32, 1380–1389. [Google Scholar] [CrossRef] [Green Version]
- Yin, M.; Zhou, H.J.; Lin, C.; Long, L.; Yang, X.; Zhang, H.; Taylor, H.; Min, W. CD34+KLF4+ Stromal Stem Cells Contribute to Endometrial Regeneration and Repair. Cell Rep. 2019, 27, 2709–2724. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Kang, X.; Zhang, S.; Yeh, E.T.H. SUMO-Specific Protease 1 Is Essential for Stabilization of HIF1alpha during Hypoxia. Cell 2007, 131, 584–595. [Google Scholar] [CrossRef]
- Yu, L.; Ji, W.; Zhang, H.; Renda, M.J.; He, Y.; Lin, S.; Cheng, E.; Chen, H.; Krause, D.S.; Min, W. SENP1-Mediated GATA1 DeSUMOylation Is Critical for Definitive Erythropoiesis. J. Exp. Med. 2010, 207, 1183–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, E.T.H. SUMOylation and De-SUMOylation: Wrestling with Life’s Processes. J. Biol. Chem. 2009, 284, 8223–8227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, R.; Ding, L.; Zhou, J.; Huang, C.; Zhang, Q.; Jiang, Y.; Liu, J.; Yan, Q.; Zhen, X.; Sun, J.; et al. Enhanced HOXA10 Sumoylation Inhibits Embryo Implantation in Women with Recurrent Implantation Failure. Cell Death Discov. 2017, 3, 17057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, M.C.; Fusi, L.; Higham, J.H.; Abdel-Hafiz, H.; Horwitz, K.B.; Lam, E.W.-F.; Brosens, J.J. Regulation of the SUMO Pathway Sensitizes Differentiating Human Endometrial Stromal Cells to Progesterone. Proc. Natl. Acad. Sci. USA 2006, 103, 16272–16277. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Liu, L.; Wang, S.; Huang, X. SUMO-1 Promotes Ishikawa Cell Proliferation and Apoptosis in Endometrial Cancer by Increasing Sumoylation of Histone H4. Int. J. Gynecol. Cancer 2015, 25, 1364–1368. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Feng, B.; Yin, M.; Zhou, H.J.; Lou, G.; Ji, W.; Li, Y.; Min, W. Stromal Senp1 Promotes Mouse Early Folliculogenesis by Regulating BMP4 Expression. Cell Biosci. 2017, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Kato, K.; Takao, T.; Kuboyama, A.; Tanaka, Y.; Ohgami, T.; Yamaguchi, S.; Adachi, S.; Yoneda, T.; Ueoka, Y.; Kato, K.; et al. Endometrial Cancer Side-Population Cells Show Prominent Migration and Have a Potential to Differentiate into the Mesenchymal Cell Lineage. Am. J. Pathol. 2010, 176, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Cervelló, I.; Gil-Sanchis, C.; Mas, A.; Delgado-Rosas, F.; Martínez-Conejero, J.A.; Galán, A.; Martínez-Romero, A.; Martínez, S.; Navarro, I.; Ferro, J.; et al. Human Endometrial Side Population Cells Exhibit Genotypic, Phenotypic and Functional Features of Somatic Stem Cells. PLoS ONE 2010, 5, e10964. [Google Scholar] [CrossRef] [Green Version]
- Cervelló, I.; Mas, A.; Gil-Sanchis, C.; Peris, L.; Faus, A.; Saunders, P.T.K.; Critchley, H.O.D.; Simón, C. Reconstruction of Endometrium from Human Endometrial Side Population Cell Lines. PLoS ONE 2011, 6, e21221. [Google Scholar] [CrossRef]
- Kong, Y.; Shao, Y.; Ren, C.; Yang, G. Endometrial Stem/Progenitor Cells and Their Roles in Immunity, Clinical Application, and Endometriosis. Stem Cell Res. Ther. 2021, 12, 474. [Google Scholar] [CrossRef]
- Jun, J.-I.; Lau, L.F. The Matricellular Protein CCN1 Induces Fibroblast Senescence and Restricts Fibrosis in Cutaneous Wound Healing. Nat. Cell Biol. 2010, 12, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Mou, X.; Lin, J.; Chen, J.; Li, Y.; Wu, X.; Xiang, B.; Li, C.; Ma, J.; Xiang, C. Menstrual Blood-Derived Mesenchymal Stem Cells Differentiate into Functional Hepatocyte-like Cells. J. Zhejiang Univ. Sci. B 2013, 14, 961–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanmohammadi, M.; Khanjani, S.; Bakhtyari, M.S.; Zarnani, A.H.; Edalatkhah, H.; Akhondi, M.M.; Mirzadegan, E.; Kamali, K.; Alimoghadam, K.; Kazemnejad, S. Proliferation and Chondrogenic Differentiation Potential of Menstrual Blood- and Bone Marrow-Derived Stem Cells in Two-Dimensional Culture. Int. J. Hematol. 2012, 95, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Fard, M.; Akhavan-Tavakoli, M.; Khanjani, S.; Zare, S.; Edalatkhah, H.; Arasteh, S.; Mehrabani, D.; Zarnani, A.-H.; Kazemnejad, S.; Shirazi, R. Bilayer Amniotic Membrane/Nano-Fibrous Fibroin Scaffold Promotes Differentiation Capability of Menstrual Blood Stem Cells into Keratinocyte-Like Cells. Mol. Biotechnol. 2018, 60, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, Y.; Zhang, B.; Lan, X.; Lu, S.; Sun, P.; Li, X.; Shi, G.; Zhao, Y.; Han, H.; et al. Treatment of Experimental Colitis by Endometrial Regenerative Cells through Regulation of B Lymphocytes in Mice. Stem Cell Res. Ther. 2018, 9, 146. [Google Scholar] [CrossRef]
- Ma, S.; Hirata, T.; Arakawa, T.; Sun, H.; Neriishi, K.; Fukuda, S.; Nakazawa, A.; Wang, Y.; Harada, M.; Hirota, Y.; et al. Expression of ALDH1A Isozymes in Human Endometrium with and without Endometriosis and in Ovarian Endometrioma. Reprod. Sci. 2020, 27, 443–452. [Google Scholar] [CrossRef]
- Huang, H.-H.; Wang, Y.-C.; Chou, Y.-C.; Yu, M.-H.; Chao, T.-K. The Combination of Aldehyde Dehydrogenase 1 (ALDH1) and CD44 Is Associated with Poor Outcomes in Endometrial Cancer. PLoS ONE 2018, 13, e0206685. [Google Scholar] [CrossRef] [Green Version]
- Mints, M.; Jansson, M.; Sadeghi, B.; Westgren, M.; Uzunel, M.; Hassan, M.; Palmblad, J. Endometrial Endothelial Cells Are Derived from Donor Stem Cells in a Bone Marrow Transplant Recipient. Hum. Reprod. 2008, 23, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Taylor, H.S. Endometrial Cells Derived from Donor Stem Cells in Bone Marrow Transplant Recipients. JAMA 2004, 292, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Ikoma, T.; Kyo, S.; Maida, Y.; Ozaki, S.; Takakura, M.; Nakao, S.; Inoue, M. Bone Marrow-Derived Cells from Male Donors Can Compose Endometrial Glands in Female Transplant Recipients. Am. J. Obstet. Gynecol. 2009, 201, 608.E1–608.E8. [Google Scholar] [CrossRef]
- Du, H.; Naqvi, H.; Taylor, H.S. Ischemia/Reperfusion Injury Promotes and Granulocyte-Colony Stimulating Factor Inhibits Migration of Bone Marrow-Derived Stem Cells to Endometrium. Stem Cells Dev. 2012, 21, 3324–3331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crisan, M.; Yap, S.; Casteilla, L.; Chen, C.-W.; Corselli, M.; Park, T.S.; Andriolo, G.; Sun, B.; Zheng, B.; Zhang, L.; et al. A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs. Cell Stem Cell 2008, 3, 301–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolff, E.F.; Wolff, A.B.; Du, H.; Taylor, H.S. Demonstration of Multipotent Stem Cells in the Adult Human Endometrium by in Vitro Chondrogenesis. Reprod. Sci. 2007, 14, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Gurung, S.; Deane, J.A.; Masuda, H.; Maruyama, T.; Gargett, C.E. Stem Cells in Endometrial Physiology. Semin. Reprod. Med. 2015, 33, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, T.L.B.; Rojas, A.; Zelenko, Z.; Aghajanova, L.; Erikson, D.W.; Barragan, F.; Meyer, M.; Tamaresis, J.S.; Hamilton, A.E.; Irwin, J.C.; et al. Perivascular Human Endometrial Mesenchymal Stem Cells Express Pathways Relevant to Self-Renewal, Lineage Specification, and Functional Phenotype1. Biol. Reprod. 2012, 86, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Chan, R.W.S.; Li, T.; Ng, E.H.Y.; Yeung, W.S.B. Understanding the Regulatory Mechanisms of Endometrial Cells on Activities of Endometrial Mesenchymal Stem-like Cells during Menstruation. Stem. Cell Res. Ther. 2020, 11, 239. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.; Anwar, S.S.; Bühring, H.-J.; Rao, J.R.; Gargett, C.E. A Novel Marker of Human Endometrial Mesenchymal Stem-Like Cells. Cell Transplant. 2012, 21, 2201–2214. [Google Scholar] [CrossRef]
- Murakami, K.; Lee, Y.H.; Lucas, E.S.; Chan, Y.-W.; Durairaj, R.P.; Takeda, S.; Moore, J.D.; Tan, B.K.; Quenby, S.; Chan, J.K.Y.; et al. Decidualization Induces a Secretome Switch in Perivascular Niche Cells of the Human Endometrium. Endocrinology 2014, 155, 4542–4553. [Google Scholar] [CrossRef]
- Gurung, S.; Werkmeister, J.A.; Gargett, C.E. Inhibition of Transforming Growth Factor-β Receptor Signaling Promotes Culture Expansion of Undifferentiated Human Endometrial Mesenchymal Stem/Stromal Cells. Sci. Rep. 2015, 5, 15042. [Google Scholar] [CrossRef] [Green Version]
- Briscoe, J.; Thérond, P.P. The Mechanisms of Hedgehog Signalling and Its Roles in Development and Disease. Nat. Rev. Mol. Cell Biol. 2013, 14, 416–429. [Google Scholar] [CrossRef]
- Alawadhi, F.; Du, H.; Cakmak, H.; Taylor, H.S. Bone Marrow-Derived Stem Cell (BMDSC) Transplantation Improves Fertility in a Murine Model of Asherman’s Syndrome. PLoS ONE 2014, 9, e96662. [Google Scholar] [CrossRef]
- Tan, J.; Li, P.; Wang, Q.; Li, Y.; Li, X.; Zhao, D.; Xu, X.; Kong, L. Autologous Menstrual Blood-Derived Stromal Cells Transplantation for Severe Asherman’s Syndrome. Hum. Reprod. 2016, 31, 2723–2729. [Google Scholar] [CrossRef] [Green Version]
- Mutlu, L.; Hufnagel, D.; Taylor, H.S. The Endometrium as a Source of Mesenchymal Stem Cells for Regenerative Medicine1. Biol. Reprod. 2015, 92, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, D.; Tan, K.S.; Deane, J.; Schwab, K.; Cheong, A.; Rosamilia, A.; Gargett, C.E. Mesenchymal Stem/Stromal Cells in Post-Menopausal Endometrium. Hum. Reprod. 2014, 29, 1895–1905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojewski, M.T.; Weber, B.M.; Schrezenmeier, H. Phenotypic Characterization of Mesenchymal Stem Cells from Various Tissues. Transf. Med. Hemother. 2008, 35, 168–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, S.L.; Ulrich, D.; White, J.F.; Su, K.; Rosamilia, A.; Ramshaw, J.A.M.; Gargett, C.E.; Werkmeister, J.A. Temporal Changes in the Biomechanical Properties of Endometrial Mesenchymal Stem Cell Seeded Scaffolds in a Rat Model. Acta. Biomater. 2015, 13, 286–294. [Google Scholar] [CrossRef]
- Bozorgmehr, M.; Moazzeni, S.M.; Salehnia, M.; Sheikhian, A.; Nikoo, S.; Zarnani, A.-H. Menstrual Blood-Derived Stromal Stem Cells Inhibit Optimal Generation and Maturation of Human Monocyte-Derived Dendritic Cells. Immunol. Lett. 2014, 162, 239–246. [Google Scholar] [CrossRef]
- Nikoo, S.; Ebtekar, M.; Jeddi-Tehrani, M.; Shervin, A.; Bozorgmehr, M.; Kazemnejad, S.; Zarnani, A.H. Effect of Menstrual Blood-Derived Stromal Stem Cells on Proliferative Capacity of Peripheral Blood Mononuclear Cells in Allogeneic Mixed Lymphocyte Reaction: Immunomodulatory Effects of MBSCs. J. Obstet. Gynaecol. Res. 2012, 38, 804–809. [Google Scholar] [CrossRef]
- Leyendecker, G.; Herbertz, M.; Kunz, G.; Mall, G. Endometriosis Results from the Dislocation of Basal Endometrium. Hum. Reprod. 2002, 17, 2725–2736. [Google Scholar] [CrossRef] [Green Version]
- Othman, E.R.; Meligy, F.Y.; Sayed, A.A.-R.; El-Mokhtar, M.A.; Refaiy, A.M. Stem Cell Markers Describe a Transition from Somatic to Pluripotent Cell States in a Rat Model of Endometriosis. Reprod. Sci. 2018, 25, 873–881. [Google Scholar] [CrossRef]
- Pazhohan, A.; Amidi, F.; Akbari-Asbagh, F.; Seyedrezazadeh, E.; Aftabi, Y.; Abdolalizadeh, J.; Khodarahmian, M.; Khanlarkhani, N.; Sobhani, A. Expression and Shedding of CD44 in the Endometrium of Women with Endometriosis and Modulating Effects of Vitamin D: A Randomized Exploratory Trial. J. Steroid Biochem. Mol. Biol. 2018, 178, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, X.; Xia, X.; Fang, X.; Zhang, T.; Huang, F. Endometrial Epithelial Cells-Derived Exosomes Deliver MicroRNA-30c to Block the BCL9/Wnt/CD44 Signaling and Inhibit Cell Invasion and Migration in Ovarian Endometriosis. Cell Death Discov. 2022, 8, 151. [Google Scholar] [CrossRef] [PubMed]
- Forte, A.; Schettino, M.T.; Finicelli, M.; Cipollaro, M.; Colacurci, N.; Cobellis, L.; Galderisi, U. Expression Pattern of Stemness-Related Genes in Human Endometrial and Endometriotic Tissues. Mol. Med. 2009, 15, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Pacchiarotti, A.; Caserta, D.; Sbracia, M.; Moscarini, M. Expression of Oct-4 and c-Kit Antigens in Endometriosis. Fertil. Steril. 2011, 95, 1171–1173. [Google Scholar] [CrossRef]
- Chang, J.-H.; Au, H.-K.; Lee, W.-C.; Chi, C.-C.; Ling, T.-Y.; Wang, L.-M.; Kao, S.-H.; Huang, Y.-H.; Tzeng, C.-R. Expression of the Pluripotent Transcription Factor OCT4 Promotes Cell Migration in Endometriosis. Fertil. Steril. 2013, 99, 1332–1339.e5. [Google Scholar] [CrossRef]
- Zeng, B.; Hu, J.; Yuan, R.; Hu, L.; Zhong, L.; Kang, K. Increased Expression of Importin13 in Endometriosis and Endometrial Carcinoma. Med. Sci. Monit. 2012, 18, CR361–CR367. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Yang, N.; Liang, Y.; Chen, M.; Yang, F.; Liu, L.; Yao, S. Increased Expression of Epithelial Cell Adhesion Molecule and Its Possible Role in Epithelial–Mesenchymal Transition in Endometriosis. J. Obstet. Gynaecol. Res. 2020, 46, 2066–2075. [Google Scholar] [CrossRef]
- Nikoo, S.; Ebtekar, M.; Jeddi-Tehrani, M.; Shervin, A.; Bozorgmehr, M.; Vafaei, S.; Kazemnejad, S.; Zarnani, A.-H. Menstrual Blood-Derived Stromal Stem Cells from Women with and without Endometriosis Reveal Different Phenotypic and Functional Characteristics. Mol. Hum. Reprod. 2014, 20, 905–918. [Google Scholar] [CrossRef] [Green Version]
- Rezvani, M.; Shaaban, A.M. Fallopian Tube Disease in the Nonpregnant Patient. RadioGraphics 2011, 31, 527–548. [Google Scholar] [CrossRef] [Green Version]
- Foti, P.V.; Ognibene, N.; Spadola, S.; Caltabiano, R.; Farina, R.; Palmucci, S.; Milone, P.; Ettorre, G.C. Non-Neoplastic Diseases of the Fallopian Tube: MR Imaging with Emphasis on Diffusion-Weighted Imaging. Insights Imaging 2016, 7, 311–327. [Google Scholar] [CrossRef]
- Paik, D.Y.; Janzen, D.M.; Schafenacker, A.M.; Velasco, V.S.; Shung, M.S.; Cheng, D.; Huang, J.; Witte, O.N.; Memarzadeh, S. Stem-Like Epithelial Cells Are Concentrated in the Distal End of the Fallopian Tube: A Site for Injury and Serous Cancer Initiation. Stem Cells 2012, 30, 2487–2497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.-H.; Chu, T.-Y.; Ding, D.-C. Human Fallopian Tube Epithelial Cells Exhibit Stemness Features, Self-Renewal Capacity, and Wnt-Related Organoid Formation. J. Biomed. Sci. 2020, 27, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.-H.; Ding, D.-C.; Chu, T.-Y. Estradiol and Progesterone Induced Differentiation and Increased Stemness Gene Expression of Human Fallopian Tube Epithelial Cells. J. Cancer 2019, 10, 3028–3036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, M.; Hoffmann, K.; Fritsche, K.; Brinkmann, V.; Mollenkopf, H.-J.; Thieck, O.; Teixeira da Costa, A.R.; Braicu, E.I.; Sehouli, J.; Mangler, M.; et al. Chronic Chlamydia Infection in Human Organoids Increases Stemness and Promotes Age-Dependent CpG Methylation. Nat. Commun. 2019, 10, 1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueira, P.G.M.; Abrão, M.S.; Krikun, G.; Taylor, H.S.; Taylor, H. Stem Cells in Endometrium and Their Role in the Pathogenesis of Endometriosis. Ann. N. Y. Acad. Sci. 2011, 1221, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Kao, A.-P.; Wang, K.-H.; Chang, C.-C.; Lee, J.-N.; Long, C.-Y.; Chen, H.-S.; Tsai, C.-F.; Hsieh, T.-H.; Tsai, E.-M. Comparative Study of Human Eutopic and Ectopic Endometrial Mesenchymal Stem Cells and the Development of an in Vivo Endometriotic Invasion Model. Fertil. Steril. 2011, 95, 1308–1315.e1. [Google Scholar] [CrossRef] [PubMed]
- Sakr, S.; Naqvi, H.; Komm, B.; Taylor, H.S. Endometriosis Impairs Bone Marrow-Derived Stem Cell Recruitment to the Uterus Whereas Bazedoxifene Treatment Leads to Endometriosis Regression and Improved Uterine Stem Cell Engraftment. Endocrinology 2014, 155, 1489–1497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulak, J.; Fischer, C.; Komm, B.; Taylor, H.S. Treatment with Bazedoxifene, a Selective Estrogen Receptor Modulator, Causes Regression of Endometriosis in a Mouse Model. Endocrinology 2011, 152, 3226–3232. [Google Scholar] [CrossRef]
- Chen, P.; Mamillapalli, R.; Habata, S.; Taylor, H.S. Endometriosis Cell Proliferation Induced by Bone Marrow Mesenchymal Stem Cells. Reprod. Sci. 2021, 28, 426–434. [Google Scholar] [CrossRef]
- Chen, P.; Mamillapalli, R.; Habata, S.; Taylor, H.S. Endometriosis Stromal Cells Induce Bone Marrow Mesenchymal Stem Cell Differentiation and PD-1 Expression through Paracrine Signaling. Mol. Cell Biochem. 2021, 476, 1717–1727. [Google Scholar] [CrossRef]
- Halme, J.; Becker, S.; Hammond, M.G.; Raj, M.H.G.; Raj, S. Increased Activation of Pelvic Macrophages in Infertile Women with Mild Endometriosis. Am. J. Obstet. Gynecol. 1983, 145, 333–337. [Google Scholar] [CrossRef]
- Laschke, M.W.; Giebels, C.; Nickels, R.M.; Scheuer, C.; Menger, M.D. Endothelial Progenitor Cells Contribute to the Vascularization of Endometriotic Lesions. Am. J. Pathol. 2011, 178, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Laschke, M.W.; Giebels, C.; Menger, M.D. Vasculogenesis: A New Piece of the Endometriosis Puzzle. Hum. Reprod. Update 2011, 17, 628–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloise, E.; Ciarmela, P.; Dela Cruz, C.; Luisi, S.; Petraglia, F.; Reis, F.M. Activin A in Mammalian Physiology. Physiol. Rev. 2019, 99, 739–780. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.-I.; Lau, L.F. Taking Aim at the Extracellular Matrix: CCN Proteins as Emerging Therapeutic Targets. Nat. Rev. Drug Discov. 2011, 10, 945–963. [Google Scholar] [CrossRef] [Green Version]
- Hall-Glenn, F.; Lyons, K.M. Roles for CCN2 in Normal Physiological Processes. Cell Mol. Life Sci. 2011, 68, 3209–3217. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Toujima, S.; Umesaki, N. Activin A Inhibits Growth-Inhibitory Signals by TGF-Beta1 in Differentiated Human Endometrial Adenocarcinoma Cells. Oncol. Rep. 2004, 11, 875–879. [Google Scholar]
- Kikuchi, R.; Tsuda, H.; Kanai, Y.; Kasamatsu, T.; Sengoku, K.; Hirohashi, S.; Inazawa, J.; Imoto, I. Promoter Hypermethylation Contributes to Frequent Inactivation of a Putative Conditional Tumor Suppressor Gene Connective Tissue Growth Factor in Ovarian Cancer. Cancer Res. 2007, 67, 7095–7105. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-T.; Li, J.-Y.; Zeng, G.-C.; Lu, L.; Jarrett, M.J.; Zhao, Y.; Yao, Q.-Z.; Chen, X.; Yu, K.-J. Overexpression of Connective Tissue Growth Factor Is Associated with Tumor Progression and Unfavorable Prognosis in Endometrial Cancer. Cancer Biomark. 2019, 25, 295–302. [Google Scholar] [CrossRef]
- Uzan, C.; Cortez, A.; Dufournet, C.; Fauvet, R.; Siffroi, J.-P.; Daraï, E. Endometrium from Women with and without Endometriosis, and Peritoneal, Ovarian and Bowel Endometriosis, Show Different c-Kit Protein Expression. J. Reprod. Immunol. 2005, 65, 55–63. [Google Scholar] [CrossRef]
- Martins, F.C.; Couturier, D.-L.; Paterson, A.; Karnezis, A.N.; Chow, C.; Nazeran, T.M.; Odunsi, A.; Gentry-Maharaj, A.; Vrvilo, A.; Hein, A.; et al. Clinical and Pathological Associations of PTEN Expression in Ovarian Cancer: A Multicentre Study from the Ovarian Tumour Tissue Analysis Consortium. Br. J. Cancer 2020, 123, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Takeda, T.; Banno, K.; Okawa, R.; Yanokura, M.; Iijima, M.; Irie-Kunitomi, H.; Nakamura, K.; Iida, M.; Adachi, M.; Umene, K.; et al. ARID1A Gene Mutation in Ovarian and Endometrial Cancers (Review). Oncol. Rep. 2016, 35, 607–613. [Google Scholar] [CrossRef] [Green Version]
- Hirata, T.; Osuga, Y.; Yoshino, O.; Hirota, Y.; Harada, M.; Takemura, Y.; Morimoto, C.; Koga, K.; Yano, T.; Tsutsumi, O.; et al. Development of an Experimental Model of Endometriosis Using Mice That Ubiquitously Express Green Fluorescent Protein. Hum. Reprod. 2005, 20, 2092–2096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, D.; Guo, Y.; Zhang, Q.; Chen, Y.; Xiang, C. Differentiation of Human Menstrual Blood-Derived Endometrial Mesenchymal Stem Cells into Oocyte-like Cells. Acta Biochim. Biophys. Sin. 2016, 48, 998–1005. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Luo, Y.; Chen, J.; Pan, R.; Xiang, B.; Du, X.; Xiang, L.; Shao, J.; Xiang, C. Transplantation of Human Menstrual Blood Progenitor Cells Improves Hyperglycemia by Promoting Endogenous Progenitor Differentiation in Type 1 Diabetic Mice. Stem Cells Develop. 2014, 23, 1245–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Pan, Y.; Jiang, Y.; Li, J.; Zhang, Y.; Zhang, S. Activation of the Hippo/TAZ Pathway Is Required for Menstrual Stem Cells to Suppress Myofibroblast and Inhibit Transforming Growth Factor β Signaling in Human Endometrial Stromal Cells. Hum. Reprod. 2019, 34, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, Z.; Yazdekhasti, H.; Noori Mugahi, S.M.H.; Abbasi, M.; Kazemnejad, S.; Shirazi, A.; Majidi, M.; Zarnani, A.-H. Mouse Preantral Follicle Growth in 3D Co-Culture System Using Human Menstrual Blood Mesenchymal Stem Cell. Reprod. Biol. 2018, 18, 122–131. [Google Scholar] [CrossRef]
- Pospisilova, E.; Kiss, I.; Souckova, H.; Tomes, P.; Spicka, J.; Matkowski, R.; Jedryka, M.; Ferrero, S.; Bobek, V.; Kolostova, K. Circulating Endometrial Cells: A New Source of Information on Endometriosis Dynamics. J. Clin. Med. 2019, 8, 1938. [Google Scholar] [CrossRef] [Green Version]
- Rutella, S.; Bonanno, G.; Procoli, A.; Mariotti, A.; Corallo, M.; Prisco, M.G.; Eramo, A.; Napoletano, C.; Gallo, D.; Perillo, A.; et al. Cells with Characteristics of Cancer Stem/Progenitor Cells Express the CD133 Antigen in Human Endometrial Tumors. Clin. Cancer Res. 2009, 15, 4299–4311. [Google Scholar] [CrossRef] [Green Version]
- Saygin, C.; Wiechert, A.; Rao, V.S.; Alluri, R.; Connor, E.; Thiagarajan, P.S.; Hale, J.S.; Li, Y.; Chumakova, A.; Jarrar, A.; et al. CD55 Regulates Self-Renewal and Cisplatin Resistance in Endometrioid Tumors. J. Exp. Med. 2017, 214, 2715–2732. [Google Scholar] [CrossRef]
- Begicevic, R.-R.; Falasca, M. ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance. Int. J. Mol. Sci. 2017, 18, 2362. [Google Scholar] [CrossRef] [PubMed]
- Pityński, K.; Banas, T.; Pietrus, M.; Milian-Ciesielska, K.; Ludwin, A.; Okon, K. SOX-2, but Not Oct4, Is Highly Expressed in Early-Stage Endometrial Adenocarcinoma and Is Related to Tumour Grading. Int. J. Clin. Exp. Pathol. 2015, 8, 8189–8198. [Google Scholar] [PubMed]
- Fatima, I.; Barman, S.; Rai, R.; Thiel, K.W.; Chandra, V. Targeting Wnt Signaling in Endometrial Cancer. Cancers 2021, 13, 2351. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Siu, M.K.; Au, C.W.; Chan, Q.K.; Chan, H.Y.; Wong, E.S.; Ip, P.P.; Ngan, H.Y.; Cheung, A.N. Aberrant Activation of Hedgehog Signaling Pathway Contributes to Endometrial Carcinogenesis through β-Catenin. Mod. Pathol. 2009, 22, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Balch, C.; Chan, M.W.; Lai, H.-C.; Matei, D.; Schilder, J.M.; Yan, P.S.; Huang, T.H.-M.; Nephew, K.P. Identification and Characterization of Ovarian Cancer-Initiating Cells from Primary Human Tumors. Cancer Res. 2008, 68, 4311–4320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourguignon, L.Y.W.; Peyrollier, K.; Xia, W.; Gilad, E. Hyaluronan-CD44 Interaction Activates Stem Cell Marker Nanog, Stat-3-Mediated MDR1 Gene Expression, and Ankyrin-Regulated Multidrug Efflux in Breast and Ovarian Tumor Cells. J. Biol. Chem. 2008, 283, 17635–17651. [Google Scholar] [CrossRef] [Green Version]
- Lupia, M.; Cavallaro, U. Ovarian Cancer Stem Cells: Still an Elusive Entity? Mol. Cancer 2017, 16, 64. [Google Scholar] [CrossRef] [Green Version]
- Zong, X.; Nephew, K.P. Ovarian Cancer Stem Cells: Role in Metastasis and Opportunity for Therapeutic Targeting. Cancers 2019, 11, 934. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-C.; Wang, J.-L.; Kong, X.; Sun, T.-T.; Chen, H.-Y.; Hong, J.; Fang, J.-Y. CD24 Mediates Gastric Carcinogenesis and Promotes Gastric Cancer Progression via STAT3 Activation. Apoptosis 2014, 19, 643–656. [Google Scholar] [CrossRef]
- Szotek, P.P.; Pieretti-Vanmarcke, R.; Masiakos, P.T.; Dinulescu, D.M.; Connolly, D.; Foster, R.; Dombkowski, D.; Preffer, F.; MacLaughlin, D.T.; Donahoe, P.K. Ovarian Cancer Side Population Defines Cells with Stem Cell-like Characteristics and Mullerian Inhibiting Substance Responsiveness. Proc. Natl. Acad. Sci. USA 2006, 103, 11154–11159. [Google Scholar] [CrossRef] [Green Version]
- Raspollini, M.R.; Amunni, G.; Villanucci, A.; Baroni, G.; Taddei, A.; Taddei, G.L. C-KIT Expression and Correlation with Chemotherapy Resistance in Ovarian Carcinoma: An Immunocytochemical Study. Ann. Oncol. 2004, 15, 594–597. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Terai, Y.; Tanabe, A.; Ono, Y.J.; Hayashi, M.; Maeda, K.; Fujiwara, S.; Ashihara, K.; Nakamura, M.; Tanaka, Y.; et al. CD24 Expression Is a Marker for Predicting Clinical Outcome and Regulates the Epithelial-Mesenchymal Transition in Ovarian Cancer via Both the Akt and ERK Pathways. Oncol. Rep. 2017, 37, 3189–3200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keyvani, V.; Farshchian, M.; Esmaeili, S.-A.; Yari, H.; Moghbeli, M.; Nezhad, S.-R.K.; Abbaszadegan, M.R. Ovarian Cancer Stem Cells and Targeted Therapy. J. Ovarian Res. 2019, 12, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.; Dombkowski, D.; Meirelles, K.; Pieretti-Vanmarcke, R.; Szotek, P.P.; Chang, H.L.; Preffer, F.I.; Mueller, P.R.; Teixeira, J.; MacLaughlin, D.T.; et al. Müllerian Inhibiting Substance Preferentially Inhibits Stem/Progenitors in Human Ovarian Cancer Cell Lines Compared with Chemotherapeutics. Proc. Natl. Acad. Sci. USA 2010, 107, 18874–18879. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Li, Q.; Yang, Z. Musashi-1 Expression Is a Prognostic Factor in Ovarian Adenocarcinoma and Correlates with ALDH-1 Expression. Pathol. Oncol. Res. 2015, 21, 1133–1140. [Google Scholar] [CrossRef]
- Chen, H.; Liu, J.; Wang, H.; Cheng, Q.; Zhou, C.; Chen, X.; Ye, F. Inhibition of RNA-Binding Protein Musashi-1 Suppresses Malignant Properties and Reverses Paclitaxel Resistance in Ovarian Carcinoma. J. Cancer 2019, 10, 1580–1592. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Wang, C.-Y. Targeting Cancer Stem Cells in Squamous Cell Carcinoma. Precision Clin. Med. 2019, 2, 152–165. [Google Scholar] [CrossRef]
- Wen, Y.; Hou, Y.; Huang, Z.; Cai, J.; Wang, Z. SOX2 Is Required to Maintain Cancer Stem Cells in Ovarian Cancer. Cancer Sci. 2017, 108, 719–731. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, K.; Li, L.; Li, R.; Zhang, J.; Ren, W. Overexpression of SOX2 Is Involved in Paclitaxel Resistance of Ovarian Cancer via the PI3K/Akt Pathway. Tumor Biol. 2015, 36, 9823–9828. [Google Scholar] [CrossRef]
- Ruscito, I.; Cacsire Castillo-Tong, D.; Vergote, I.; Ignat, I.; Stanske, M.; Vanderstichele, A.; Ganapathi, R.N.; Glajzer, J.; Kulbe, H.; Trillsch, F.; et al. Exploring the Clonal Evolution of CD133/Aldehyde-Dehydrogenase-1 (ALDH1)-Positive Cancer Stem-like Cells from Primary to Recurrent High-Grade Serous Ovarian Cancer (HGSOC). A Study of the Ovarian Cancer Therapy–Innovative Models Prolong Survival (OCTIPS) Consortium. Eur. J. Cancer 2017, 79, 214–225. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Maihle, N.J.; Huang, Y. Pluripotency Factors Lin28 and Oct4 Identify a Sub-Population of Stem Cell-like Cells in Ovarian Cancer. Oncogene 2010, 29, 2153–2159. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Miao, C.; Jin, C.; Qiu, C.; Li, Y.; Sun, X.; Gao, M.; Lu, N.; Kong, B. SUSD2 Promotes Cancer Metastasis and Confers Cisplatin Resistance in High Grade Serous Ovarian Cancer. Exp. Cell Res. 2018, 363, 160–170. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, M.; Francescangeli, F.; Zeuner, A. Breast Cancer Stem Cells as Drivers of Tumor Chemoresistance, Dormancy and Relapse: New Challenges and Therapeutic Opportunities. Cancers 2019, 11, 1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, J.-G.; Stoeck, A.; Guan, B.; Wu, R.-C.; Zhu, H.; Blackshaw, S.; Shih, I.-M.; Wang, T.-L. Notch3 Interactome Analysis Identified WWP2 as a Negative Regulator of Notch3 Signaling in Ovarian Cancer. PLoS Genet. 2014, 10, e1004751. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.W.S.; Ng, E.H.Y.; Yeung, W.S.B. Identification of Cells with Colony-Forming Activity, Self-Renewal Capacity, and Multipotency in Ovarian Endometriosis. Am. J. Pathol. 2011, 178, 2832–2844. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-C.; Yo, Y.-T.; Lee, H.-Y.; Liao, Y.-P.; Chao, T.-K.; Su, P.-H.; Lai, H.-C. ALDH1-Bright Epithelial Ovarian Cancer Cells Are Associated with CD44 Expression, Drug Resistance, and Poor Clinical Outcome. Am. J. Pathol. 2012, 180, 1159–1169. [Google Scholar] [CrossRef]
- Fu, J.; Shang, Y.; Qian, Z.; Hou, J.; Yan, F.; Liu, G.; Dehua, L.; Tian, X. Chimeric Antigen Receptor-T (CAR-T) Cells Targeting Epithelial Cell Adhesion Molecule (EpCAM) Can Inhibit Tumor Growth in Ovarian Cancer Mouse Model. J. Vet. Med. Sci. 2021, 83, 241–247. [Google Scholar] [CrossRef]
- Witt, A.E.; Lee, C.-W.; Lee, T.I.; Azzam, D.J.; Wang, B.; Caslini, C.; Petrocca, F.; Grosso, J.; Jones, M.; Cohick, E.B.; et al. Identification of a Cancer Stem Cell-Specific Function for the Histone Deacetylases, HDAC1 and HDAC7, in Breast and Ovarian Cancer. Oncogene 2017, 36, 1707–1720. [Google Scholar] [CrossRef]
- Xia, Y.; Wei, X.; Gong, H.; Ni, Y. Aldehyde Dehydrogenase Serves as a Biomarker for Worse Survival Profiles in Ovarian Cancer Patients: An Updated Meta-Analysis. BMC Women’s Health 2018, 18, 199. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, T.; Hirohashi, Y.; Torigoe, T.; Yasuda, K.; Takahashi, A.; Asanuma, H.; Morita, R.; Mariya, T.; Asano, T.; Mizuuchi, M.; et al. ALDH1-High Ovarian Cancer Stem-Like Cells Can Be Isolated from Serous and Clear Cell Adenocarcinoma Cells, and ALDH1 High Expression Is Associated with Poor Prognosis. PLoS ONE 2013, 8, e65158. [Google Scholar] [CrossRef] [Green Version]
- Meng, E.; Mitra, A.; Tripathi, K.; Finan, M.A.; Scalici, J.; McClellan, S.; da Silva, L.M.; Reed, E.; Shevde, L.A.; Palle, K.; et al. ALDH1A1 Maintains Ovarian Cancer Stem Cell-Like Properties by Altered Regulation of Cell Cycle Checkpoint and DNA Repair Network Signaling. PLoS ONE 2014, 9, e107142. [Google Scholar] [CrossRef] [PubMed]
- Pylväs-Eerola, M.; Liakka, A.; Puistola, U.; Koivunen, J.; Karihtala, P. Cancer Stem Cell Properties as Factors Predictive of Chemoresistance in Neoadjuvantly-Treated Patients with Ovarian Cancer. Anticancer Res. 2016, 36, 3425–3431. [Google Scholar] [PubMed]
- Beausoleil, S.A.; Jedrychowski, M.; Schwartz, D.; Elias, J.E.; Villén, J.; Li, J.; Cohn, M.A.; Cantley, L.C.; Gygi, S.P. Large-Scale Characterization of HeLa Cell Nuclear Phosphoproteins. Proc. Natl. Acad. Sci. USA 2004, 101, 12130–12135. [Google Scholar] [CrossRef] [Green Version]
- Guan, B.; Wang, T.-L.; Shih, I.-M. ARID1A, a Factor That Promotes Formation of SWI/SNF-Mediated Chromatin Remodeling, Is a Tumor Suppressor in Gynecologic Cancers. Cancer Res. 2011, 71, 6718–6727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosse, T.; ter Haar, N.T.; Seeber, L.M.; v Diest, P.J.; Hes, F.J.; Vasen, H.F.A.; Nout, R.A.; Creutzberg, C.L.; Morreau, H.; Smit, V.T.H.B.M. Loss of ARID1A Expression and Its Relationship with PI3K-Akt Pathway Alterations, TP53 and Microsatellite Instability in Endometrial Cancer. Mod. Pathol. 2013, 26, 1525–1535. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, S.; Tsuda, H.; Takano, M.; Tamai, S.; Matsubara, O. Loss of ARID1A Protein Expression Occurs as an Early Event in Ovarian Clear-Cell Carcinoma Development and Frequently Coexists with PIK3CA Mutations. Mod. Pathol. 2012, 25, 615–624. [Google Scholar] [CrossRef] [Green Version]
- Samartzis, E.P.; Samartzis, N.; Noske, A.; Fedier, A.; Caduff, R.; Dedes, K.J.; Fink, D.; Imesch, P. Loss of ARID1A/BAF250a-Expression in Endometriosis: A Biomarker for Risk of Carcinogenic Transformation? Mod. Pathol. 2012, 25, 885–892. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Awadallah, A.; Xin, W. Loss of ARID1A/BAF250a Expression in Ovarian Endometriosis and Clear Cell Carcinoma. Int. J. Clin. Exp. Pathol. 2012, 5, 642–650. [Google Scholar]
- Laudanski, P.; Szamatowicz, J.; Kowalczuk, O.; Kuźmicki, M.; Grabowicz, M.; Chyczewski, L. Expression of Selected Tumor Suppressor and Oncogenes in Endometrium of Women with Endometriosis. Hum. Reprod. 2009, 24, 1880–1890. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, C.J.; Klump, B.; Holzmann, K.; Borchard, F.; Gregor, M.; Porschen, R. Hypermethylation of the P16INK4a Promoter in Colectomy Specimens of Patients with Long-Standing and Extensive Ulcerative Colitis. Cancer Res. 1998, 58, 3942–3945. [Google Scholar]
- Issa, J.P.; Ahuja, N.; Toyota, M.; Bronner, M.P.; Brentnall, T.A. Accelerated Age-Related CpG Island Methylation in Ulcerative Colitis. Cancer Res. 2001, 61, 3573–3577. [Google Scholar] [PubMed]
- Yin, X.; Pavone, M.E.; Lu, Z.; Wei, J.; Kim, J.J. Increased Activation of the PI3K/AKT Pathway Compromises Decidualization of Stromal Cells from Endometriosis. J. Clin. Endocrinol. Metab. 2012, 97, E35–E43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Li, M.; Zheng, X.; Sun, Y.; Wen, Z.; Zhao, X. Endometriotic Stromal Cells Lose the Ability to Regulate Cell-Survival Signaling in Endometrial Epithelial Cells in Vitro. Mol. Hum. Reprod. 2009, 15, 653–663. [Google Scholar] [CrossRef]
- Engelman, J.A. Targeting PI3K Signalling in Cancer: Opportunities, Challenges and Limitations. Nat. Rev. Cancer 2009, 9, 550–562. [Google Scholar] [CrossRef]
- Cornen, S.; Adelaide, J.; Bertucci, F.; Finetti, P.; Guille, A.; Birnbaum, D.J.; Birnbaum, D.; Chaffanet, M. Mutations and Deletions of ARID1A in Breast Tumors. Oncogene 2012, 31, 4255–4256. [Google Scholar] [CrossRef] [Green Version]
- Katagiri, A.; Nakayama, K.; Rahman, M.T.; Rahman, M.; Katagiri, H.; Nakayama, N.; Ishikawa, M.; Ishibashi, T.; Iida, K.; Kobayashi, H.; et al. Loss of ARID1A Expression Is Related to Shorter Progression-Free Survival and Chemoresistance in Ovarian Clear Cell Carcinoma. Mod. Pathol. 2012, 25, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Chandler, R.L.; Damrauer, J.S.; Raab, J.R.; Schisler, J.C.; Wilkerson, M.D.; Didion, J.P.; Starmer, J.; Serber, D.; Yee, D.; Xiong, J.; et al. Coexistent ARID1A–PIK3CA Mutations Promote Ovarian Clear-Cell Tumorigenesis through pro-Tumorigenic Inflammatory Cytokine Signalling. Nat. Commun. 2015, 6, 6118. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.J.; Kurita, T.; Bulun, S.E. Progesterone Action in Endometrial Cancer, Endometriosis, Uterine Fibroids, and Breast Cancer. Endocrine Rev. 2013, 34, 130–162. [Google Scholar] [CrossRef] [Green Version]
- Labied, S.; Kajihara, T.; Madureira, P.A.; Fusi, L.; Jones, M.C.; Higham, J.M.; Varshochi, R.; Francis, J.M.; Zoumpoulidou, G.; Essafi, A.; et al. Progestins Regulate the Expression and Activity of the Forkhead Transcription Factor FOXO1 in Differentiating Human Endometrium. Mol. Endocrinol. 2006, 20, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Kuo, K.-T.; Mao, T.-L.; Jones, S.; Veras, E.; Ayhan, A.; Wang, T.-L.; Glas, R.; Slamon, D.; Velculescu, V.E.; Kuman, R.J.; et al. Frequent Activating Mutations of PIK3CA in Ovarian Clear Cell Carcinoma. Am. J. Pathol. 2009, 174, 1597–1601. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, Y.; Yang, Y.; Niu, M.; Sun, S.; Ji, H.; Ma, Y.; Yao, G.; Jiang, Y.; Shan, M.; et al. Frequent Low Expression of Chromatin Remodeling Gene ARID1A in Breast Cancer and Its Clinical Significance. Cancer Epidemiol. 2012, 36, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Samartzis, E.; Noske, A.; Dedes, K.; Fink, D.; Imesch, P. ARID1A Mutations and PI3K/AKT Pathway Alterations in Endometriosis and Endometriosis-Associated Ovarian Carcinomas. Int. J. Mol. Sci. 2013, 14, 18824–18849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, D.; Liu, X.; Guo, S.-W. Nerve Fibers and Endometriotic Lesions: Partners in Crime in Inflicting Pains in Women with Endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 209, 14–24. [Google Scholar] [CrossRef]
- Brosens, I.A. Endometriosis—A Disease Because It Is Characterized by Bleeding. Am. J. Obstet. Gynecol. 1997, 176, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Duan, J.; Olson, M.; Fazleabas, A.; Guo, S.-W. Cellular Changes Consistent with Epithelial–Mesenchymal Transition and Fibroblast-to-Myofibroblast Transdifferentiation in the Progression of Experimental Endometriosis in Baboons. Reprod. Sci. 2016, 23, 1409–1421. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Duan, J.; Liu, X.; Guo, S.-W. Platelets Drive Smooth Muscle Metaplasia and Fibrogenesis in Endometriosis through Epithelial–Mesenchymal Transition and Fibroblast-to-Myofibroblast Transdifferentiation. Mol. Cell Endocrinol. 2016, 428, 1–16. [Google Scholar] [CrossRef]
- Dhar, D.; Baglieri, J.; Kisseleva, T.; Brenner, D.A. Mechanisms of Liver Fibrosis and Its Role in Liver Cancer. Exp. Biol. Med. 2020, 245, 96–108. [Google Scholar] [CrossRef] [Green Version]
- Philippe, M.A. Role of Iron in Hepatic Fibrosis: One Piece in the Puzzle. World J. Gastroenterol. 2007, 13, 4746. [Google Scholar] [CrossRef]
- Hapangama, D.K.; Turner, M.A.; Drury, J.; Heathcote, L.; Afshar, Y.; Mavrogianis, P.A.; Fazleabas, A.T. Aberrant Expression of Regulators of Cell-Fate Found in Eutopic Endometrium Is Found in Matched Ectopic Endometrium among Women and in a Baboon Model of Endometriosis. Hum. Reprod. 2010, 25, 2840–2850. [Google Scholar] [CrossRef] [Green Version]
- Matsuzaki, S.; Schubert, B. Oxidative Stress Status in Normal Ovarian Cortex Surrounding Ovarian Endometriosis. Fertil. Steril. 2010, 93, 2431–2432. [Google Scholar] [CrossRef]
- Carvalho, L.F.P.; Abrão, M.S.; Biscotti, C.; Sharma, R.; Nutter, B.; Falcone, T. Oxidative Cell Injury as a Predictor of Endometriosis Progression. Reprod. Sci. 2013, 20, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Grassi, T.; Calcagno, A.; Marzinotto, S.; Londero, A.P.; Orsaria, M.; Canciani, G.N.; Beltrami, C.A.; Marchesoni, D.; Mariuzzi, L. Mismatch Repair System in Endometriotic Tissue and Eutopic Endometrium of Unaffected Women. Int. J. Clin. Exp. Pathol. 2015, 8, 1867–1877. [Google Scholar] [PubMed]
- Amemiya, S.; Sekizawa, A.; Otsuka, J.; Tachikawa, T.; Saito, H.; Okai, T. Malignant Transformation of Endometriosis and Genetic Alterations of K-Ras and Microsatellite Instability. Int. J. Gynecol. Obstet. 2004, 86, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.-I.; Gilks, C.B.; Mulligan, A.-M.; Ryan, P.; Allo, G.; Sy, K.; Shaw, P.A.; Pollett, A.; Clarke, B.A. Prevalence of Loss of Expression of DNA Mismatch Repair Proteins in Primary Epithelial Ovarian Tumors. Int. J. Gynecol. Pathol. 2012, 31, 524–531. [Google Scholar] [CrossRef]
- Toki, T.; Nakayama, K. Proliferative Activity and Genetic Alterations in TP53 in Endometriosis. Gynecol. Obstet. Investig. 2000, 50 (Suppl. S1), 33–38. [Google Scholar] [CrossRef]
- Sáinz de la Cuesta, R.; Izquierdo, M.; Cañamero, M.; Granizo, J.J.; Manzarbeitia, F. Increased Prevalence of P53 Overexpression from Typical Endometriosis to Atypical Endometriosis and Ovarian Cancer Associated with Endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2004, 113, 87–93. [Google Scholar] [CrossRef]
- Goumenou, A.; Panayiotides, I.; Mahutte, N.G.; Matalliotakis, I.; Fragouli, Y.; Arici, A. Immunohistochemical Expression of P53, MDM2, and P21Wafi Oncoproteins in Endometriomas but Not Adenomyosis. J. Soc. Gynecol. Investig. 2005, 12, 263–266. [Google Scholar] [CrossRef]
- Arimoto, T.; Katagiri, T.; Oda, K.; Tsunoda, T.; Yasugi, T.; Osuga, Y.; Yoshikawa, H.; Nishii, O.; Yano, T.; Taketani, Y.; et al. Genome-Wide CDNA Microarray Analysis of Gene-Expression Profiles Involved in Ovarian Endometriosis. Int. J. Oncol. 2003, 22, 551–560. [Google Scholar]
- Allavena, G.; Carrarelli, P.; Del Bello, B.; Luisi, S.; Petraglia, F.; Maellaro, E. Autophagy Is Upregulated in Ovarian Endometriosis: A Possible Interplay with P53 and Heme Oxygenase-1. Fertil. Steril. 2015, 103, 1244–1251. [Google Scholar] [CrossRef]
- Nagpal, V.; Rai, R.; Place, A.T.; Murphy, S.B.; Verma, S.K.; Ghosh, A.K.; Vaughan, D.E. MiR-125b Is Critical for Fibroblast-to-Myofibroblast Transition and Cardiac Fibrosis. Circulation 2016, 133, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Ohlsson Teague, E.M.C.; Van der Hoek, K.H.; Van der Hoek, M.B.; Perry, N.; Wagaarachchi, P.; Robertson, S.A.; Print, C.G.; Hull, L.M. MicroRNA-Regulated Pathways Associated with Endometriosis. Mol. Endocrinol. 2009, 23, 265–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuzaki, S.; Darcha, C. Involvement of the Wnt/β-Catenin Signaling Pathway in the Cellular and Molecular Mechanisms of Fibrosis in Endometriosis. PLoS ONE 2013, 8, e76808. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.-W. Cancer Driver Mutations in Endometriosis: Variations on the Major Theme of Fibrogenesis. Reprod. Med. Biol. 2018, 17, 369–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, N.; Tsunoda, H.; Nishida, M.; Morishita, Y.; Takimoto, Y.; Kubo, T.; Noguchi, M. Loss of Heterozygosity on 10q23.3 and Mutation of the Tumor Suppressor Gene PTEN in Benign Endometrial Cyst of the Ovary: Possible Sequence Progression from Benign Endometrial Cyst to Endometrioid Carcinoma and Clear Cell Carcinoma of the Ovary. Cancer Res. 2000, 60, 7052–7056. [Google Scholar] [PubMed]
- Obata, K.; Morland, S.J.; Watson, R.H.; Hitchcock, A.; Chenevix-Trench, G.; Thomas, E.J.; Campbell, I.G. Frequent PTEN/MMAC Mutations in Endometrioid but Not Serous or Mucinous Epithelial Ovarian Tumors. Cancer Res. 1998, 58, 2095–2097. [Google Scholar] [PubMed]
- Govatati, S.; Kodati, V.L.; Deenadayal, M.; Chakravarty, B.; Shivaji, S.; Bhanoori, M. Mutations in the PTEN Tumor Gene and Risk of Endometriosis: A Case–Control Study. Hum. Reprod. 2014, 29, 324–336. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-Q.; Luo, X.-Z.; Meng, Y.-H.; Mei, J.; Zhu, X.-Y.; Jin, L.-P.; Li, D.-J. CXCL8 Enhances Proliferation and Growth and Reduces Apoptosis in Endometrial Stromal Cells in an Autocrine Manner via a CXCR1-Triggered PTEN/AKT Signal Pathway. Hum. Reprod. 2012, 27, 2107–2116. [Google Scholar] [CrossRef] [Green Version]
- Nho, R.S.; Xia, H.; Diebold, D.; Kahm, J.; Kleidon, J.; White, E.; Henke, C.A. PTEN Regulates Fibroblast Elimination during Collagen Matrix Contraction. J. Biol. Chem. 2006, 281, 33291–33301. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Shen, W.H. PTEN: A New Guardian of the Genome. Oncogene 2008, 27, 5443–5453. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Diebold, D.; Nho, R.; Perlman, D.; Kleidon, J.; Kahm, J.; Avdulov, S.; Peterson, M.; Nerva, J.; Bitterman, P.; et al. Pathological Integrin Signaling Enhances Proliferation of Primary Lung Fibroblasts from Patients with Idiopathic Pulmonary Fibrosis. J. Exp. Med. 2008, 205, 1659–1672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braza-Boïls, A.; Salloum-Asfar, S.; Marí-Alexandre, J.; Arroyo, A.B.; González-Conejero, R.; Barceló-Molina, M.; García-Oms, J.; Vicente, V.; Estellés, A.; Gilabert-Estellés, J.; et al. Peritoneal Fluid Modifies the MicroRNA Expression Profile in Endometrial and Endometriotic Cells from Women with Endometriosis. Hum. Reprod. 2015, 30, 2292–2302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viré, E.; Brenner, C.; Deplus, R.; Blanchon, L.; Fraga, M.; Didelot, C.; Morey, L.; Van Eynde, A.; Bernard, D.; Vanderwinden, J.-M.; et al. The Polycomb Group Protein EZH2 Directly Controls DNA Methylation. Nature 2006, 439, 871–874. [Google Scholar] [CrossRef]
- Zhang, Q.; Dong, P.; Liu, X.; Sakuragi, N.; Guo, S.-W. Enhancer of Zeste Homolog 2 (EZH2) Induces Epithelial-Mesenchymal Transition in Endometriosis. Sci. Rep. 2017, 7, 6804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Zang, X.; Ponnusamy, M.; Masucci, M.V.; Tolbert, E.; Gong, R.; Zhao, T.C.; Liu, N.; Bayliss, G.; Dworkin, L.D.; et al. Enhancer of Zeste Homolog 2 Inhibition Attenuates Renal Fibrosis by Maintaining Smad7 and Phosphatase and Tensin Homolog Expression. J. Am. Soc. Nephrol. 2016, 27, 2092–2108. [Google Scholar] [CrossRef] [PubMed]
- Rojas, J.; Santos, E. Ras Genes and Human Cancer: Different Implications and Different Roles. Curr. Genom. 2002, 3, 295–311. [Google Scholar] [CrossRef]
- Loverro, G.; Maiorano, E.; Napoli, A.; Selvaggi, L.; Marra, E.; Perlino, E. Transforming Growth Factor-Β1 and Insulin-like Growth Factor-1 Expression in Ovarian Endometriotic Cysts: A Preliminary Study. Int. J. Mol. Med. 2001, 7, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Rakhila, H.; Al-Akoum, M.; Bergeron, M.-E.; Leboeuf, M.; Lemyre, M.; Akoum, A.; Pouliot, M. Promotion of Angiogenesis and Proliferation Cytokines Patterns in Peritoneal Fluid from Women with Endometriosis. J. Reprod. Immunol. 2016, 116, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yotova, I.Y.; Quan, P.; Leditznig, N.; Beer, U.; Wenzl, R.; Tschugguel, W. Abnormal Activation of Ras/Raf/MAPK and RhoA/ROCKII Signalling Pathways in Eutopic Endometrial Stromal Cells of Patients with Endometriosis. Hum. Reprod. 2011, 26, 885–897. [Google Scholar] [CrossRef] [Green Version]
- Stewart, C.J.R.; Leung, Y.; Walsh, M.D.; Walters, R.J.; Young, J.P.; Buchanan, D.D. KRAS Mutations in Ovarian Low-Grade Endometrioid Adenocarcinoma: Association with Concurrent Endometriosis. Hum. Pathol. 2012, 43, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Osuga, Y.; Koga, K.; Tsutsumi, O.; Igarashi, T.; Okagaki, R.; Takai, Y.; Matsumi, H.; Hiroi, H.; Fujiwara, T.; Momoeda, M.; et al. Stem Cell Factor (SCF) Concentrations in Peritoneal Fluid of Women with or without Endometriosis: Scf In Peritoneal Fluid Of Women With Endometriosis. Am. J. Reprod. Immunol. 2000, 44, 231–235. [Google Scholar] [CrossRef]
- Bi, P.; Kuang, S. Notch Signaling as a Novel Regulator of Metabolism. Trends Endocrinol. Metabol. 2015, 26, 248–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ntziachristos, P.; Lim, J.S.; Sage, J.; Aifantis, I. From Fly Wings to Targeted Cancer Therapies: A Centennial for Notch Signaling. Cancer Cell 2014, 25, 318–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, R.-W.; Strug, M.R.; Joshi, N.R.; Jeong, J.-W.; Miele, L.; Lessey, B.A.; Young, S.L.; Fazleabas, A.T. Decreased Notch Pathway Signaling in the Endometrium of Women with Endometriosis Impairs Decidualization. J. Clin. Endocrinol. Metabol. 2015, 100, E433–E442. [Google Scholar] [CrossRef]
- Sörensen-Zender, I.; Rong, S.; Susnik, N.; Zender, S.; Pennekamp, P.; Melk, A.; Haller, H.; Schmitt, R. Renal Tubular Notch Signaling Triggers a Prosenescent State after Acute Kidney Injury. Am. J. Physiol. Renal. Physiol. 2014, 306, F907–F915. [Google Scholar] [CrossRef] [PubMed]
- González-Foruria, I.; Santulli, P.; Chouzenoux, S.; Carmona, F.; Chapron, C.; Batteux, F. Dysregulation of the ADAM17/Notch Signalling Pathways in Endometriosis: From Oxidative Stress to Fibrosis. MHR. Basic Sci. Reprod. Med. 2017, 23, 488–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardi, L.A.; Dyson, M.T.; Tokunaga, H.; Sison, C.; Oral, M.; Robins, J.C.; Bulun, S.E. The Essential Role of GATA6 in the Activation of Estrogen Synthesis in Endometriosis. Reprod. Sci. 2019, 26, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Dyson, M.T.; Roqueiro, D.; Monsivais, D.; Ercan, C.M.; Pavone, M.E.; Brooks, D.C.; Kakinuma, T.; Ono, M.; Jafari, N.; Dai, Y.; et al. Genome-Wide DNA Methylation Analysis Predicts an Epigenetic Switch for GATA Factor Expression in Endometriosis. PLoS. Genet. 2014, 10, e1004158. [Google Scholar] [CrossRef] [Green Version]
- Han, S.J.; Jung, S.Y.; Wu, S.-P.; Hawkins, S.M.; Park, M.J.; Kyo, S.; Qin, J.; Lydon, J.P.; Tsai, S.Y.; Tsai, M.-J.; et al. Estrogen Receptor β Modulates Apoptosis Complexes and the Inflammasome to Drive the Pathogenesis of Endometriosis. Cell 2015, 163, 960–974. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Yang, H.; Zuo, M.; Tao, Y. Distinct Expression and Prognostic Values of GATA Transcription Factor Family in Human Ovarian Cancer. J. Ovarian Res. 2022, 15, 49. [Google Scholar] [CrossRef]
- Gaia-Oltean, A.I.; Pop, L.A.; Cojocneanu, R.M.; Buse, M.; Zimta, A.A.; Kubelac, P.; Irimie, A.; Coza, O.F.; Roman, H.; Berindan-Neagoe, I. The Shifting Landscape of Genetic Alterations Separating Endometriosis and Ovarian Endometrioid Carcinoma. Am. J. Cancer Res. 2021, 11, 1754–1769. [Google Scholar]
- Johannes, L.; Jacob, R.; Leffler, H. Galectins at a Glance. J. Cell Sci. 2018, 131, jcs208884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastón, J.I.; Barañao, R.I.; Ricci, A.G.; Bilotas, M.A.; Olivares, C.N.; Singla, J.J.; Gonzalez, A.M.; Stupirski, J.C.; Croci, D.O.; Rabinovich, G.A.; et al. Targeting Galectin-1-Induced Angiogenesis Mitigates the Severity of Endometriosis: Targeting Galectin-1 in Endometriosis. J. Pathol. 2014, 234, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Noël, J.-C.; Chapron, C.; Borghese, B.; Fayt, I.; Anaf, V. Galectin-3 Is Overexpressed in Various Forms of Endometriosis. App. Immunohistochem. Mol. Morphol. 2011, 19, 253–257. [Google Scholar] [CrossRef] [PubMed]
- De Mattos, R.M.; Machado, D.E.; Perini, J.A.; Alessandra-Perini, J.; de Oliveira Meireles da Costa, N.; da Rocha de Oliveira Wiecikowski, A.F.; dos Santos Cabral, K.M.; Takiya, C.M.; Carvalho, R.S.; Nasciutti, L.E. Galectin-3 Plays an Important Role in Endometriosis Development and Is a Target to Endometriosis Treatment. Mol. Cell Endocrinol. 2019, 486, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shalom-Feuerstein, R.; Cooks, T.; Raz, A.; Kloog, Y. Galectin-3 Regulates a Molecular Switch from N-Ras to K-Ras Usage in Human Breast Carcinoma Cells. Cancer Res. 2005, 65, 7292–7300. [Google Scholar] [CrossRef] [PubMed]
- Brubel, R.; Bokor, A.; Pohl, A.; Schilli, G.K.; Szereday, L.; Bacher-Szamuel, R.; Rigo, J.; Polgar, B. Serum Galectin-9 as a Noninvasive Biomarker for the Detection of Endometriosis and Pelvic Pain or Infertility-Related Gynecologic Disorders. Fertil. Steril. 2017, 108, 1016–1025.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, F.-C.; Chen, H.-Y.; Kuo, C.-C.; Sytwu, H.-K. Role of Galectins in Tumors and in Clinical Immunotherapy. Int. J. Mol. Sci. 2018, 19, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandika, C.; Saroj, T.; Hu, X.; Song, Y.; Zhang, J.; Zhu, H.; Zhu, X. The Role of Galectins in Tumor Progression, Treatment and Prognosis of Gynecological Cancers. J. Cancer 2018, 9, 4742–4755. [Google Scholar] [CrossRef]
- Camby, I.; Le Mercier, M.; Lefranc, F.; Kiss, R. Galectin-1: A Small Protein with Major Functions. Glycobiology 2006, 16, 137R–157R. [Google Scholar] [CrossRef]
- Oishi, T.; Itamochi, H.; Kigawa, J.; Kanamori, Y.; Shimada, M.; Takahashi, M.; Shimogai, R.; Kawaguchi, W.; Sato, S.; Terakawa, N. Galectin-3 May Contribute to Cisplatin Resistance in Clear Cell Carcinoma of the Ovary. Int. J. Gynecol. Cancer 2007, 17, 1040–1046. [Google Scholar] [CrossRef]
- Dahiya, V.; Buchner, J. Functional Principles and Regulation of Molecular Chaperones. In Advances in Protein Chemistry and Structural Biology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 114, pp. 1–60. [Google Scholar] [CrossRef]
- Kampinga, H.H.; Hageman, J.; Vos, M.J.; Kubota, H.; Tanguay, R.M.; Bruford, E.A.; Cheetham, M.E.; Chen, B.; Hightower, L.E. Guidelines for the Nomenclature of the Human Heat Shock Proteins. Cell Stress Chaperon. 2009, 14, 105–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Im, C.-N. Past, Present, and Emerging Roles of Mitochondrial Heat Shock Protein TRAP1 in the Metabolism and Regulation of Cancer Stem Cells. Cell Stress Chaperon. 2016, 21, 553–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.-C.; Weng, W.-C.; Lee, H. Functional Roles of Calreticulin in Cancer Biology. BioMed. Res. Inter. 2015, 2015, 526524. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, T.; Rios, Z.; Mei, Q.; Lin, X.; Cao, S. Heat Shock Proteins and Cancer. Trends Pharmacol. Sci. 2017, 38, 226–256. [Google Scholar] [CrossRef]
- Lee, A.S. Glucose-Regulated Proteins in Cancer: Molecular Mechanisms and Therapeutic Potential. Nat. Rev. Cancer 2014, 14, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Dayalan Naidu, S.; Dinkova-Kostova, A.T. Regulation of the Mammalian Heat Shock Factor 1. FEBS J. 2017, 284, 1606–1627. [Google Scholar] [CrossRef] [Green Version]
- Prieto-Vila, M.; Takahashi, R.; Usuba, W.; Kohama, I.; Ochiya, T. Drug Resistance Driven by Cancer Stem Cells and Their Niche. Int. J. Mol. Sci. 2017, 18, 2574. [Google Scholar] [CrossRef] [Green Version]
- Prager, B.C.; Xie, Q.; Bao, S.; Rich, J.N. Cancer Stem Cells: The Architects of the Tumor Ecosystem. Cell Stem. Cell 2019, 24, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Song, K.-H.; Oh, S.J.; Kim, S.; Cho, H.; Lee, H.-J.; Song, J.S.; Chung, J.-Y.; Cho, E.; Lee, J.; Jeon, S.; et al. HSP90A Inhibition Promotes Anti-Tumor Immunity by Reversing Multi-Modal Resistance and Stem-like Property of Immune-Refractory Tumors. Nat. Commun. 2020, 11, 562. [Google Scholar] [CrossRef] [Green Version]
- Zou, M.; Bhatia, A.; Dong, H.; Jayaprakash, P.; Guo, J.; Sahu, D.; Hou, Y.; Tsen, F.; Tong, C.; O’ Brien, K.; et al. Evolutionarily Conserved Dual Lysine Motif Determines the Non-Chaperone Function of Secreted Hsp90alpha in Tumour Progression. Oncogene 2017, 36, 2160–2171. [Google Scholar] [CrossRef] [Green Version]
- Cho, T.-M.; Kim, J.Y.; Kim, Y.-J.; Sung, D.; Oh, E.; Jang, S.; Farrand, L.; Hoang, V.-H.; Nguyen, C.-T.; Ann, J.; et al. C-Terminal HSP90 Inhibitor L80 Elicits Anti-Metastatic Effects in Triple-Negative Breast Cancer via STAT3 Inhibition. Cancer Lett. 2019, 447, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Weng, D.; Eguchi, T.; Murshid, A.; Sherman, M.Y.; Song, B.; Calderwood, S.K. Targeting the Hsp70 Gene Delays Mammary Tumor Initiation and Inhibits Tumor Cell Metastasis. Oncogene 2015, 34, 5460–5471. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Jagadish, N.; Surolia, A.; Suri, A. Heat Shock Protein 70-2 (HSP70-2) a Novel Cancer Testis Antigen That Promotes Growth of Ovarian Cancer. Am. J. Cancer Res. 2017, 7, 1252–1269. [Google Scholar] [PubMed]
- Xi, C.; Hu, Y.; Buckhaults, P.; Moskophidis, D.; Mivechi, N.F. Heat Shock Factor Hsf1 Cooperates with ErbB2 (Her2/Neu) Protein to Promote Mammary Tumorigenesis and Metastasis. J. Biol. Chem. 2012, 287, 35646–35657. [Google Scholar] [CrossRef]
- Powell, C.D.; Paullin, T.R.; Aoisa, C.; Menzie, C.J.; Ubaldini, A.; Westerheide, S.D. The Heat Shock Transcription Factor HSF1 Induces Ovarian Cancer Epithelial-Mesenchymal Transition in a 3D Spheroid Growth Model. PLoS ONE 2016, 11, e0168389. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Lee, C.-W.; Witt, A.; Thakkar, A.; Ince, T.A. Heat Shock Factor 1 Induces Cancer Stem Cell Phenotype in Breast Cancer Cell Lines. Breast Cancer Res. Treat. 2015, 153, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Chao, A.; Liao, M.-J.; Chen, S.-H.; Lee, Y.-S.; Tsai, C.-N.; Lin, C.-Y.; Tsai, C.-L. JAK2-Mediated Phosphorylation of Stress-Induced Phosphoprotein-1 (STIP1) in Human Cells. Int. J. Mol. Sci. 2022, 23, 2420. [Google Scholar] [CrossRef]
- Wang, H.-S.; Tsai, C.-L.; Chang, P.-Y.; Chao, A.; Wu, R.-C.; Chen, S.-H.; Wang, C.-J.; Yen, C.-F.; Lee, Y.-S.; Wang, T.-H. Positive Associations between Upregulated Levels of Stress-Induced Phosphoprotein 1 and Matrix Metalloproteinase-9 in Endometriosis/Adenomyosis. PLoS ONE 2018, 13, e0190573. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.N.; Kitajima, M.; Imamura, T.; Hiraki, K.; Fujishita, A.; Sekine, I.; Ishimaru, T.; Masuzaki, H. Toll-like Receptor 4-Mediated Growth of Endometriosis by Human Heat-Shock Protein 70. Hum. Reprod. 2008, 23, 2210–2219. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xiu, J.; Yang, T.; Ren, C.; Yu, Z. HSF1 Promotes Endometriosis Development and Glycolysis by Up-Regulating PFKFB3 Expression. Reprod. Biol. Endocrinol. 2021, 19, 86. [Google Scholar] [CrossRef]
- Lu, C.; Qiao, P.; Fu, R.; Wang, Y.; Lu, J.; Ling, X.; Liu, L.; Sun, Y.; Ren, C.; Yu, Z. Phosphorylation of PFKFB4 by PIM2 Promotes Anaerobic Glycolysis and Cell Proliferation in Endometriosis. Cell Death Dis. 2022, 13, 790. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Sha, L.; Hou, N.; Zhang, M.; Ma, Q.; Shi, C. High α B-Crystallin and P53 Co-Expression Is Associated with Poor Prognosis in Ovarian Cancer. Biosci. Rep. 2019, 39, BSR20182407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Tian, Q.; Qiao, N.; Cheng, Y.; Li, H. Anti-Hsp20 Antibody Concentrations Inversely Correlated with Tumor Progression in Ovarian Cancer. Eur. J. Gynaecol. Oncol. 2015, 36, 394–396. [Google Scholar] [PubMed]
- Bodzek, P.; Damasiewicz-Bodzek, A.; Janosz, I.; Witek, L.; Olejek, A. Heat Shock Protein 27 (HSP27) in Patients with Ovarian Cancer. Ginekol. Pol. 2021, 92, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Wyciszkiewicz, A.; Kalinowska-Łyszczarz, A.; Nowakowski, B.; Kaźmierczak, K.; Osztynowicz, K.; Michalak, S. Expression of Small Heat Shock Proteins in Exosomes from Patients with Gynecologic Cancers. Sci. Rep. 2019, 9, 9817. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.P. MicroRNAs. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Wilczynski, M.; Danielska, J.; Domanska-Senderowska, D.; Dzieniecka, M.; Szymanska, B.; Malinowski, A. Association of MicroRNA-200c Expression Levels with Clinicopathological Factors and Prognosis in Endometrioid Endometrial Cancer. Acta Obstet. Gynecol. Scand. 2018, 97, 560–569. [Google Scholar] [CrossRef] [Green Version]
- Panda, H.; Pelakh, L.; Chuang, T.-D.; Luo, X.; Bukulmez, O.; Chegini, N. Endometrial MiR-200c Is Altered During Transformation into Cancerous States and Targets the Expression of ZEBs, VEGFA, FLT1, IKKβ, KLF9, and FBLN5. Reprod. Sci. 2012, 19, 786–796. [Google Scholar] [CrossRef] [Green Version]
- Zhu, R.; Nasu, K.; Hijiya, N.; Yoshihashi, M.; Hirakawa, T.; Aoyagi, Y.; Narahara, H. Hsa-MiR-199a-3p Inhibits Motility, Invasiveness, and Contractility of Ovarian Endometriotic Stromal Cells. Reprod. Sci. 2021, 28, 3498–3507. [Google Scholar] [CrossRef]
- Yang, H.; Hu, T.; Hu, P.; Qi, C.; Qian, L. MiR-143-3p Inhibits Endometriotic Stromal Cell Proliferation and Invasion by Inactivating Autophagy in Endometriosis. Mol. Med. Rep. 2021, 23, 356. [Google Scholar] [CrossRef]
- Luo, J.; Nikolaev, A.Y.; Imai, S.; Chen, D.; Su, F.; Shiloh, A.; Guarente, L.; Gu, W. Negative Control of P53 by Sir2α Promotes Cell Survival under Stress. Cell 2001, 107, 137–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.-F.; Ji, F.-J.; Zang, H.-L.; Cao, H. Activation of the MiR-34a/SIRT1/P53 Signaling Pathway Contributes to the Progress of Liver Fibrosis via Inducing Apoptosis in Hepatocytes but Not in HSCs. PLoS ONE 2016, 11, e0158657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mvunta, D.H.; Miyamoto, T.; Asaka, R.; Yamada, Y.; Ando, H.; Higuchi, S.; Ida, K.; Kashima, H.; Shiozawa, T. Overexpression of SIRT1 Is Associated with Poor Outcomes in Patients with Ovarian Carcinoma. App. Immunohistochem. Mol. Morphol. 2017, 25, 415–421. [Google Scholar] [CrossRef]
- Rezk, N.A.; Lashin, M.B.; Sabbah, N.A. MiRNA 34-a Regulate SIRT-1 and Foxo-1 Expression in Endometriosis. Non-Cod. RNA Res. 2021, 6, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Ota, H.; Akishita, M.; Eto, M.; Iijima, K.; Kaneki, M.; Ouchi, Y. Sirt1 Modulates Premature Senescence-like Phenotype in Human Endothelial Cells. J. Mol. Cell Cardiol. 2007, 43, 571–579. [Google Scholar] [CrossRef]
- Cosar, E.; Mamillapalli, R.; Ersoy, G.S.; Cho, S.; Seifer, B.; Taylor, H.S. Serum MicroRNAs as Diagnostic Markers of Endometriosis: A Comprehensive Array-Based Analysis. Fertil. Steril. 2016, 106, 402–409. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.Y.-Y.; Chen, Y.; Lai, M.-T.; Chang, H.-W.; Cheng, J.; Chan, C.; Chen, C.-M.; Lee, S.-C.; Lin, Y.-J.; Wan, L.; et al. BMPR1B Up-Regulation via a MiRNA Binding Site Variation Defines Endometriosis Susceptibility and CA125 Levels. PLoS ONE 2013, 8, e80630. [Google Scholar] [CrossRef] [Green Version]
- Hajimaqsoudi, E.; Darbeheshti, F.; Kalantar, S.M.; Javaheri, A.; Mirabutalebi, S.H.; Sheikhha, M.H. Investigating the Expressions of MiRNA-125b and TP53 in Endometriosis. Does It Underlie Cancer-like Features of Endometriosis? A Case-Control Study. Int. J. Reprod. BioMed. 2020, 18, 825. [Google Scholar] [CrossRef]
- Luong, H.T.T.; Nyholt, D.R.; Painter, J.N.; Chapman, B.; Kennedy, S.; Treloar, S.A.; Zondervan, K.T.; Montgomery, G.W. No Evidence for Genetic Association with the Let-7 MicroRNA-Binding Site or Other Common KRAS Variants in Risk of Endometriosis. Hum. Reprod. 2012, 27, 3616–3621. [Google Scholar] [CrossRef]
- Cho, S.; Mutlu, L.; Zhou, Y.; Taylor, H.S. Aromatase Inhibitor Regulates Let-7 Expression and Let-7f–Induced Cell Migration in Endometrial Cells from Women with Endometriosis. Fertil. Steril. 2016, 106, 673–680. [Google Scholar] [CrossRef] [Green Version]
- Grechukhina, O.; Petracco, R.; Popkhadze, S.; Massasa, E.; Paranjape, T.; Chan, E.; Flores, I.; Weidhaas, J.B.; Taylor, H.S. A Polymorphism in a Let-7 MicroRNA Binding Site of KRAS in Women with Endometriosis. EMBO Mol. Med. 2012, 4, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Huang, W.; Ren, C.; Zhao, M.; Jiang, X.; Fang, X.; Xia, X. Analysis of Serum MicroRNA Profile by Solexa Sequencing in Women with Endometriosis. Reprod. Sci. 2016, 23, 1359–1370. [Google Scholar] [CrossRef] [PubMed]
- Burney, R.O.; Hamilton, A.E.; Aghajanova, L.; Vo, K.C.; Nezhat, C.N.; Lessey, B.A.; Giudice, L.C. MicroRNA Expression Profiling of Eutopic Secretory Endometrium in Women with versus without Endometriosis. MHR Basic Sci. Reprod. Med. 2009, 15, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.; Lai, C.-H.; Chen, H.-C.; Lin, C.-Y.; Tsai, C.-L.; Tang, Y.-H.; Huang, H.-J.; Lin, C.-T.; Chen, M.-Y.; Huang, K.-G.; et al. Serum MicroRNAs in Clear Cell Carcinoma of the Ovary. Taiwan J. Obstet. Gynecol. 2014, 53, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Resnick, K.E.; Alder, H.; Hagan, J.P.; Richardson, D.L.; Croce, C.M.; Cohn, D.E. The Detection of Differentially Expressed MicroRNAs from the Serum of Ovarian Cancer Patients Using a Novel Real-Time PCR Platform. Gynecol. Oncol. 2009, 112, 55–59. [Google Scholar] [CrossRef]
- Azam, I.N.A.; Wahab, N.A.; Mokhtar, M.H.; Shafiee, M.N.; Mokhtar, N.M. Roles of MicroRNAs in Regulating Apoptosis in the Pathogenesis of Endometriosis. Life 2022, 12, 1321. [Google Scholar] [CrossRef]
- Petracco, R.; Dias, A.C.D.O.; Taylor, H.; Petracco, Á.; Badalotti, M.; Michelon, J.D.R.; Marinowic, D.R.; Hentschke, M.; Azevedo, P.N.D.; Zanirati, G.; et al. Evaluation of MiR-135a/b Expression in Endometriosis Lesions. Biomed. Rep. 2019, 11, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Lim, W.; Bazer, F.W.; Whang, K.-Y.; Song, G. Quercetin Inhibits Proliferation of Endometriosis Regulating Cyclin D1 and Its Target MicroRNAs in Vitro and in Vivo. J. Nutr. Biochem. 2019, 63, 87–100. [Google Scholar] [CrossRef]
- Esfandiari, F.; Heidari Khoei, H.; Saber, M.; Favaedi, R.; Piryaei, A.; Moini, A.; Shahhoseini, M.; Ramezanali, F.; Ghaffari, F.; Baharvand, H. Disturbed Progesterone Signalling in an Advanced Preclinical Model of Endometriosis. Reprod. Biomed. Online 2021, 43, 139–147. [Google Scholar] [CrossRef]
- Moga, M.A.; Bălan, A.; Dimienescu, O.G.; Burtea, V.; Dragomir, R.M.; Anastasiu, C.V. Circulating MiRNAs as Biomarkers for Endometriosis and Endometriosis-Related Ovarian Cancer—An Overview. JCM 2019, 8, 735. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, Y.; Zhao, L.; Wang, L.; Wu, Z.; Mei, Q.; Nie, J.; Li, X.; Li, Y.; Fu, X.; et al. Whole-Exome Sequencing of Endometriosis Identifies Frequent Alterations in Genes Involved in Cell Adhesion and Chromatin-Remodeling Complexes. Hum. Mol. Genet. 2014, 23, 6008–6021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anglesio, M.S.; Papadopoulos, N.; Ayhan, A.; Nazeran, T.M.; Noë, M.; Horlings, H.M.; Lum, A.; Jones, S.; Senz, J.; Seckin, T.; et al. Cancer-Associated Mutations in Endometriosis without Cancer. N. Engl. J. Med. 2017, 376, 1835–1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suda, K.; Nakaoka, H.; Yoshihara, K.; Ishiguro, T.; Tamura, R.; Mori, Y.; Yamawaki, K.; Adachi, S.; Takahashi, T.; Kase, H.; et al. Clonal Expansion and Diversification of Cancer-Associated Mutations in Endometriosis and Normal Endometrium. Cell Rep. 2018, 24, 1777–1789. [Google Scholar] [CrossRef] [Green Version]
- Lac, V.; Nazeran, T.M.; Tessier-Cloutier, B.; Aguirre-Hernandez, R.; Albert, A.; Lum, A.; Khattra, J.; Praetorius, T.; Mason, M.; Chiu, D.; et al. Oncogenic Mutations in Histologically Normal Endometrium: The New Normal? J. Pathol. 2019, 249, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.; Leongamornlert, D.; Coorens, T.H.H.; Sanders, M.A.; Ellis, P.; Dentro, S.C.; Dawson, K.J.; Butler, T.; Rahbari, R.; Mitchell, T.J.; et al. The Mutational Landscape of Normal Human Endometrial Epithelium. Nature 2020, 580, 640–646. [Google Scholar] [CrossRef]
- Kyo, S.; Sato, S.; Nakayama, K. Cancer-Associated Mutations in Normal Human Endometrium: Surprise or Expected? Cancer Sci. 2020, 111, 3458–3467. [Google Scholar] [CrossRef] [PubMed]
- Bulun, S.E.; Wan, Y.; Matei, D. Epithelial Mutations in Endometriosis: Link to Ovarian Cancer. Endocrinology 2019, 160, 626–638. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Lothe, R.A.; Ahlquist, T.; Silins, I.; Tropé, C.G.; Micci, F.; Nesland, J.M.; Suo, Z.; Lind, G.E. DNA Methylation Profiling of Ovarian Carcinomas and Their in Vitro Models Identifies HOXA9, HOXB5, SCGB3A1, and CRABP1 as Novel Targets. Mol. Cancer 2007, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Hantak, A.M.; Bagchi, I.C.; Bagchi, M.K. Role of Uterine Stromal-Epithelial Crosstalk in Embryo Implantation. Int. J. Dev. Biol. 2014, 58, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Barragan, F.; Irwin, J.C.; Balayan, S.; Erikson, D.W.; Chen, J.C.; Houshdaran, S.; Piltonen, T.T.; Spitzer, T.L.B.; George, A.; Rabban, J.T.; et al. Human Endometrial Fibroblasts Derived from Mesenchymal Progenitors Inherit Progesterone Resistance and Acquire an Inflammatory Phenotype in the Endometrial Niche in Endometriosis1. Biol. Reprod. 2016, 94, 118. [Google Scholar] [CrossRef]
- Aghajanova, L.; Horcajadas, J.A.; Weeks, J.L.; Esteban, F.J.; Nezhat, C.N.; Conti, M.; Giudice, L.C. The Protein Kinase A Pathway-Regulated Transcriptome of Endometrial Stromal Fibroblasts Reveals Compromised Differentiation and Persistent Proliferative Potential in Endometriosis. Endocrinology 2010, 151, 1341–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacci, M.; Capobianco, A.; Monno, A.; Cottone, L.; Di Puppo, F.; Camisa, B.; Mariani, M.; Brignole, C.; Ponzoni, M.; Ferrari, S.; et al. Macrophages Are Alternatively Activated in Patients with Endometriosis and Required for Growth and Vascularization of Lesions in a Mouse Model of Disease. Am. J. Pathol. 2009, 175, 547–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, J.-J.; William, J.; Bulun, S. Endometriosis and Ovarian Cancer: A Review of Clinical, Pathologic, and Molecular Aspects. Int. J. Gynecol. Pathol. 2011, 30, 553–568. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, K.; Mandai, M.; Toyokuni, S.; Hamanishi, J.; Higuchi, T.; Takakura, K.; Fujii, S. Contents of Endometriotic Cysts, Especially the High Concentration of Free Iron, Are a Possible Cause of Carcinogenesis in the Cysts through the Iron-Induced Persistent Oxidative Stress. Clin. Cancer Res. 2008, 14, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Vercellini, P.; Crosignani, P.; Somigliana, E.; Vigano, P.; Buggio, L.; Bolis, G.; Fedele, L. The incessant “Menstruation” Hypothesis: A Mechanistic Ovarian Cancer Model with Implications for Prevention. Hum. Reprod. 2011, 26, 2262–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, V.J.; Ahmad, S.F.; Brown, J.K.; Duncan, W.C.; Horne, A.W. ID2 Mediates the Transforming Growth Factor-Β1-Induced Warburg-like Effect Seen in the Peritoneum of Women with Endometriosis. Mol. Hum. Reprod. 2016, 22, 648–654. [Google Scholar] [CrossRef] [Green Version]
- Khorram, O.; Taylor, R.N.; Ryan, I.P.; Schall, T.J.; Landers, D.V. Peritoneal Fluid Concentrations of the Cytokine RANTES Correlate with the Severity of Endometriosis. Am. J. Obstet. Gynecol. 1993, 169, 1545–1549. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Gopalan, V.; Smith, R.A.; Lam, A.K.-Y. MiR-126 in Human Cancers: Clinical Roles and Current Perspectives. Exp. Mol. Pathol. 2014, 96, 98–107. [Google Scholar] [CrossRef]
- Liu, S.; Gao, S.; Wang, X.Y.; Wang, D.B. Expression of MiR-126 and Crk in Endometriosis: MiR-126 May Affect the Progression of Endometriosis by Regulating Crk Expression. Arch. Gynecol. Obstet. 2012, 285, 1065–1072. [Google Scholar] [CrossRef]
- Tang, W.; Jiang, Y.; Mu, X.; Xu, L.; Cheng, W.; Wang, X. MiR-135a Functions as a Tumor Suppressor in Epithelial Ovarian Cancer and Regulates HOXA10 Expression. Cell. Signal. 2014, 26, 1420–1426. [Google Scholar] [CrossRef]
- Braicu, O.-L.; Budisan, L.; Buiga, R.; Jurj, A.; Achimas-Cadariu, P.; Pop, L.; Braicu, C.; Irimie, A.; Berindan-Neagoe, I. MiRNA Expression Profiling in Formalin-Fixed Paraffin-Embedded Endometriosis and Ovarian Cancer Samples. Onco. Targets Ther. 2017, 10, 4225–4238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Zhang, Y.; Yu, C.; Li, Z.; Pan, Y.; Sun, C. MicroRNA-492 Expression Promotes the Progression of Hepatic Cancer by Targeting PTEN. Cancer Cell Int. 2014, 14, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, C.; Ren, F.; Wang, D.; Li, Y.; Liu, K.; Liu, S.; Chen, P. RUNX3 Is Inactivated by Promoter Hypermethylation in Malignant Transformation of Ovarian Endometriosis. Oncol. Rep. 2014, 32, 2580–2588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, F.; Wang, D.; Jiang, Y.; Ren, F. Epigenetic Inactivation of HMLH1 in the Malignant Transformation of Ovarian Endometriosis. Arch. Gynecol. Obstet. 2012, 285, 215–221. [Google Scholar] [CrossRef]
- Akahane, T.; Sekizawa, A.; Okuda, T.; Kushima, M.; Saito, H.; Okai, T. Disappearance of Steroid Hormone Dependency During Malignant Transformation of Ovarian Clear Cell Cancer. Int. J. Gynecol. Pathol. 2005, 24, 369–376. [Google Scholar] [CrossRef]
- Marinković, N.; Pašalić, D.; Ferenčak, G.; Gršković, B.; Rukavina, A. Dioxins and Human Toxicity. Arch. Indust. Hyg. Toxicol. 2010, 61, 445–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeyneloglu, H.B.; Arici, A.; Olive, D.L. Environmental Toxins and Endometriosis. Obstet. Gynecol. Clin. N. Am. 1997, 24, 307–329. [Google Scholar] [CrossRef]
- Rier, S. Endometriosis in Rhesus Monkeys (Macaca Mulatta) Following Chronic Exposure to 2,3,7,8-Tetrachlorodibenzo-p-Dioxin. Fund. App. Toxicol. 1993, 21, 433–441. [Google Scholar] [CrossRef]
- Cummings, A.M.; Metcalf, J.L.; Birnbaum, L. Promotion of Endometriosis by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin in Rats and Mice: Time–Dose Dependence and Species Comparison. Toxicol. App. Pharmacol. 1996, 138, 131–139. [Google Scholar] [CrossRef]
- Huang, P.-C.; Tsai, E.-M.; Li, W.-F.; Liao, P.-C.; Chung, M.-C.; Wang, Y.-H.; Wang, S.-L. Association between Phthalate Exposure and Glutathione S-Transferase M1 Polymorphism in Adenomyosis, Leiomyoma and Endometriosis. Hum. Reprod. 2010, 25, 986–994. [Google Scholar] [CrossRef] [Green Version]
- Grodstein, F.; Goldman, M.B.; Cramer, D.W. Infertility in Women and Moderate Alcohol Use. Am. J. Public Health 1994, 84, 1429–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bounds, W.; Betzing, K.W.; Stewart, R.M.; Holcombe, R.F. Social Drinking and the Immune Response: Impairment of Lymphokine-Activated Killer Activity. Am. J. Med. Sci. 1994, 307, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Frydenberg, H.; Flote, V.G.; Larsson, I.M.; Barrett, E.S.; Furberg, A.-S.; Ursin, G.; Wilsgaard, T.; Ellison, P.T.; McTiernan, A.; Hjartåker, A.; et al. Alcohol Consumption, Endogenous Estrogen and Mammographic Density among Premenopausal Women. Breast Cancer Res. 2015, 17, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Angelis, C.; Nardone, A.; Garifalos, F.; Pivonello, C.; Sansone, A.; Conforti, A.; Di Dato, C.; Sirico, F.; Alviggi, C.; Isidori, A.; et al. Smoke, Alcohol and Drug Addiction and Female Fertility. Reprod. Biol. Endocrinol. 2020, 18, 21. [Google Scholar] [CrossRef] [PubMed]
- Nowakowska, A.; Kwas, K.; Fornalczyk, A.; Wilczyński, J.; Szubert, M. Correlation between Endometriosis and Selected Allergic and Autoimmune Diseases and Eating Habits. Medicina 2022, 58, 1038. [Google Scholar] [CrossRef]
- Harris, H.R.; Eke, A.C.; Chavarro, J.E.; Missmer, S.A. Fruit and Vegetable Consumption and Risk of Endometriosis. Hum. Reprod. 2018, 33, 715–727. [Google Scholar] [CrossRef]
- Borghini, R.; Porpora, M.G.; Casale, R.; Marino, M.; Palmieri, E.; Greco, N.; Donato, G.; Picarelli, A. Irritable Bowel Syndrome-Like Disorders in Endometriosis: Prevalence of Nickel Sensitivity and Effects of a Low-Nickel Diet. An Open-Label Pilot Study. Nutrients 2020, 12, 341. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, A.; Harris, H.R.; Vitonis, A.F.; Chavarro, J.E.; Missmer, S.A. A Prospective Cohort Study of Meat and Fish Consumption and Endometriosis Risk. Am. J. Obstet. Gynecol. 2018, 219, 178.e1–178.e10. [Google Scholar] [CrossRef]
- Missmer, S.A.; Cramer, D.W. The Epidemiology of Endometriosis. Obstet. Gynecol. Clin. N. Am. 2003, 30, 1–19. [Google Scholar] [CrossRef]
- Carpenter, C.E.; Mahoney, A.W. Contributions of Heme and Nonheme Iron to Human Nutrition. Crit. Rev. Food. Sci. Nutr. 1992, 31, 333–367. [Google Scholar] [CrossRef]
- Ciebiera, M.; Esfandyari, S.; Siblini, H.; Prince, L.; Elkafas, H.; Wojtyła, C.; Al-Hendy, A.; Ali, M. Nutrition in Gynecological Diseases: Current Perspectives. Nutrients 2021, 13, 1178. [Google Scholar] [CrossRef]
- Parazzini, F.; Viganò, P.; Candiani, M.; Fedele, L. Diet and Endometriosis Risk: A Literature Review. Reprod. BioMed. Online 2013, 26, 323–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osmanlıoğlu, Ş.; Sanlier, N. The Relationship between Endometriosis and Diet. Hum. Fertil. 2021. [Google Scholar] [CrossRef] [PubMed]
- Dunneram, Y.; Greenwood, D.C.; Cade, J.E. Diet, Menopause and the Risk of Ovarian, Endometrial and Breast Cancer. Proc. Nutr. Soc. 2019, 78, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Hébert, J.R.; Rosato, V.; Rossi, M.; Montella, M.; Serraino, D.; La Vecchia, C. Dietary Inflammatory Index and Ovarian Cancer Risk in a Large Italian Case–Control Study. Cancer Causes Control 2016, 27, 897–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolecek, T.A.; McCarthy, B.J.; Joslin, C.E.; Peterson, C.E.; Kim, S.; Freels, S.A.; Davis, F.G. Prediagnosis Food Patterns Are Associated with Length of Survival from Epithelial Ovarian Cancer. J. Am. Diet. Assoc. 2010, 110, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Playdon, M.C.; Nagle, C.M.; Ibiebele, T.I.; Ferrucci, L.M.; Protani, M.M.; Carter, J.; Hyde, S.E.; Neesham, D.; Nicklin, J.L.; Mayne, S.T.; et al. Pre-Diagnosis Diet and Survival after a Diagnosis of Ovarian Cancer. Br. J. Cancer 2017, 116, 1627–1637. [Google Scholar] [CrossRef] [Green Version]
- Qiu, W.; Lu, H.; Qi, Y.; Wang, X. Dietary Fat Intake and Ovarian Cancer Risk: A Meta-Analysis of Epidemiological Studies. Oncotarget 2016, 7, 37390–37406. [Google Scholar] [CrossRef] [Green Version]
- Crane, T.E.; Khulpateea, B.R.; Alberts, D.S.; Basen-Engquist, K.; Thomson, C.A. Dietary Intake and Ovarian Cancer Risk: A Systematic Review. Cancer Epidemiol. Biomark. Prevent 2014, 23, 255–273. [Google Scholar] [CrossRef] [Green Version]
- King, M.G.; Chandran, U.; Olson, S.H.; Demissie, K.; Lu, S.-E.; Parekh, N.; Bandera, E.V. Consumption of Sugary Foods and Drinks and Risk of Endometrial Cancer. Cancer Causes Control 2013, 24, 1427–1436. [Google Scholar] [CrossRef]
- Bravi, F.; Bertuccio, P.; Turati, F.; Serraino, D.; Edefonti, V.; Dal Maso, L.; Decarli, A.; Montella, M.; Zucchetto, A.; La Vecchia, C.; et al. Nutrient-Based Dietary Patterns and Endometrial Cancer Risk: An Italian Case–Control Study. Cancer Epidemiol. 2015, 39, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lyu, C.; Gao, J.; Du, L.; Shan, B.; Zhang, H.; Wang, H.-Y.; Gao, Y. Dietary Fat Intake and Endometrial Cancer Risk: A Dose Response Meta-Analysis. Medicine 2016, 95, e4121. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, K.M.; Pandey, S.; Martin, J.; Hagoel, T.; Grand’ Maison, A.; Ohm, J.E. Establishing a Role for Environmental Toxicant Exposure Induced Epigenetic Remodeling in Malignant Transformation. Sem. Cancer Biol. 2019, 57, 86–94. [Google Scholar] [CrossRef]
- Vitale, I.; Manic, G.; De Maria, R.; Kroemer, G.; Galluzzi, L. DNA Damage in Stem Cells. Molecular Cell 2017, 66, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Thayer, Z.M.; Kuzawa, C.W. Biological Memories of Past Environments: Epigenetic Pathways to Health Disparities. Epigenetics 2011, 6, 798–803. [Google Scholar] [CrossRef] [Green Version]
- Manikkam, M.; Tracey, R.; Guerrero-Bosagna, C.; Skinner, M.K. Plastics Derived Endocrine Disruptors (BPA, DEHP and DBP) Induce Epigenetic Transgenerational Inheritance of Obesity, Reproductive Disease and Sperm Epimutations. PLoS ONE 2013, 8, e55387. [Google Scholar] [CrossRef] [Green Version]
- Abel, J.; Haarmann-Stemmann, T. An Introduction to the Molecular Basics of Aryl Hydrocarbon Receptor Biology. Biol. Chem. 2010, 391, 1235–1248. [Google Scholar] [CrossRef]
- Franco, R.; Schoneveld, O.; Georgakilas, A.G.; Panayiotidis, M.I. Oxidative Stress, DNA Methylation and Carcinogenesis. Cancer Lett. 2008, 266, 6–11. [Google Scholar] [CrossRef]
- Brocato, J.; Costa, M. Basic Mechanics of DNA Methylation and the Unique Landscape of the DNA Methylome in Metal-Induced Carcinogenesis. Crit. Rev. Toxicol. 2013, 43, 493–514. [Google Scholar] [CrossRef] [Green Version]
- Krauskopf, J.; de Kok, T.M.; Hebels, D.G.; Bergdahl, I.A.; Johansson, A.; Spaeth, F.; Kiviranta, H.; Rantakokko, P.; Kyrtopoulos, S.A.; Kleinjans, J.C. MicroRNA Profile for Health Risk Assessment: Environmental Exposure to Persistent Organic Pollutants Strongly Affects the Human Blood MicroRNA Machinery. Sci. Rep. 2017, 7, 9262. [Google Scholar] [CrossRef] [Green Version]
- Beyaz, S.; Mana, M.D.; Roper, J.; Kedrin, D.; Saadatpour, A.; Hong, S.-J.; Bauer-Rowe, K.E.; Xifaras, M.E.; Akkad, A.; Arias, E.; et al. High-Fat Diet Enhances Stemness and Tumorigenicity of Intestinal Progenitors. Nature 2016, 531, 53–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silver, D.J.; Roversi, G.A.; Bithi, N.; Wang, S.Z.; Troike, K.M.; Neumann, C.K.A.; Ahuja, G.K.; Reizes, O.; Brown, J.M.; Hine, C.; et al. Severe Consequences of a High-Lipid Diet Include Hydrogen Sulfide Dysfunction and Enhanced Aggression in Glioblastoma. J. Clin. Investig. 2021, 131, e138276. [Google Scholar] [CrossRef] [PubMed]
- Pascual, G.; Avgustinova, A.; Mejetta, S.; Martín, M.; Castellanos, A.; Attolini, C.S.-O.; Berenguer, A.; Prats, N.; Toll, A.; Hueto, J.A.; et al. Targeting Metastasis-Initiating Cells through the Fatty Acid Receptor CD36. Nature 2017, 541, 41–45. [Google Scholar] [CrossRef]
- Salvadori, G.; Zanardi, F.; Iannelli, F.; Lobefaro, R.; Vernieri, C.; Longo, V.D. Fasting-Mimicking Diet Blocks Triple-Negative Breast Cancer and Cancer Stem Cell Escape. Cell Metab. 2021, 33, 2247–2259. [Google Scholar] [CrossRef]
- Longo, V.D.; Fontana, L. Calorie Restriction and Cancer Prevention: Metabolic and Molecular Mechanisms. Trends. Pharmacol. Sci. 2010, 31, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Z.; Parris, A.B.; Howard, E.W.; Shi, Y.; Yang, S.; Jiang, Y.; Kong, L.; Yang, X. Caloric Restriction Inhibits Mammary Tumorigenesis in MMTV-ErbB2 Transgenic Mice through the Suppression of ER and ErbB2 Pathways and Inhibition of Epithelial Cell Stemness in Premalignant Mammary Tissues. Carcinogenesis 2018, 39, 1264–1273. [Google Scholar] [CrossRef] [PubMed]
- Puca, F.; Fedele, M.; Rasio, D.; Battista, S. Role of Diet in Stem and Cancer Stem Cells. Int. J. Mol. Sci. 2022, 23, 8108. [Google Scholar] [CrossRef] [PubMed]
- Mihaylova, M.M.; Shaw, R.J. The AMPK Signalling Pathway Coordinates Cell Growth, Autophagy and Metabolism. Nat. Cell Biol. 2011, 13, 1016–1023. [Google Scholar] [CrossRef]
- Shackelford, D.B.; Shaw, R.J. The LKB1–AMPK Pathway: Metabolism and Growth Control in Tumour Suppression. Nat. Rev. Cancer 2009, 9, 563–575. [Google Scholar] [CrossRef]
- Theret, M.; Gsaier, L.; Schaffer, B.; Juban, G.; Ben Larbi, S.; Weiss-Gayet, M.; Bultot, L.; Collodet, C.; Foretz, M.; Desplanches, D.; et al. AMPK A1- LDH Pathway Regulates Muscle Stem Cell Self-renewal by Controlling Metabolic Homeostasis. EMBO. J. 2017, 36, 1946–1962. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, S.; Zhai, A.; Zhang, B.; Tian, G. AMPK-Mediated Regulation of Lipid Metabolism by Phosphorylation. Biol. Pharm. Bull. 2018, 41, 985–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomsen, L.H.; Schnack, T.H.; Buchardi, K.; Hummelshoj, L.; Missmer, S.A.; Forman, A.; Blaakaer, J. Risk Factors of Epithelial Ovarian Carcinomas among Women with Endometriosis: A Systematic Review. Acta Obstet. Gynecol. Scand. 2017, 96, 761–778. [Google Scholar] [CrossRef] [PubMed]
SCs Markers in Endometriosis | SCs Markers in Ovarian Cancer | ||
---|---|---|---|
Eutopic endometrium of patients with endometriosis contains increases numbers of CD44+ cells. The BCL9/Wnt/CD44 axis is engaged in growth of endometriotic implants | [82] [83] | Higher expression of CD44+ cells in recurrent OC CD44v6+ OCSCs present in cancer with increased metastatic potential Patients with low-CD44v46+ tumors have better metastasis-free survival CD44+/CD24+/EpCAM+ cells show OCSCs properties with increased invasiveness and chemo-resistance | [126,127,144] [145] |
CD117 is up-regulated in endometriosis implants | [84,85,86] | CD117+ OC cells correlated with resistance to chemotherapy and shorter recurrence -free interval CD44+/CD117+ cells are able to recapitulate tumors after transplantation into experimental animals | [128,129] [130] |
CD133+Musashi-1+ cells were isolated from ovarian endometrioma | [146] | CD133+ correlated with cancer advancement, ascites, chemo-resistance Increased expression of Musashi-1 is correlated to unfavorable prognosis in OC patients More aggressive and advanced ovarian tumors have higher numbers of Musashi-1+ALDH1+ cells | [132] [137] [136] |
Mesenchymal CD133+OCT-4+ALDH1+ stem cells were isolated from ovarian endometrioma | [147] | CD44+CD133+ALDH1A1+ OCSCs cells are present in chemo-resistant recurrent OC | [148] |
ALDH1+ cells were present in endometrioma | [57] | ALDH1+ cells are OCSCs population possessing stemness properties, and being capable to restore the tumor ALDH-1+ cells were found in HGSOC and CCOC ovarian cancers, and were related to worse survival of patients | [149] [150] |
Expression of SOX-2 is increased inside the stromal component of endometriotic lesion | [35] | Over-expression of SOX2 is related to stemness of cells and up-regulation of resistance to apoptosis. | [151,152] |
Expression of OCT-4 and OCT-4 mRNA is increased inside the epithelial component of endometriotic lesion | [84,85,86] | Up-regulation of OCT4 in OCSCs was correlated to tumor progression and chemo-resistance | [153] |
SUSD2+ mesenchymal SCs are more frequent in endometriotic lesions | [51] | SUSD2 expression in HGSOC was correlated with EMT, metastases and chemo-resistance | [143] |
Mesenchymal SCs in endometriosis indicated increased expression of activin-A specific receptor and CTGF. Upon estrogen stimulation mesenchymal SCs showed increased expression of OCT-4, CD133 and ALDH1 | [105] [152] | Up-regulated expression of activin-A and disturbed CTFG expression may be involved in carcinogenesis | [108,109] |
Immunoreactivity of EpCAM epithelial cells is increased in ectopic compared to eutopic endometrium | [88] | EpCAM (+) OC cells have greater tumor-initiating potential compared to EpCAM (−) cells EpCAM expression is increased in chemo-resistant tumors | [133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilczyński, J.R.; Szubert, M.; Paradowska, E.; Wilczyński, M. Endometriosis Stem Cells as a Possible Main Target for Carcinogenesis of Endometriosis-Associated Ovarian Cancer (EAOC). Cancers 2023, 15, 111. https://doi.org/10.3390/cancers15010111
Wilczyński JR, Szubert M, Paradowska E, Wilczyński M. Endometriosis Stem Cells as a Possible Main Target for Carcinogenesis of Endometriosis-Associated Ovarian Cancer (EAOC). Cancers. 2023; 15(1):111. https://doi.org/10.3390/cancers15010111
Chicago/Turabian StyleWilczyński, Jacek R., Maria Szubert, Edyta Paradowska, and Miłosz Wilczyński. 2023. "Endometriosis Stem Cells as a Possible Main Target for Carcinogenesis of Endometriosis-Associated Ovarian Cancer (EAOC)" Cancers 15, no. 1: 111. https://doi.org/10.3390/cancers15010111
APA StyleWilczyński, J. R., Szubert, M., Paradowska, E., & Wilczyński, M. (2023). Endometriosis Stem Cells as a Possible Main Target for Carcinogenesis of Endometriosis-Associated Ovarian Cancer (EAOC). Cancers, 15(1), 111. https://doi.org/10.3390/cancers15010111