High Intensity Focused Ultrasound for Treatment of Bone Malignancies—20 Years of History
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
3.1. Treatment of Bone Metastasis
3.2. Treatment of Primary Malignant Tumor
Study | Patient Number | Imaging Guidance | Lesion location | Pain Assessment a | Tumor Response b and Survival | Pain Medication or MEDD c | Quality of Life d | Adverse Events |
---|---|---|---|---|---|---|---|---|
Catane et al. 2007 [16] Retrospective study | 13 | MRI | Ilium: 10 Ischium: 1 Sacrum: 1 Humerus: 1 Femur: 1 | Score: Center 1: Pre: 5.5 3 d: 2.3 2 wk: 1.2 1 m: 0.5 3 m: 0.3 Center 2: Pre: 5.4 3 d: 3.9 2 wk: 4.5 1 m: 2.8 3 m: 2.0 6 m: 1.0 | n/a | Improvement in pain relieve medication. | n/a | Transient post procedural pain: 1, resolved within 3 d. No SAE |
Gianfelice et al. 2008 [17] Prospective study | 11 | MRI | Ilium: 10 Scapula: 2 Ischium: 1 Clavicula: 1 | Score: Pre: 6.0 3 d: 3.7 2 wk: 2.2 1 m: 1.3 3 m: 0.5 | Tumor response (CE-T1w MRI): An average decrease of enhancing tumor volume by 50.2% at 1 m after HIFU compared with baseline, and 44% at 3 m compared with 1 m follow-up after HIFU. | Medication: Discontinued: 63.6% Reduction ≥ 50%: 36.4% | n/a | None reported |
Liberman et al. 2009 [36] Prospective study | 31 | MRI | Ilium: 18 Ischium: 4 Sacrum: 4 Scapula: 2 Femur: 1 Humerus: 1 Clavicula: 1 | Score: Pre: 5.9 (3.5–8.5) 3 d: 3.8 (0–8.5) 3 m: 1.8 (0–8) Response (IBMCWP): CR: 36% PR: 36% | n/a | Opioid-based medication (n = 12): Reduction: 67% Increase: 22% Non-opioid medication (n = 13): Reduction: 100% | n/a | None reported |
Li et al. 2010 [23] Prospective study | 12 | US | Ilium: 5 Rib: 6 Sternum: 1 | Score (verbal rating scale): Pre: 1.75 ± 0.97 Post: 0.17 ± 0.39 Response: CR: 87.5% | Tumor response at 4–6 wk (WHO standard): CR: 41.7% PR: 33.3% moderate response: 8.3% SD: 8.3% PD: 8.3% | n/a | n/a | Data combined with primary malignant bone tumor. 1st-degree skin burn: 12, resolved within 2 wk. 2nd-degree skin burn: 2, resolved after 4 wk. Lack of limb sensation during HIFU: 3, resolved after HIFU has completed. |
Candiano et al. 2011 [21] Case report | 1 | MRI | Ilium | Score: Pre: 9 12 m: 2 | Tumor response at 3 m (18F-FDG PET/CT): 35.1% reduction in SUV. | No analgesic changes. | Improvement in QoL. | n/a |
Napoli et al. 2013 [30] Prospective study | 18 | MRI | Ilium: 10 Scapula: 3 Extremities: 4 T7 vertebra: 1 | Score: Pre: 7.1 ± 2.1 1 m: 2.5 ± 1.4 3 m: 1.0 ± 1.1 Response at 3 m (IBMCWP): CR: 72.2% PR: 16.7% PD: 11.1% | Tumor response at 3 m (MDA criteria): CR: 11.1% PR: 22.2% SD: 55.6% PD: 11.1% | Medication at 3 m: Discontinued:72.2% Stable: 16.7% Reintroduction: 11.1%. | BPI-QoL: Pre: 4.8 ± 1.8 1 m: 1.8 ± 1.0 2 m: 0.7 ± 0.6 3 m: 0.5 ± 0.9 | None reported |
Huisman et al. 2014 [46] Observational cohort study | 11 | MRI | Sacrum: 2 Rib: 3 Pubic: 4 Femur: 2 Humerus: 1 | Score: Pre: 8.1 ± 1.3 3 d: 6.6 ± 2.0 1 m: 2.3 ± 2.1 Response at 3d (IBMCWP): PR: 55% PD: 9% Response at 1 m (IBMCWP): CR: 11% PR: 56% | n/a | Medication at 1 m: Reduction: 22.2% Stable: 66.7% Increase: 11.1% | n/a | Post procedural pain: 1 1st-degree skin burn: 1 No SAE |
Hurwirtz et al. 2014 [15] Randomized, placebo-controlled, single-blind, multicenter, pivotal trial | 147 (112 HIFU; 35 placebo) | MRI | HIFU: Pelvis: 70 Sacrum and coccyx: 12 Rib and sternum: 16 Extremities: 7 Scapula: 7 Placebo: Pelvis: 19 Sacrum and coccyx: 6 Rib and sternum: 6 Extremities: 3 Scapula: 1 | Score at 3 m: Mean reduction from baseline in worst NRS: HIFU: 3.6 ± 3.1 Placebo: 0.7 ± 2.4 Response at 3 m (IBMCWP): HIFU: 64.3% (CR: 23.2%) Placebo: 20.0% (CR: 5.7%) | n/a | Medication at 3 m: Discontinued: HIFU: 27% Placebo: 14% Reduction: HIFU: 17% Placebo: 0% | MR-HIFU was 2.4-point superior to placebo in BPI-QoL scores at 3 m follow-up. | HIFU: Any AE: 51 Sonication pain: 36 Position pain: 9 Post procedural pain: 5 Fatigue: 2 Neuropathy: 2 Fracture: 2 Skin burn: 2 Blood in urine: 1 Fever: 1 Myositis: 1 Numbness: 1 Skin rash: 1 60.3% resolved on HIFU treatment day and 14.3% resolved within 1 wk. Placebo: Any AE: 1 Position pain: 1 |
Gu et al. 2015 [28] Prospective study | 23 | MRI | The following locations were included during screening, but the number of patients treated per location was not specified. Ribs, extremities (including joints), pelvis, shoulder joints or third lumbar vertebrae and below of the posterior part of the spine. | Score: Pre: 6.0 ± 1.5 1 wk: 3.7 ± 1.7 1 m: 3.1 ± 2.0 3 m: 2.2 ± 1.0 | n/a | n/a | BPI-QoL: Pre: 39 ± 16 1 wk: 27 ± 18 1 m: 26 ± 18 3 m: 21 ± 18 QLQ-BM22: Pre: 52 ± 13 1 wk: 44 ± 12 1 m: 42 ± 12 3 m: 39 ± 12 | Pain in therapy area: 3, resolved within 1 wk. Numbness in lower limb: 1, resolved after physiotherapy. |
Joo et al. 2015 [47] Prospective study | 5 | MRI | Ilium: 3 Scapula: 1 Femur: 1 Humerus: 1 | Score: Pre: 5.9 ± 1.3 3 d: 4.7 ± 1.9 7 d: 3.3 ± 2.2 14 d: 2.5 ± 1.3 30 d: 2.9 ± 1.5 60 d: 3.4 ± 1.6 90 d: 0.8 ± 1.1 12 m: 0 | Tumor response at 3 m: Reduction in tumor tissue enhancement, and new bone formation in 1 patient. | n/a | 2 patients reported improvement in daily activities. | Skin burn: 1 Sonication-related pain: 1, resolved within 2 wk. |
Anzidei et al. 2016 [37] Prospective study | 23 | MRI | Pelvic bone: 12 Scapula: 4 Femur: 2 Humerus: 2 Tibia: 2 Fibula: 1 | Score: Pre: 7.09 ± 1.80 1 m: 2.65 ± 1.36 3 m: 1.04 ± 1.91 6 m: 1.09 ± 1.99 Response (IBMCWP): CR: 69.6% PR: 26.1% SD: 4.3% | n/a | n/a | n/a | None reported |
Chan et al. 2016 [33] Pilot study | 10 | MRI | Scapula: 2 Iliac crest: 4 Femur: 1 Hip: 2 Rib: 1 | Score: Decreased at 14 d and 30 d follow-up. Response at 14 d (IBMCWP): PR: 37.5% Indeterminate: 50% PD: 12.5% Response at 30 d (IBMCWP): CR: 17% PR: 83% | n/a | n/a | BPI-QoL: All functional scores decreased at 14 d and 30 d follow-up. | None reported |
Lee et al. 2017 [38] Retrospective match-pair study with RT | 63 (21 HIFU; 42 RT) | MRI | HIFU: Pelvis: 18 Limb: 2 Rib cage: 1 RT: Pelvis: 36 Limb: 4 Rib cage: 2 | Score: Pre: HIFU: 6.6 RT: 6.2 1 wk: HIFU: 2.5 RT: 4.8 2 wk: HIFU: 2.1 RT: 3.6 1 m: HIFU: 2.0 RT: 2.8 2 m: HIFU: 1.7 RT: 2.2 3 m HIFU: 2.3 RT: 1.0 Response (IBMCWP): 1 wk: HIFU: 71% RT: 26% 2 wk: HIFU: 76% RT: 50% 1 m: HIFU: 81% RT: 67% 2 m: HIFU: 81% RT: 74% 3 m HIFU: 76% (CR: 43%) RT: 71% (CR: 29%) | Tumor response: Progression observed in 1 HIFU patient and 4 RT patients. Median survival: HIFU: 12.7 m RT: 9.8 m | No significant difference between the mean MEDD change from baseline for the 2 treatment groups at all follow-up time points. | n/a | HIFU: Positioning pain: 3 Sonication pain: 7 Dermatitis: 1 Myositis: 1 RT: Positioning pain: 4 Dermatitis: 3 Diarrhea: 8 |
Singh et al. 2017 [44] Prospective study | 24 (15 primary malignant tumors, 6 bone metastases, 3 osteoid osteomas) | MRI | Femur: 7 Tibia: 7 Pubic rami: 3 Fibula: 3 Humerus: 3 Radius: 1 | Score: Pre: 3.04 1 d: 3.17 3 m: 0.7 (only for bone metastasis and osteoid osteoma) Bone metastasis patients remained symptom free with significant decrease in pain scores at 3 m follow-up. | Histopathology for primary malignant tumor: 100% tumor tissue necrosis due to MR-HIFU ablation. | n/a | n/a | Blister: 2 Post procedural pain: 3 |
Bertrand et al. 2018 [24] Prospective study | 17 | MRI | Tibia: 2 Femur: 2 Iliac bone: 4 Clavicle: 1 Scapula: 1 Humerus: 1 Ribs: 6 | Score: Pre: 7.5 ± 1.3 1 wk: 2.3 ± 1.9 1 m: 1.9 ± 2.0 Response at 1 m (IBMCWP): CR: 37.5% PR: 50.0% PD: 12.5% | n/a | MEDD: Pre: 270.6 (78.2–2293.9) 1 m: 113.75 (44.9–270.0) | n/a | None reported |
Chen et al. 2018 [22] Retrospective study | 26 | MRI | Tibia: 2 Femur: 3 Pelvis: 21 | Score: Pre: 6.69 ± 1.49 2 m: 3.96 ± 1.37 4 m: 4.88 ± 1.11 6 m: 5.15 ± 1.08 8 m: 5.34 ± 1.29 10 m: 5.65 ± 1.09 12 m: 5.96 ± 1.14 | n/a | n/a | QLQ-BM22: Functional interference: Pre: 89.66 ± 6.54 2 m: 69.83 ± 4.67 4 m: 68.14 ± 5.16 6 m: 66.59 ± 3.93 8 m: 67.19 ± 3.22 10 m: 69.95 ± 4.59 12 m: 72.84 ± 5.13 Psychosocial aspect: Pre: 90.87 ± 4.25 2 m: 59.29 ± 11.86 4 m: 62.66 ± 10.44 6 m: 66.03 ± 5.11 8 m: 69.39 ± 12.79 10 m: 69.39 ± 12.80 12 m: 72.59 ± 12.92 | None reported |
Einsenberg et al. 2018 [32] Case report | 1 | MRI | Iliac bone | Increase in local pain during the 1st 3 d followed by improvement in pain response. | Tumor response: No 18F-FDG uptake noted on PET/CT images at 3 m after treatment. | 90% reduction in opioid intake at 2 m after treatment. | Patient could ambulate and change positions with no difficulties. | n/a |
Harding et al. 2018 [26] Prospective study | 20 | MRI | Pelvis: 14 Arm: 2 Leg: 1 Rib: 1 | Response (IBMCWP): 7 d: 38.9% 14 d: 61.1% 30 d: 53.0% 60 d: 61.5% 90 d: 63.6% | n/a | n/a | QLQ-C15-PAL: Overall QoL: Pre: 49.99 ± 22.04 7 d: 51.85 ± 24.17 14 d: 58.33 ± 22.31 30 d: 50.98 ± 24.62 60 d: 56.41 ± 25.02 90 d: 56.07 ± 27.14 QLQ-BM22: Functional interference: Pre: 45.93 ± 18.08 7 d: 55.09 ± 14.94 14 d: 58.26 ± 15.92 30 d: 52.24 ± 24.64 60 d: 59.80 ± 27.53 90 d: 63.15 ± 23.29 Psychosocial aspect: Pre: 54.63 ± 18.79 7 d: 59.57 ± 16.59 14 d: 57.64 ± 15.96 30 d: 52.94 ± 25.09 60 d: 55.56 ± 17.57 90 d: 55.06 ± 18.17 | No treatment-related AE |
Wang et al. 2018 [48] Prospective study | 21 | MRI | Rib cage: 9 Ilium: 8 Humerus: 1 Femur: 1 Sacral vertebra: 1 Pubic bone: 1 | Score: Pre: 7.7 ± 1.6 1 wk: 3.6 ± 2.6 1 m: 3.9 ± 3.2 2 m: 4.3 ± 3.3 3 m: 3.7 ± 2.7 | n/a | Medication: Increase: 80.0%, 13.3% at 1 m and 2 m due to pain from other organ metastases, 6.7% at 3 m due to tumor progression, and 6.7% at 3 m due to aggravation of bone metastasis pain. | BPI-QoL: Pre: 27.3 ± 20.9 1 wk: 34.1 ± 15.5 1 m: 32.3 ± 19.2 2 m: 31.9 ± 18.9 3 m: 28.8 ± 14.8 | 1st-degree skin burn: 1, improved after symptomatic treatment. Impaired bladder and bowel function: 1, resolved after symptomatic treatment. Low-grade fever: 1, resolved after 1 wk. |
Aslani et al. 2019 [49] Pilot study | 9 | US | Rib: 4 Ulna: 1 Scapula: 2 Iliac crest: 1 Humerus: 1 | 66.7% had durable pain relief. | n/a | n/a | n/a | n/a |
Giles et al. 2019 [50] Prospective study | 21 (9 intraosseous group; 12 extraosseous group) | MRI | Intraosseous: Pelvis: 5 Ribs: 2 Humerus: 1 Femur: 1 Extraosseous: Pelvis: 8 Ribs: 1 Humerus: 1 Femur: 1 Sacrum: 1 | Score: Intraosseous: Significant reduction in pain scores at 30, 60, and 90 d. Extraosseous: Non-significant reduction in pain scores at 30, 60, and 90 d. Response (IBMCWP): Intraosseous Responder: 67% Extraosseous Responder: 33% | n/a | n/a | n/a | Intraosseous: Post procedural pain: 4 Extraosseous: Temporary numbness of the buttock: 1 Thermal injury of subcutaneous fat: 1 |
Namba et al. 2019 [25] Retrospective study | 11 | MRI | n/a | Median score: Pre: 6 (4–8) 3 m: 2 (0–6) Response (OMERACT-OARSI): 1 wk: 60% 1 m: 80% 3 m: 80% Median pressure pain threshold: Pre: 107 kPa (40–432) 3 m: 271 kPa (94–534) | n/a | n/a | n/a | |
Tsai et al. 2019 [31] Retrospective study | 31 | MRI | Pelvis: 3 Rib cage: 4 | Response at 3 m (IBMCWP): CR: 48.4% PR: 35.5% SD: 12.9% PD: 3.2% | Tumor response at 3 m (modified MDA criteria): CR: 6.5% PR: 61.3% SD: 29% PD: 3.2% 1-year local control rate: 57%. | n/a | n/a | Procedure-related pain: 4, resulting in temporary treatment interruption and additional administration of intravenous morphine administration. |
Wang et al. 2019 [18] Prospective study | 30 | MRI | Ribs: 13 Ilium: 11 Long bones of the extremities: 4 Sacral vertebrae: 2 | Score: NRS: Pre: 6.27 ± 1.53 1 wk: 3.69 ± 1.71 1 m: 3.13 ± 1.87 2 m: 2.76 ± 1.53 3 m: 2.18 ± 1.04 VAS: Pre: 6.56 ± 2.38 1 wk: 4.72 ± 2.34 1 m: 3.43 ± 2.16 2 m: 2.29 ± 1.15 3 m: 1.85 ± 0.96 | n/a | 13 patients had fixed, stable analgesic dosage before HIFU. After HIFU, 6 patients discontinued, 2 patients reduced, and 1 patient had no change in analgesic. At 2 m follow-up, 4 patients discontinued analgesic. 17 patients had no analgesic medication before HIFU, but 1 needed analgesic for failed analgesic effect on unbearable pain and 2 needed analgesic at 3 m follow-up due to other non-treated metastatic bone tumor. | QLQ-C30: Physical function, cognitive function, nausea and vomiting, and degree of pain scores significantly decreased at 1 wk, 1 m, 2 m, and 3 m after HIFU. Total scores: Pre: 16.98 ± 5.38 1 wk: 13.26 ± 3.89 1 m: 12.44 ± 3.20 2 m: 10.80 ± 3.44 3 m: 9.70 ± 2.98 | 1st-degree skin burn: 2, resolved 3 d after symptomatic treatment. Local swelling and numbness: 3, resolved after symptomatic treatment. Low fever: 3, resolved after 1 m. |
Drost et al. 2020 [51] Pilot study | 9 | US | Rib: 4 Ulna: 1 Scapula: 2 Iliac crest: 1 Humerus: 1 | Score: Pre: 6.9 10 d: 3.2 Response at 10 d (IBMCWP): CR: 1/9 (11.1%) PR: 8/9 (88.9%) | n/a | MEDD: Pre: 1343 mg/d 10 d: 345 mg/d | QLQ-C15-PAL at 10 d: Scores for questions 1–8 and 11–14 decreased at 10 d follow-up. Scores for nausea remained constant (question 9). Scores for constipation (question 10) increased from 1.3 to 1.7. Overall QoL scores (question 15) increased from an average of 3.8 to 4.6. QLQ-BM22 at 10 d: The average score for 21 questions decreased at 10d follow-up. Scores for pain felt in buttocks (Question 5) increased from 1.3 to 1.6. | Fatigue: 1 Itch: 1 Pain: 3 Redness:1 Sensation: 1, resolved by day 6. |
Bongiovanni et al. 2022 [27] Prospective study | 12 | MRI | Leg: 2 Arm: 1 Scapula: 1 Pelvis: 5 Sacrum: 3 | Score: Constant pain: Pre: 3.8 (median) 30 d: 0.7 (mean) Breakthrough pain: Pre: 6.9 (median) 30 d: 1.4 (mean) Response at 30 d: Constant pain: CR: 50% PR: 50% Breakthrough pain: CR: 41.7% PR: 58.3% | Tumor response (MDA criteria): PR: 81.8% Tumor response (PERCIST 1.0): PR: 41.7% SD: 25.0% PD: 33.3% | Median MEDD: Pre: 37.5 mg (0–270 mg) 7 d: 14.3 mg (0–270 mg) 30 d: 7.3 mg (0–180 mg) 90 d: no further increase | Median QLQ-C15-PAL: Physical function: Pre: 40 (26.7–93.3) 1 m: 73.3 (range 26.7–93.3) Emotional function: Pre: 66.7 (0–100) 1 m: 100 (41.7–100) | Grade 2 skin burn: 1 Grade 1 skin edema: 1 Acute pain after sonication: 1 |
Cabras et al. 2022 [52] First-in-man case report | 1 | MRI | Arm | Score: Pre: 7 2 d: 8 3 d: 3 3 m: 3 | n/a | n/a | n/a | Postprocedural pain |
Hsu et al. 2022 [35] Prospective study | 20 | MRI | Rib: 1 Sternum: 1 Acetabulum: 1 Ilium: 3 Ischium: 1 Sacroiliac joint: 6 Sacrum: 5 Scapula: 2 | Response at 3 m (IBMCWP): CR: 80% PR: 20% | Radiographic response at 3 m (modified MDA criteria) e: Overall response rate: 67.7% | n/a | n/a | n/a |
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mundy, G.R. Metastasis to Bone: Causes, Consequences and Therapeutic Opportunities. Nat. Rev. Cancer 2002, 2, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Mantyh, P. Bone Cancer Pain: Causes, Consequences, and Therapeutic Opportunities. Proc. Pain 2013, 154, S54–S62. [Google Scholar] [CrossRef] [PubMed]
- Lutz, S.; Berk, L.; Chang, E.; Chow, E.; Hahn, C.; Hoskin, P.; Howell, D.; Konski, A.; Kachnic, L.; Lo, S.; et al. Palliative Radiotherapy for Bone Metastases: An ASTRO Evidence-Based Guideline. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 965–976. [Google Scholar] [CrossRef]
- Ringe, K.; Panzica, M.; von Falck, C. Thermoablation of Bone Tumors. RöFo Fortschr. Geb. Der Röntgenstrahlen Bildgeb. Verfahr. 2016, 188, 539–550. [Google Scholar] [CrossRef] [Green Version]
- Bazzocchi, A.; Aparisi Gómez, M.P.; Taninokuchi Tomassoni, M.; Napoli, A.; Filippiadis, D.; Guglielmi, G. Musculoskeletal Oncology and Thermal Ablation: The Current and Emerging Role of Interventional Radiology. Skelet. Radiol. 2022, 1–13. [Google Scholar] [CrossRef]
- Ter Haar, G.; Coussios, C. High Intensity Focused Ultrasound: Physical Principles and Devices. Int. J. Hyperth. 2007, 23, 89–104. [Google Scholar] [CrossRef]
- Quesson, B.; De Zwart, J.A.; Moonen, C.T.W. Magnetic Resonance Temperature Imaging for Guidance of Thermotherapy. J. Magn. Reson. Imaging 2000, 12, 525–533. [Google Scholar] [CrossRef]
- Siedek, F.; Yeo, S.Y.; Heijman, E.; Grinstein, O.; Bratke, G.; Heneweer, C.; Puesken, M.; Persigehl, T.; Maintz, D.; Grull, H. Magnetic Resonance-Guided High-Intensity Focused Ultrasound (MR-HIFU): Technical Background and Overview of Current Clinical Applications (Part 1). RoFo Fortschr. Geb. Rontgenstrahlen Bildgeb. Verfahr. 2019, 191, 522–530. [Google Scholar] [CrossRef] [Green Version]
- Siedek, F.; Yeo, S.Y.; Heijman, E.; Grinstein, O.; Bratke, G.; Heneweer, C.; Puesken, M.; Persigehl, T.; Maintz, D.; Grüll, H. Magnetic Resonance-Guided High-Intensity Focused Ultrasound (MR-HIFU): Overview of Emerging Applications (Part 2). RoFo Fortschr. Geb. Rontgenstrahlen Bildgeb. Verfahr. 2019, 191, 531–539. [Google Scholar] [CrossRef]
- Focused Ultrasound Foundation State of the Field Report 2022. Available online: https://cdn.fusfoundation.org/2022/11/01111233/Focused-Ultrasound-Foundation_State-of-the-Field-Report-2022_Nov1.pdf (accessed on 3 December 2022).
- Ten Eikelder, H.M.M.; Bosnacki, D.; Elevelt, A.; Donato, K.; Di Tullio, A.; Breuner, B.J.T.; van Wijk, J.H.; Yeo, S.Y.; Grüll, H. Modeling the Temperature Evolution of Bone under High Intensity Focused Ultrasound. Phys. Med. Biol. 2016, 61, 1810–1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huisman, M.; Ter Haar, G.; Napoli, A.; Hananel, A.; Ghanouni, P.; Lövey, G.; Nijenhuis, R.J.; van den Bosch, M.A.A.J.; Rieke, V.; Majumdar, S.; et al. International Consensus on Use of Focused Ultrasound for Painful Bone Metastases: Current Status and Future Directions. Int. J. Hyperth. 2015, 31, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Napoli, A.; Anzidei, M.; Marincola, B.C.; Brachetti, G.; Noce, V.; Boni, F.; Bertaccini, L.; Passariello, R.; Catalano, C. MR Imaging–Guided Focused Ultrasound for Treatment of Bone Metastasis. RadioGraphics 2013, 33, 1555–1568. [Google Scholar] [CrossRef] [PubMed]
- Hurwitz, M.D.; Ghanouni, P.; Kanaev, S.V.; Iozeffi, D.; Gianfelice, D.; Fennessy, F.M.; Kuten, A.; Meyer, J.E.; LeBlang, S.D.; Roberts, A.; et al. Magnetic Resonance-Guided Focused Ultrasound for Patients with Painful Bone Metastases: Phase III Trial Results. J. Natl. Cancer Inst. 2014, 106, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catane, R.; Beck, A.; Inbar, Y.; Rabin, T.; Shabshin, N.; Hengst, S.; Pfeffer, R.M.; Hanannel, A.; Dogadkin, O.; Liberman, B.; et al. MR-Guided Focused Ultrasound Surgery (MRgFUS) for the Palliation of Pain in Patients with Bone Metastases—Preliminary Clinical Experience. Ann. Oncol. 2007, 18, 163–167. [Google Scholar] [CrossRef]
- Gianfelice, D.; Gupta, C.; Kucharczyk, W.; Bret, P.; Havill, D.; Clemons, M. Palliative Treatment of Painful Bone Metastases with MR Imaging--Guided Focused Ultrasound. Radiology 2008, 249, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, J.; Wei, X. Short-Term Efficacy and Safety of MR-Guided Focused Ultrasound Surgery for Analgesia in Children with Metastatic Bone Tumors. Oncol. Lett. 2019, 18, 3283–3289. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Huang, R.; Meng, T.; Yin, H.; Song, D. The Roles of Magnetic Resonance-Guided Focused Ultrasound in Pain Relief in Patients With Bone Metastases: A Systemic Review and Meta-Analysis. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef]
- Baal, J.D.; Chen, W.C.; Baal, U.; Wagle, S.; Baal, J.H.; Link, T.M.; Bucknor, M.D. Efficacy and Safety of Magnetic Resonance-Guided Focused Ultrasound for the Treatment of Painful Bone Metastases: A Systematic Review and Meta-Analysis. Skelet. Radiol. 2021, 50, 2459–2469. [Google Scholar] [CrossRef]
- Candiano, G.; Russo, G.; Stefano, A.; Marino, L.; Ganguzza, F.; Vaccari, A.; Tripoli, V.; Galluzzo, A.; Pulizzi, S.; Messana, D.; et al. Metabolic Changes after MRgFUS Treatment of a Bone Metastasis Using PET/CT: A Case Report. In Proceedings of the 12th International Symposium on Therapeutic Ultrasound, 10–13 June 2012, Heidelberg, Germany; AIP Publishing: Melville, NY, USA, 2012; Volume 1503, pp. 168–172. [Google Scholar]
- Chen, Z.-q.; Wang, C.-r.; Ma, X.-j.; Sun, W.; Shen, J.-k.; Sun, M.-x.; Fu, Z.-z.; Hua, Y.-q.; Cai, Z. dong Evaluation of Quality of Life Using EORTC QLQ-BM22 in Patients with Bone Metastases after Treatment with Magnetic Resonance Guided Focused Ultrasound. Orthop. Surg. 2018, 10, 264–271. [Google Scholar] [CrossRef]
- Li, C.; Zhang, W.; Fan, W.; Huang, J.; Zhang, F.; Wu, P. Noninvasive Treatment of Malignant Bone Tumors Using High-Intensity Focused Ultrasound. Cancer 2010, 116, 3934–3942. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, A.-S.; Iannessi, A.; Natale, R.; Beaumont, H.; Patriti, S.; Xiong-Ying, J.; Baudin, G.; Thyss, A. Focused Ultrasound for the Treatment of Bone Metastases: Effectiveness and Feasibility. J. Ther. Ultrasound 2018, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Namba, H.; Kawasaki, M.; Izumi, M.; Ushida, T.; Takemasa, R.; Ikeuchi, M. Effects of MRgFUS Treatment on Musculoskeletal Pain: Comparison between Bone Metastasis and Chronic Knee/Lumbar Osteoarthritis. Pain Res. Manag. 2019, 2019, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Harding, D.; Giles, S.L.; Brown, M.R.D.; ter Haar, G.R.; van den Bosch, M.; Bartels, L.W.; Kim, Y.-S.; Deppe, M.; deSouza, N.M. Evaluation of Quality of Life Outcomes Following Palliative Treatment of Bone Metastases with Magnetic Resonance-Guided High Intensity Focused Ultrasound: An International Multicentre Study. Clin. Oncol. 2018, 30, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Bongiovanni, A.; Foca, F.; Oboldi, D.; Diano, D.; Bazzocchi, A.; Fabbri, L.; Mercatali, L.; Vanni, S.; Maltoni, M.; Bianchini, D.; et al. 3-T Magnetic Resonance–Guided High-Intensity Focused Ultrasound (3 T-MR-HIFU) for the Treatment of Pain from Bone Metastases of Solid Tumors. Support. Care Cancer 2022, 30, 5737–5745. [Google Scholar] [CrossRef]
- Gu, J.; Wang, H.; Tang, N.; Hua, Y.; Yang, H.; Qiu, Y.; Ge, R.; Zhou, Y.; Wang, W.; Zhang, G. Magnetic Resonance Guided Focused Ultrasound Surgery for Pain Palliation of Bone Metastases: Early Experience of Clinical Application in China. Zhonghua Yi Xue Za Zhi 2015, 95, 3328–3332. [Google Scholar]
- Yeo, S.Y.; Elevelt, A.; Donato, K.; van Rietbergen, B.; ter Hoeve, N.D.; van Diest, P.J.; Grüll, H. Bone Metastasis Treatment Using Magnetic Resonance-Guided High Intensity Focused Ultrasound. Bone 2015, 81, 513–523. [Google Scholar] [CrossRef]
- Napoli, A.; Anzidei, M.; Marincola, B.C.; Brachetti, G.; Ciolina, F.; Cartocci, G.; Marsecano, C.; Zaccagna, F.; Marchetti, L.; Cortesi, E.; et al. Primary Pain Palliation and Local Tumor Control in Bone Metastases Treated with Magnetic Resonance-Guided Focused Ultrasound. Investig. Radiol. 2013, 48, 351–358. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Lee, H.L.; Kuo, C.C.; Chen, C.Y.; Hsieh, K.L.C.; Wu, M.H.; Wen, Y.C.; Yu, H.W.; Hsu, F.C.; Tsai, J.T.; et al. Prognostic and Predictive Factors for Clinical and Radiographic Responses in Patients with Painful Bone Metastasis Treated with Magnetic Resonance-Guided Focused Ultrasound Surgery. Int. J. Hyperth. 2019, 36, 931–936. [Google Scholar] [CrossRef]
- Eisenberg, E.; Shay, L.; Keidar, Z.; Amit, A.; Militianu, D. Magnetic Resonance-Guided Focused Ultrasound Surgery for Bone Metastasis: From Pain Palliation to Biological Ablation? J. Pain Symptom Manag. 2018, 56, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.; Dennis, K.; Huang, Y.; Mougenot, C.; Chow, E.; DeAngelis, C.; Coccagna, J.; Sahgal, A.; Hynynen, K.; Czarnota, G.; et al. Magnetic Resonance–Guided High-Intensity-Focused Ultrasound for Palliation of Painful Skeletal Metastases: A Pilot Study. Technol. Cancer Res. Treat. 2017, 16, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Bushehri, A.; Czarnota, G.; Zhang, L.; Hynynen, K.; Huang, Y.; Chan, M.; Chu, W.; Dennis, K.; Mougenot, C.; Coccagna, J.; et al. Urinary Cytokines/Chemokines after Magnetic Resonance-Guided High Intensity Focused Ultrasound for Palliative Treatment of Painful Bone Metastases. Ann. Palliat. Med. 2017, 6, 36–54. [Google Scholar] [CrossRef] [PubMed]
- Hsu, F.C.; Lee, H.L.; Chen, Y.J.; Shen, Y.A.; Tsai, Y.C.; Wu, M.H.; Kuo, C.C.; Lu, L.S.; Der Yeh, S.; Huang, W.S.; et al. A Few-Shot Learning Approach Assists in the Prognosis Prediction of Magnetic Resonance-Guided Focused Ultrasound for the Local Control of Bone Metastatic Lesions. Cancers 2022, 14, 445. [Google Scholar] [CrossRef] [PubMed]
- Liberman, B.; Gianfelice, D.; Inbar, Y.; Beck, A.; Rabin, T.; Shabshin, N.; Chander, G.; Hengst, S.; Pfeffer, R.; Chechick, A.; et al. Pain Palliation in Patients with Bone Metastases Using MR-Guided Focused Ultrasound Surgery: A Multicenter Study. Ann. Surg. Oncol. 2009, 16, 140–146. [Google Scholar] [CrossRef]
- Anzidei, M.; Napoli, A.; Sacconi, B.; Boni, F.; Noce, V.; Di Martino, M.; Saba, L.; Catalano, C. Magnetic Resonance-Guided Focused Ultrasound for the Treatment of Painful Bone Metastases: Role of Apparent Diffusion Coefficient (ADC) and Dynamic Contrast Enhanced (DCE) MRI in the Assessment of Clinical Outcome. Radiol. Med. 2016, 121, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-L.; Kuo, C.-C.; Tsai, J.-T.; Chen, C.-Y.; Wu, M.-H.; Chiou, J.-F. Magnetic Resonance-Guided Focused Ultrasound Versus Conventional Radiation Therapy for Painful Bone Metastasis: A Matched-Pair Study. J. Bone Jt. Surg. 2017, 99, 1572–1578. [Google Scholar] [CrossRef]
- Bartels, M.M.T.J.; Verpalen, I.M.; Ferrer, C.J.; Slotman, D.J.; Phernambucq, E.C.J.; Verhoeff, J.J.C.; Eppinga, W.S.C.; Braat, M.N.G.J.A.; van den Hoed, R.D.; van ’t Veer-Ten Kate, M.; et al. Combining Radiotherapy and Focused Ultrasound for Pain Palliation of Cancer Induced Bone Pain; a Stage I/IIa Study According to the IDEAL Framework. Clin. Transl. Radiat. Oncol. 2021, 27, 57–63. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Z.; Wu, F.; Zhu, H.; Zou, J.; Bai, J.; Li, K.; Xie, F. High Intensity Focused Ultrasound in the Treatment of Primary Malignant Bone Tumor. Zhonghua Zhong Liu Za Zhi 2002, 24, 612–619. [Google Scholar]
- Li, C.; Wu, P.; Zhang, L.; Fan, W.; Huang, J.; Zhang, F. Osteosarcoma: Limb Salvaging Treatment by Ultrasonographically Guided High-Intensity Focused Ultrasound. Cancer Biol. Ther. 2009, 8, 1102–1108. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhu, H.; Zhang, L.; Li, K.; Su, H.; Jin, C.; Zhou, K.; Bai, J.; Wu, F.; Wang, Z. Primary Bone Malignancy: Effective Treatment with High-Intensity Focused Ultrasound Ablation. Radiology 2010, 255, 967–978. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Tang, J. Primary Malignant Tumours of the Bony Pelvis: US-Guided High Intensity Focused Ultrasound Ablation. Int. J. Hyperth. 2013, 29, 683–687. [Google Scholar] [CrossRef]
- Singh, V.A.; Shah, S.U.; Yasin, N.F.; Abdullah, B.J.J. Magnetic Resonance Guided Focused Ultrasound for Treatment of Bone Tumors. J. Orthop. Surg. 2017, 25, 6256. [Google Scholar] [CrossRef]
- Wang, C. Therapeutic Effects of Adriamycin Combined with High-Intensity Focused Ultrasound on Osteosarcoma. J. Balk. Union Oncol. 2019, 24, 826–831. [Google Scholar]
- Huisman, M.; Lam, M.K.; Bartels, L.W.; Nijenhuis, R.J.; Moonen, C.T.; Knuttel, F.M.; Verkooijen, H.M.; van Vulpen, M.; van den Bosch, M.A. Feasibility of Volumetric MRI-Guided High Intensity Focused Ultrasound (MR-HIFU) for Painful Bone Metastases. J. Ther. Ultrasound 2014, 2, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, B.; Park, M.-S.; Lee, S.H.; Choi, H.J.; Lim, S.T.; Rha, S.Y.; Rachmilevitch, I.; Lee, Y.H.; Suh, J.-S. Pain Palliation in Patients with Bone Metastases Using Magnetic Resonance-Guided Focused Ultrasound with Conformal Bone System: A Preliminary Report. Yonsei Med. J. 2015, 56, 503–509. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Sun, Z.; Xin, C.; Du, C.; Xu, L.; Gu, Y.; Li, W.; Peng, W. Magnetic Resonance-Guided Focused Ultrasound Surgery for Pain Palliation of Bone Metastases: Preliminary Study on the Short-Term Efficacy and Safety. J. Interv. Radiol. 2018, 27, 636–640. [Google Scholar] [CrossRef]
- Aslani, P.; Drost, L.; Huang, Y.; Lucht, B.B.C.; Wong, E.; Czarnota, G.; Yee, C.; Wan, B.A.; Ganesh, V.; Gunaseelan, S.T.; et al. Thermal Therapy with a Fully Electronically Steerable HIFU Phased Array Using Ultrasound Guidance and Local Harmonic Motion Monitoring. IEEE Trans. Biomed. Eng. 2020, 67, 1854–1862. [Google Scholar] [CrossRef] [PubMed]
- Giles, S.L.; Brown, M.R.D.; Rivens, I.; Deppe, M.; Huisman, M.; Kim, Y.-S.; Farquhar-Smith, P.; Williams, J.E.; ter Haar, G.R.; deSouza, N.M. Comparison of Imaging Changes and Pain Responses in Patients with Intra- or Extraosseous Bone Metastases Treated Palliatively with Magnetic Resonance-Guided High-Intensity–Focused Ultrasound. J. Vasc. Interv. Radiol. 2019, 30, 1351–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drost, L.; Hynynen, K.; Huang, Y.; Lucht, B.; Wong, E.; Czarnota, G.; Yee, C.; Wan, B.A.; Ganesh, V.; Chow, E.; et al. Ultrasound-Guided Focused Ultrasound Treatment for Painful Bone Metastases: A Pilot Study. Ultrasound Med. Biol. 2020, 46, 1455–1463. [Google Scholar] [CrossRef]
- Cabras, P.; Auloge, P.; Bing, F.; Rao, P.P.; Hoarau, S.; Dumont, E.; Durand, A.; Maurin, B.; Wach, B.; Cuvillon, L.; et al. A New Versatile MR-Guided High-Intensity Focused Ultrasound (HIFU) Device for the Treatment of Musculoskeletal Tumors. Sci. Rep. 2022, 12, 9095. [Google Scholar] [CrossRef]
- Simões Corrêa Galendi, J.; Yeo, S.Y.; Grüll, H.; Bratke, G.; Akuamoa-Boateng, D.; Baues, C.; Bos, C.; Verkooijen, H.M.; Shukri, A.; Stock, S.; et al. Early Economic Modeling of Magnetic Resonance Image-Guided High Intensity Focused Ultrasound Compared to Radiotherapy for Pain Palliation of Bone Metastases. Front. Oncol. 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Khokhlova, V.A.; Fowlkes, J.B.; Roberts, W.W.; Schade, G.R.; Xu, Z.; Khokhlova, T.D.; Hall, T.L.; Maxwell, A.D.; Wang, Y.N.; Cain, C.A. Histotripsy Methods in Mechanical Disintegration of Tissue: Towards Clinical Applications. Int. J. Hyperth. 2015, 31, 145–162. [Google Scholar] [CrossRef] [PubMed]
- Hoogenboom, M.; Eikelenboom, D.; den Brok, M.H.; Heerschap, A.; Fütterer, J.J.; Adema, G.J. Mechanical High-Intensity Focused Ultrasound Destruction of Soft Tissue: Working Mechanisms and Physiologic Effects. Ultrasound Med. Biol. 2015, 41, 1500–1517. [Google Scholar] [CrossRef]
- Arnold, L.; Hendricks-Wenger, A.; Coutermarsh-Ott, S.; Gannon, J.; Hay, A.N.; Dervisis, N.; Klahn, S.; Allen, I.C.; Tuohy, J.; Vlaisavljevich, E. Histotripsy Ablation of Bone Tumors: Feasibility Study in Excised Canine Osteosarcoma Tumors. Ultrasound Med. Biol. 2021, 47, 3435–3446. [Google Scholar] [CrossRef] [PubMed]
Study | Patient Number | Imaging Guidance | Lesion Location | Follow-up | Pain Assessment a and Quality of Life b | Tumor Response c and Survival |
---|---|---|---|---|---|---|
Chen et al. 2002 [40] Retrospective study | 44 | US | Distal femur: 20 Proximal and middle: 7 Proximal tibia: 6 Tibiofibular shaft: 1 Fibula shaft: 2 Proximal humerus: 1 Ulna: 2 Ilium: 3 Public bone: 1 Multiple foci in different bones: 1 | MRI, CT and or SPECT (99mTc-MDP) at 7–14 d, 3 m, 9 m, 15 m, 21 m, 27 m, 33 m | Enneking system: 81.8% ≥ 15 points (average 21.5 points) | Tumor response: 7–14 d: radioactive cold tumor Survival: Overall: 84.1% Tumor-free survival: 68.2% Survival with tumor: 15.9% Local recurrence: 9.1% Stage IIb (n = 34): Disease-free: 30 (mean survival 21.7 m) Recurrence: 2 Passed away due to brain and lung metastasis: 2 Stage IIIb (n = 10): Survived with tumor: 4 Survived with tumor & recurrence: 1 Pass away due to lung metastasis: 5 |
Li et al. 2009 [41] Retrospective study | 7 | US | Distal femur: 4 Distal humerus: 1 Proximal humerus: 1 Proximal tibia: 1 | MRI, SPECT (99mTc-MDP) at 1,3 m | Score: (VRS *) Pre: Severe pain: 2 Moderate pain: 2 Mild pain: 3 1 & 3 m: All patients are pain free after treatment. No further pain medication needed after HIFU. | Tumor response: CP: 42.9 % PR: 42.9 % PD: 14.2 % Survival Median survival: 68 m 5 years survival: 71.4% |
Li et al. 2010 [23] Retrospective study | 25 13 patients with primary osteosarcoma 12 patients with bone metastasis (not further considered in this table) | US | Distal femur: 4, Distal humerus: 1 Proximal tibia: 1 Proximal humerus: 1 Left ilium: 1 Right ilium: 2 Right scapula: 1 Right rib: 1 Left pubis: 1 | MRI, PET (18F-FDG), SPECT (99mTc-MDP), MRI, CT 4–6 wks after HIFU. | Score: (VRS *) Pre: Severe pain: 2 Moderate pain: 7 Mild pain: 4 Mean: 1.85 ± 0.69 4–6 wks Mean: 0.12 ± 0.33 | Tumor response (WHO): CR: 46.2% PR: 38.5% MR: 7.8% SD: 0% PD: 7.8% RR: 84.6% Survival: 1, 2, 3, 5 years survival was 100.0%, 84.6%, 69.2% and 38.5%. |
Chen et al. 2010 [42] Retrospective study | 80 | US | Distal femur: 33 Proximal tibia: 14 Middle tibia: 3 Distal tibia: 1 Fibula shaft: 2 Tibiofibular shaft: 1 Proximal humerus: 4 Ulna: 1 Rib: 3 Pelvis, multi foci in different bones: 1 | CT, MRI (1.5 T), SPECT (99mTc-MDP) at 14d | n/a | Tumor response: 100% tumor ablation in 69 patients. >50% ablation in 11 patients. Overall survival rates At year 1, 2, 3, 4, 5 were 89.8%, 72.3%, 60.5%, 50.5%, and 50.5%. |
Wang et al. 2013 [43] Retrospective study | 11 | US | Ilium: 8 Ischium: 1 Both ilium and ischium: 2 | CE-MRI at 1, 3, 6 m and every 6–7 m thereafter | Pre: Mild to moderate pain in all patients; 6 patients received oral analgesics. Post: Transient pain after treatment resolved within 3 d. Patients were pain free thereafter, analgesics were discontinued. | Tumor response: 4 patients treated with curative intent: CR: 100% (complete ablation) 7 patients with palliative treatment: PR: 79.1 ± 8.7 % |
Singh et al. 2017 [44] Retrospective study | 24 (15 primary malignant tumors, 6 bone metastases, 3 osteoid osteomas) | MRI | Femur: 7 Tibia: 7 Pubic rami: 3 Fibula: 3 Humerus: 3 Radius: 3 | Primary tumors were resected 14 d after HIFU for histology. | Score: Pre: 3.04 1 d: 3.17 3 m: 0.7 (only for bone metastasis and osteoid osteoma) Bone metastasis patients remained symptom free with significant decrease in pain scores at 3 m follow-up. | Tumor response: 100% necrosis in areas treated with MR-HIFU |
Wang C. 2019 [45] Prospective two-arm study | 72 | US | Control Group (CG)/Observation Group(OG): Upper tibia: 19/18 Lower femur: 6/5 Upper femur: 3/2 Humerus: 2/3 Upper ulna: 1/2 Upper fibula: 1/2 Scapula: 1/3 Ilium: 1/1 | Control group (CG): adriamycin (36) vs. Bbservation group (OG): adriamycin + HIFU (36) Endpoints: Treatment efficacy: overall response, disease control, survival. | Quality of Life: Post: Significantly improved limb function and psychological behavior for OG compared with CG. | Overall response: OG group 88.9% vs. CG: 66.7 % Disease control rate: OG: 94.4% vs. CG: 75 % Survival OG/CG: 1 year: OG: 83.3% vs. CG: 75%, no difference 2 years: OG: 69.4% vs. CG: 52.8 % 3 years: OG: 38.9% vs. CG: 22.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeo, S.Y.; Bratke, G.; Grüll, H. High Intensity Focused Ultrasound for Treatment of Bone Malignancies—20 Years of History. Cancers 2023, 15, 108. https://doi.org/10.3390/cancers15010108
Yeo SY, Bratke G, Grüll H. High Intensity Focused Ultrasound for Treatment of Bone Malignancies—20 Years of History. Cancers. 2023; 15(1):108. https://doi.org/10.3390/cancers15010108
Chicago/Turabian StyleYeo, Sin Yuin, Grischa Bratke, and Holger Grüll. 2023. "High Intensity Focused Ultrasound for Treatment of Bone Malignancies—20 Years of History" Cancers 15, no. 1: 108. https://doi.org/10.3390/cancers15010108
APA StyleYeo, S. Y., Bratke, G., & Grüll, H. (2023). High Intensity Focused Ultrasound for Treatment of Bone Malignancies—20 Years of History. Cancers, 15(1), 108. https://doi.org/10.3390/cancers15010108