Clinical Phenotype and Management of Severe Neurotoxicity Observed in Patients with Neuroblastoma Treated with Dinutuximab Beta in Clinical Trials
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Study Designs
2.3. Assessments
3. Results
3.1. LTI/SIOPEN Study
3.2. HR-NBL1/SIOPEN Study (R2 and R4)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ladenstein, R.; Pötschger, U.; Valteau-Couanet, D.; Luksch, R.; Castel, V.; Yaniv, I.; Laureys, G.; Brock, P.; Michon, J.M.; Owens, C.; et al. Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): A multicentre, randomised, phase 3 trial. Lancet Oncol. 2018, 19, 1617–1629. [Google Scholar] [CrossRef]
- Ladenstein, R.; Pötschger, U.; Valteau-Couanet, D.; Luksch, R.; Castel, V.; Ash, S.; Laureys, G.; Brock, P.; Michon, J.M.; Owens, C.; et al. Investigation of the Role of Dinutuximab Beta-Based Immunotherapy in the SIOPEN High-Risk Neuroblastoma 1 Trial (HR-NBL1). Cancers 2020, 12, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, A.L.; Gilman, A.L.; Ozkaynak, M.F.; London, W.B.; Kreissman, S.G.; Chen, H.X.; Smith, M.; Anderson, B.; Villablanca, J.G.; Matthay, K.K.; et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 2010, 363, 1324–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, A.L.; Gilman, A.L.; Ozkaynak, M.F.; Naranjo, A.; Diccianni, M.B.; Gan, J.; Hank, J.A.; Batova, A.; London, W.B.; Tenney, S.C.; et al. Long-Term Follow-up of a Phase III Study of ch14.18 (Dinutuximab) + Cytokine Immunotherapy in Children with High-Risk Neuroblastoma: COG Study ANBL0032. Clin. Cancer Res. 2021, 27, 2179–2189. [Google Scholar] [CrossRef]
- UNITUXIN (dinutuximab) Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/125516s000lbl.pdf (accessed on 17 February 2022).
- Qarziba (Dinutuximab Beta) Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/qarziba-epar-product-information_en-0.pdf (accessed on 17 February 2022).
- Sait, S.; Modak, S. Anti-GD2 immunotherapy for neuroblastoma. Expert Rev. Anticancer Ther. 2017, 17, 889–904. [Google Scholar] [CrossRef] [PubMed]
- Ladenstein, R.L.; Poetschger, U.; Valteau-Couanet, D.; Gray, J.; Luksch, R.; Balwierz, W.; Castel, V.; Ash, S.; Popovic, M.B.; Laureys, G.; et al. Randomization of dose-reduced subcutaneous interleukin-2 (scIL2) in maintenance immunotherapy (IT) with anti-GD2 antibody dinutuximab beta (DB) long-term infusion (LTI) in front–line high-risk neuroblastoma patients: Early results from the HR-NBL1/SIOPEN trial. J. Clin. Oncol. 2019, 37 (Suppl. S15), 10013. [Google Scholar]
- Mueller, I.; Ehlert, K.; Endres, S.; Pill, L.; Siebert, N.; Kietz, S.; Brock, P.; Garaventa, A.; Valteau-Couanet, D.; Janzek, E.; et al. Tolerability, response and outcome of high-risk neuroblastoma patients treated with long-term infusion of anti-GD(2) antibody ch14.18/CHO. MAbs 2018, 10, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Lode, H.N.; Valteau-Couanet, D.; Gray, J.; Luksch, R.; Wieczorek, A.; Castel, V.; Ash, S.; Laureys, G.; Papadakis, V.; Owens, C.; et al. Randomized use of anti-GD2 antibody dinutuximab beta (DB) long-term infusion with and without subcutaneous interleukin-2 (scIL-2) in high-risk neuroblastoma patients with relapsed and refractory disease: Results from the SIOPEN LTI-trial. J. Clin. Oncol. 2019, 37 (Suppl. S15), 10014. [Google Scholar] [CrossRef]
- Barone, G.; Barry, A.; Bautista, F.; Brichard, B.; Defachelles, A.S.; Herd, F.; Manzitti, C.; Reinhardt, D.; Rubio, P.M.; Wieczorek, A.; et al. Managing Adverse Events Associated with Dinutuximab Beta Treatment in Patients with High-Risk Neuroblastoma: Practical Guidance. Pediatr. Drugs 2021, 23, 537–548. [Google Scholar] [CrossRef]
- Doronin, I.I.; Vishnyakova, P.A.; Kholodenko, I.V.; Ponomarev, E.D.; Ryazantsev, D.Y.; Molotkovskaya, I.M.; Kholodenko, R.V. Ganglioside GD2 in reception and transduction of cell death signal in tumor cells. BMC Cancer 2014, 14, 295. [Google Scholar] [CrossRef] [Green Version]
- Marconi, S.; De Toni, L.; Lovato, L.; Tedeschi, E.; Gaetti, L.; Acler, M.; Bonetti, B. Expression of gangliosides on glial and neuronal cells in normal and pathological adult human brain. J. Neuroimmunol. 2005, 170, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Svennerholm, L.; Boström, K.; Fredman, P.; Jungbjer, B.; Lekman, A.; Månsson, J.E.; Rynmark, B.M. Gangliosides and allied glycosphingolipids in human peripheral nerve and spinal cord. Biochim. Biophys. Acta 1994, 1214, 115–123. [Google Scholar] [CrossRef]
- Xiao, W.H.; Yu, A.L.; Sorkin, L.S. Electrophysiological characteristics of primary afferent fibers after systemic administration of anti-GD2 ganglioside antibody. Pain 1997, 69, 145–151. [Google Scholar] [CrossRef]
- Ding, Y.Y.; Panzer, J.; Maris, J.M.; Castañeda, A.; Gomez-Chiari, M.; Mora, J. Transverse myelitis as an unexpected complication following treatment with dinutuximab in pediatric patients with high-risk neuroblastoma: A case series. Pediatr. Blood Cancer 2018, 65, e26732. [Google Scholar] [CrossRef] [PubMed]
- Proleukin (Interleukin-2) Summary of Product Characteristics. Available online: https://www.medicines.org.uk/emc/medicine/19322#gref (accessed on 17 February 2022).
- Dutcher, J.P.; Schwartzentruber, D.J.; Kaufman, H.L.; Agarwala, S.S.; Tarhini, A.A.; Lowder, J.N.; Atkins, M.B. High dose interleukin-2 (Aldesleukin)—expert consensus on best management practices-2014. J. Immunother. Cancer 2014, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Karp, B.I.; Yang, J.C.; Khorsand, M.; Wood, R.; Merigan, T.C. Multiple cerebral lesions complicating therapy with interleukin-2. Neurology 1996, 47, 417–424. [Google Scholar] [CrossRef]
- Ladenstein, R.; Pötschger, U.; Pearson, A.D.J.; Brock, P.; Luksch, R.; Castel, V.; Yaniv, I.; Papadakis, V.; Laureys, G.; Malis, J.; et al. Busulfan and melphalan versus carboplatin, etoposide, and melphalan as high-dose chemotherapy for high-risk neuroblastoma (HR-NBL1/SIOPEN): An international, randomised, multi-arm, open-label, phase 3 trial. Lancet Oncol. 2017, 18, 500–514. [Google Scholar] [CrossRef]
- Ladenstein, R.; Valteau-Couanet, D.; Brock, P.; Yaniv, I.; Castel, V.; Laureys, G.; Malis, J.; Papadakis, V.; Lacerda, A.; Ruud, E.; et al. Randomized Trial of prophylactic granulocyte colony-stimulating factor during rapid COJEC induction in pediatric patients with high-risk neuroblastoma: The European HR-NBL1/SIOPEN study. J. Clin. Oncol. 2010, 28, 3516–3524. [Google Scholar] [CrossRef]
- Garaventa, A.; Poetschger, U.; Valteau-Couanet, D.; Castel, V.; Elliott, M.; Ash, S.; Chan, G.C.F.; Laureys, G.; Popovic, M.B.; Vettenranta, K.; et al. The randomised induction for high-risk neuroblastoma comparing COJEC and N5-MSKCC regimens: Early results from the HR-NBL1.5/SIOPEN trial. J. Clin. Oncol. 2018, 36, 10507. [Google Scholar] [CrossRef]
- Siebert, N.; Eger, C.; Seidel, D.; Jüttner, M.; Zumpe, M.; Wegner, D.; Kietz, S.; Ehler, K.; Veal, G.J.; Siegmund, W.; et al. Pharmacokinetics and pharmacodynamics of ch14.18/CHO in relapsed/refractory high-risk neuroblastoma patients treated by long-term infusion in combination with IL-2. MAbs 2016, 8, 604–616. [Google Scholar] [CrossRef]
- Saleh, M.N.; Khazaeli, M.B.; Wheeler, R.H.; Dropcho, E.; Liu, T.; Urist, M.; Miller, D.M.; Lawson, S.; Dixon, P.; Russell, C.H.; et al. Phase I trial of the murine monoclonal anti-GD2 antibody 14G2a in metastatic melanoma. Cancer Res. 1992, 52, 4342–4347. [Google Scholar] [PubMed]
- Handgretinger, R.; Anderson, K.; Lang, P.; Dopfer, R.; Klingebiel, T.; Schrappe, M.; Reuland, P.; Gillies, S.D.; Reisfeld, R.A.; Neithammer, D. A phase I study of human/mouse chimeric antiganglioside GD2 antibody ch14.18 in patients with neuroblastoma. Eur. J. Cancer 1995, 31, 261–267. [Google Scholar] [CrossRef]
- Ozkaynak, M.F.; Sondel, P.M.; Krailo, M.D.; Gan, J.; Javorsky, B.; Reisfeld, R.A.; Matthay, K.K.; Reaman, G.H.; Seeger, R.C. Phase I study of chimeric human/murine anti-ganglioside G(D2) monoclonal antibody (ch14.18) with granulocyte-macrophage colony-stimulating factor in children with neuroblastoma immediately after hematopoietic stem-cell transplantation: A Children’s Cancer Group Study. J. Clin. Oncol. 2000, 18, 4077–4085. [Google Scholar] [PubMed]
- Kushner, B.H.; Modak, S.; Basu, E.M.; Roberts, S.S.; Kramer, K.; Cheung, N.K. Posterior reversible encephalopathy syndrome in neuroblastoma patients receiving anti-GD2 3F8 monoclonal antibody. Cancer 2013, 119, 2789–2795. [Google Scholar] [CrossRef] [Green Version]
- Ceylan, K.; Jahns, L.J.; Lode, B.N.; Ehlert, K.; Kietz, S.; Troschke-Meurer, S.; Siebert, N.; Lode, H.N. Inflammatory response and treatment tolerance of long-term infusion of the anti-GD(2) antibody ch14.18/CHO in combination with interleukin-2 in patients with high-risk neuroblastoma. Pediatr. Blood Cancer 2018, 65, e26967. [Google Scholar] [CrossRef]
- Yuki, N.; Yamada, M.; Tagawa, Y.; Takahashi, H.; Handa, S. Pathogenesis of the neurotoxicity caused by anti-GD2 antibody therapy. J. Neurol. Sci. 1997, 149, 127–130. [Google Scholar] [CrossRef]
- Willison, H.J.; Yuki, N. Peripheral neuropathies and anti-glycolipid antibodies. Brain 2002, 125, 2591–2625. [Google Scholar] [CrossRef]
- Gilden, D.; Mahalingam, R.; Nagel, M.A.; Pugazhenthi, S.; Cohrs, R.J. Review: The neurobiology of varicella zoster virus infection. Neuropathol. Appl. Neurobiol. 2011, 37, 441–463. [Google Scholar] [CrossRef] [Green Version]
- De Broucker, T.; Mailles, A.; Chabrier, S.; Morand, P.; Stahl, J.P. Acute varicella zoster encephalitis without evidence of primary vasculopathy in a case-series of 20 patients. Clin. Microbiol. Infect. 2012, 18, 808–819. [Google Scholar] [CrossRef] [Green Version]
- Papadakis, V.; Kelaidi, C.; Zisaki, K.; Antoniadi, K.; Pitsoulakis, G.; Polychronopoulou, S. Dinutuximab beta-related severe neurotoxicity: Resolution with the use of plasmapheresis. Pediatr. Blood Cancer 2021, 69, e29465. [Google Scholar] [CrossRef]
Clinical Symptoms of CNS Dysfunction | Radiological Signs |
---|---|
|
|
| |
| |
| |
| |
|
Patients, n | LTI Study | HR-NBL1 (R2) | HR-NBL1 (R4) | Total |
---|---|---|---|---|
Enrolled | 288 | 406 | 408 | 1102 |
Gr 3/4 neurotoxicity * | 15 | 21 | 8 | 44 |
with DB | 0 | 4 | 5 | 9 |
with DB + scIL-2 | 15 | 17 | 3 | 35 |
Severe CNS neurotoxicity # | 10 | 9 | 8 | 27 |
with DB | 0 | 1 | 5 | 6 |
with DB + scIL-2 | 10 | 8 | 3 | 19 |
Recovery | 10 | 17 | 6 | 33 † |
Persistent severe neurotoxicity | 3 | 2 | 0 | 5 |
Pt | Study | Schedule | Time of Onset | Symptoms | MRI Findings | CSF | HSV/VZV | DB Level (Serum) * | DB Level (CSF) | Treatment | Rechallenge with DB | Symptom Resolution | MRI Follow-Up |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | LTI | DB LTI + scIL-2 | C1/D13 |
| Cytotoxic oedema in brain stem | ND | No | 2.5 µg/mL | ND |
| No | No (minimal improvement) | NA |
2 | LTI | DB LTI + scIL-2 | C1/D14 |
| Myelitis (thoracic to lumbar) |
| Yes (thoracic shingles 6 wks before therapy) | 4.3 µg/mL | ND |
| No | No | Partial resolution after 8 months |
3 | LTI | DB LTI + scIL-2 | C1/D15 |
| Myelitis (thoracic) |
| Yes (skull skin shingles after the first round of scIL-2 during C1/D1–D5) | 5.8 µg/mL | ND |
| No | Yes | Complete resolution |
4 | LTI | DB LTI + IL-2 | C3/D17 |
| Myelitis (thoracic) |
| Yes (HSV 3 wks before DB) | 14.8 µg/mL | 0.02 µg/mL |
| No | Yes | Complete resolution |
5 | LTI | DB LTI + scIL-2 | C1/D15 |
| Demyelinating neuropathy of dorsal roots |
| No | 4.6 µg/mL | <0.01 µg/mL |
| Yes (symptoms reoccurred after 4 h at 50% dose) | Yes | NA |
6 | LTI | DB LTI + scIL-2 | C1/D9 |
| Myelitis | ND | No | ND | <0.01 µg/mL |
| No | No (persistent neurogenic bladder) | NA |
7 | LTI | DB LTI + scIL-2 | C1/D9 |
| ND | ND | ND | ND | ND | No treatment | No | Yes | NA |
8 | LTI | DB LIT + scIL-2 | C2/D11 |
| ND | ND | ND | 2.0 µg/mL | ND | No treatment | No | Yes | NA |
9 | LTI | DB LTI + scIL-2 | ND |
| ND | ND | ND | 14.9 µg/mL | ND | ND | ND | ND | ND |
10 | LTI | DB LTI + scIL-2 | ND |
| ND | ND | ND | ND | ND | ND | ND | ND | ND |
11 | HR-NBL1R2 | DB STI + scIL-2 | C4/D10 |
| Encephalomyelitis | ND | ND | ND | ND |
| No | No | NA |
12 | HR-NBL1R2 | DB STI | C2/D7 |
| PRES | ND | ND | ND | ND |
| Yes (no recurrence) | Yes | Complete resolution |
13 | HR-NBL1R2 | DB STI + scIL-2 | C2/D3 |
| ND | ND | ND | ND | ND |
| ND | Yes | NA |
14 | HR-NBL1R2 | DB STI + scIL-2 | C1/D5 |
| ND | ND | ND | ND | ND |
| Yes (no recurrence) | Yes | NA |
15 | HR-NBL1R2 | DB STI + scIL-2 | C1/ND |
| ND | ND | ND | ND | ND | ND | Yes (only DB, no scIL-2; no recurrence) | Yes | NA |
16 | HR-NBL1R2 | DB STI + scIL-2 | C1/D9 |
| ND | ND | ND | ND | ND | ND | ND | ND | NA |
17 | HR-NBL1R2 | DB STI + scIL-2 | C1/D9 |
| ND | ND | ND | ND | ND | No treatment | ND | Yes (child needs glasses) | NA |
18 | HR-NBL1R2 | DB STI + scIL-2 | C1/D15 |
| PRES | ND | ND | ND | ND | ND | ND | ND | NA |
19 | HR-NBL1R2 | DB STI + scIL-2 | ND |
| ND | ND | ND | ND | ND | ND | ND | No | ND |
20 | HR-NBL1R4 | DB LTI + scIL-2 | C1/D10 |
| Encephalitis | Normal | ND | ND | ND |
| No | Yes | Residual focal lesions |
21 | HR-NBL1R4 | DB LTI | C3/D13 |
| Encephalitis |
| No (blood and CSF) | ND | ND |
| No | Yes | ND |
22 | HR-NBL1R4 | DB LTI | C3/D17 |
| Discreet infiltration of the acoustic- facial package | Normal | ND | ND | ND |
| Yes (no recurrence) | Yes | ND |
23 | HR-NBL1R4 | DB LTI | C4/ND |
| Mucosal thickening of left mastoid cell | ND | ND | ND | ND |
| ND | ND | ND |
24 | HR-NBL1R4 | DB LTI | C1/D22 |
| ND | ND | ND | ND | ND |
| Yes (symptoms reoccurred after 90 min of infusion) | Yes | NA |
25 | HR-NBL1R4 | DB LTI | C1/D11 |
| Sensory axonal neuropathy |
| ND | ND | ND |
| ND | ND | ND |
26 | HR-NBL1R4 | DB LTI + scIL-2 | C1/D15 |
| Normal | ND | ND | ND | ND | ND | Yes (no recurrence) | Yes | ND |
27 | HR-NBL1R4 | DB LTI + scIL-2 | C1/D27 |
| ND | ND | ND | ND | ND | ND | ND | Yes | ND |
|
|
|
|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wieczorek, A.; Manzitti, C.; Garaventa, A.; Gray, J.; Papadakis, V.; Valteau-Couanet, D.; Zachwieja, K.; Poetschger, U.; Pribill, I.; Fiedler, S.; et al. Clinical Phenotype and Management of Severe Neurotoxicity Observed in Patients with Neuroblastoma Treated with Dinutuximab Beta in Clinical Trials. Cancers 2022, 14, 1919. https://doi.org/10.3390/cancers14081919
Wieczorek A, Manzitti C, Garaventa A, Gray J, Papadakis V, Valteau-Couanet D, Zachwieja K, Poetschger U, Pribill I, Fiedler S, et al. Clinical Phenotype and Management of Severe Neurotoxicity Observed in Patients with Neuroblastoma Treated with Dinutuximab Beta in Clinical Trials. Cancers. 2022; 14(8):1919. https://doi.org/10.3390/cancers14081919
Chicago/Turabian StyleWieczorek, Aleksandra, Carla Manzitti, Alberto Garaventa, Juliet Gray, Vassilios Papadakis, Dominique Valteau-Couanet, Katarzyna Zachwieja, Ulrike Poetschger, Ingrid Pribill, Stefan Fiedler, and et al. 2022. "Clinical Phenotype and Management of Severe Neurotoxicity Observed in Patients with Neuroblastoma Treated with Dinutuximab Beta in Clinical Trials" Cancers 14, no. 8: 1919. https://doi.org/10.3390/cancers14081919
APA StyleWieczorek, A., Manzitti, C., Garaventa, A., Gray, J., Papadakis, V., Valteau-Couanet, D., Zachwieja, K., Poetschger, U., Pribill, I., Fiedler, S., Ladenstein, R., & Lode, H. N. (2022). Clinical Phenotype and Management of Severe Neurotoxicity Observed in Patients with Neuroblastoma Treated with Dinutuximab Beta in Clinical Trials. Cancers, 14(8), 1919. https://doi.org/10.3390/cancers14081919