Predictive Value of 18F-Fluorodeoxyglucose Positron-Emission Tomography Metabolic and Volumetric Parameters for Systemic Metastasis in Tonsillar Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material & Methods
2.1. Patients
2.2. 18F-FDG PET/CT Protocol and Imaging Analysis
2.3. Surgery
2.4. Statistical Analysis
3. Results
3.1. Patients Characteristics
3.2. Metabolic Activity Parameters According to HPV Status
3.3. Metabolic Activity Parameters According to Systemic Metastasis Status
3.4. Cutoff Value, Area under the Curve (AUC), Sensitivity, and Specificity of MTV2.5
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Timbang, M.R.; Sim, M.W.; Bewley, A.F.; Farwell, D.G.; Mantravadi, A.; Moore, M.G. HPV-related oropharyngeal cancer: A review on burden of the disease and opportunities for prevention and early detection. Hum. Vaccin. Immunother. 2019, 15, 1920–1928. [Google Scholar] [CrossRef] [PubMed]
- Ramqvist, T.; Grun, N.; Dalianis, T. Human papillomavirus and tonsillar and base of tongue cancer. Viruses 2015, 7, 1332–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, T.; Qualliotine, J.R.; Ha, P.K.; Califano, J.A.; Kim, Y.; Saunders, J.R.; Blanco, R.G.; D’Souza, G.; Zhang, Z.; Chung, C.H.; et al. Surgical salvage improves overall survival for patients with HPV-positive and HPV-negative recurrent locoregional and distant metastatic oropharyngeal cancer. Cancer 2015, 121, 1977–1984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, P.; Thorstad, W.T.; Nussenbaum, B.; Haughey, B.H.; Adkins, D.R.; Kallogjeri, D.; Lewis, J.S., Jr. Distant metastasis in p16-positive oropharyngeal squamous cell carcinoma: A critical analysis of patterns and outcomes. Oral Oncol. 2014, 50, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.Y.; Massa, S.; Mazul, A.L.; Kallogjeri, D.; Yaeger, L.; Jackson, R.S.; Zevallos, J.; Pipkorn, P. The association of smoking and outcomes in HPV-positive oropharyngeal cancer: A systematic review. Am. J. Otolaryngol. 2020, 41, 102592. [Google Scholar] [CrossRef]
- Kaczmar, J.M.; Tan, K.S.; Heitjan, D.F.; Lin, A.; Ahn, P.H.; Newman, J.G.; Rassekh, C.H.; Chalian, A.A.; O’Malley, B.W., Jr.; Cohen, R.B.; et al. HPV-related oropharyngeal cancer: Risk factors for treatment failure in patients managed with primary transoral robotic surgery. Head Neck 2016, 38, 59–65. [Google Scholar] [CrossRef]
- Vainshtein, J.M.; Spector, M.E.; Ibrahim, M.; Bradford, C.R.; Wolf, G.T.; Stenmark, M.H.; Worden, F.P.; McHugh, J.B.; Prince, M.E.; Carey, T.; et al. Matted nodes: High distant-metastasis risk and a potential indication for intensification of systemic therapy in human papillomavirus-related oropharyngeal cancer. Head Neck 2016, 38 (Suppl. S1), E805–E814. [Google Scholar] [CrossRef] [Green Version]
- Ho, A.S.; Kim, S.; Tighiouart, M.; Gudino, C.; Mita, A.; Scher, K.S.; Laury, A.; Prasad, R.; Shiao, S.L.; Ali, N.; et al. Association of Quantitative Metastatic Lymph Node Burden With Survival in Hypopharyngeal and Laryngeal Cancer. JAMA Oncol 2018, 4, 985–989. [Google Scholar] [CrossRef] [Green Version]
- Zumsteg, Z.S.; Luu, M.; Kim, S.; Tighiouart, M.; Mita, A.; Scher, K.S.; Lu, D.J.; Shiao, S.L.; Mallen-St Clair, J.; Ho, A.S. Quantitative lymph node burden as a ‘very-high-risk’ factor identifying head and neck cancer patients benefiting from postoperative chemoradiation. Ann. Oncol. 2019, 30, 76–84. [Google Scholar] [CrossRef]
- Takes, R.P.; Rinaldo, A.; Silver, C.E.; Piccirillo, J.F.; Haigentz, M., Jr.; Suarez, C.; Van der Poorten, V.; Hermans, R.; Rodrigo, J.P.; Devaney, K.O.; et al. Future of the TNM classification and staging system in head and neck cancer. Head Neck 2010, 32, 1693–1711. [Google Scholar] [CrossRef]
- Chung, M.K.; Jeong, H.S.; Park, S.G.; Jang, J.Y.; Son, Y.I.; Choi, J.Y.; Hyun, S.H.; Park, K.; Ahn, M.J.; Ahn, Y.C.; et al. Metabolic tumor volume of [18F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts short-term outcome to radiotherapy with or without chemotherapy in pharyngeal cancer. Clin. Cancer Res. 2009, 15, 5861–5868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zschaeck, S.; Weingärtner, J.; Lombardo, E.; Marschner, S.; Hajiyianni, M.; Beck, M.; Zips, D.; Li, Y.; Lin, Q.; Amthauer, H.; et al. 18F-Fluorodeoxyglucose Positron Emission Tomography of Head and Neck Cancer: Location and HPV Specific Parameters for Potential Treatment Individualization. Front. Oncol. 2022, 12, 870319. [Google Scholar] [CrossRef] [PubMed]
- Hoshikawa, H.; Kishino, T.; Nishiyama, Y.; Yamamoto, Y.; Yonezaki, M.; Mori, N. Early prediction of local control in head and neck cancer after chemoradiotherapy by FDG-PET. Nucl. Med. Commun. 2011, 32, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Sarikaya, I.; Albatineh, A.N.; Sarikaya, A. Revisiting Weight-Normalized SUV and Lean-Body-Mass-Normalized SUV in PET Studies. J. Nucl. Med. Technol. 2020, 48, 163–167. [Google Scholar] [CrossRef]
- Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M.A. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J. Nucl. Med. 2009, 50 (Suppl. S1), 122S–150S. [Google Scholar] [CrossRef] [Green Version]
- Moon, S.H.; Choi, J.Y.; Lee, H.J.; Son, Y.I.; Baek, C.H.; Ahn, Y.C.; Park, K.; Lee, K.H.; Kim, B.T. Prognostic value of 18F-FDG PET/CT in patients with squamous cell carcinoma of the tonsil: Comparisons of volume-based metabolic parameters. Head Neck 2013, 35, 15–22. [Google Scholar] [CrossRef]
- Joo, Y.H.; Yoo Ie, R.; Cho, K.J.; Park, J.O.; Nam, I.C.; Kim, M.S. Preoperative 18F-FDG PET/CT and high-risk HPV in patients with oropharyngeal squamous cell carcinoma. Head Neck 2014, 36, 323–327. [Google Scholar] [CrossRef]
- Freihat, O.; Tóth, Z.; Pintér, T.; Kedves, A.; Sipos, D.; Cselik, Z.; Lippai, N.; Repa, I.; Kovács, Á. Pre-treatment PET/MRI based FDG and DWI imaging parameters for predicting HPV status and tumor response to chemoradiotherapy in primary oropharyngeal squamous cell carcinoma (OPSCC). Oral Oncol. 2021, 116, 105239. [Google Scholar] [CrossRef]
- Davis, K.S.; Lim, C.M.; Clump, D.A.; Heron, D.E.; Ohr, J.P.; Kim, S.; Duvvuri, U.; Johnson, J.T.; Ferris, R.L. Tumor volume as a predictor of survival in human papillomavirus-positive oropharyngeal cancer. Head Neck 2016, 38 (Suppl. S1), E1613–E1617. [Google Scholar] [CrossRef] [Green Version]
- Weller, M.A.; Ward, M.C.; Berriochoa, C.; Reddy, C.A.; Trosman, S.; Greskovich, J.F.; Nwizu, T.I.; Burkey, B.B.; Adelstein, D.J.; Koyfman, S.A. Predictors of distant metastasis in human papillomavirus-associated oropharyngeal cancer. Head Neck 2017, 39, 940–946. [Google Scholar] [CrossRef]
- Cho, J.K.; Hyun, S.H.; Choi, N.; Kim, M.J.; Padera, T.P.; Choi, J.Y.; Jeong, H.S. Significance of lymph node metastasis in cancer dissemination of head and neck cancer. Transl. Oncol. 2015, 8, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Nathanson, S.D.; Kwon, D.; Kapke, A.; Alford, S.H.; Chitale, D. The role of lymph node metastasis in the systemic dissemination of breast cancer. Ann. Surg. Oncol. 2009, 16, 3396–3405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, A.S.; Luu, M.; Shafqat, I.; Mallen-St Clair, J.; Chen, M.M.; Chen, Y.; Jain, M.; Ali, N.; Patio, C.; Filarski, C.F.; et al. Predictive Impact of Metastatic Lymph Node Burden on Distant Metastasis Across Papillary Thyroid Cancer Variants. Thyroid 2021, 31, 1549–1557. [Google Scholar] [CrossRef] [PubMed]
- Rich, B.; Huang, J.; Yang, Y.; Jin, W.; Johnson, P.; Wang, L.; Yang, F. Radiomics Predicts for Distant Metastasis in Locally Advanced Human Papillomavirus-Positive Oropharyngeal Squamous Cell Carcinoma. Cancers 2021, 13, 5689. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.S.; Oh, J.S.; Roh, J.L.; Kim, J.S.; Kim, S.J.; Choi, S.H.; Nam, S.Y.; Kim, S.Y. Prediction of distant metastasis and survival in adenoid cystic carcinoma using quantitative (18)F-FDG PET/CT measurements. Oral Oncol. 2018, 77, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Feng, Y.; Mao, X.; Qie, M. Prognostic value of fluorine-18-fluorodeoxyglucose positron emission tomography or PET-computed tomography in cervical cancer: A meta-analysis. Int. J. Gynecol. Cancer 2013, 23, 1184–1190. [Google Scholar] [CrossRef]
- Liu, J.; Dong, M.; Sun, X.; Li, W.; Xing, L.; Yu, J. Prognostic Value of 18F-FDG PET/CT in Surgical Non-Small Cell Lung Cancer: A Meta-Analysis. PLoS ONE 2016, 11, e0146195. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, D.L.; Rajendran, J.; Yueh, B.; Coltrera, M.D.; LeBlanc, M.; Eary, J.; Krohn, K. FDG-PET Prediction of Head and Neck Squamous Cell Cancer Outcomes. Arch. Otolaryngol. Head Neck Surg. 2004, 130, 1361–1367. [Google Scholar] [CrossRef] [Green Version]
- Lekanne Dit Deprez, L.W.; Morand, G.B.; Thüring, C.; Pazahr, S.; Hüllner, M.W.; Broglie, M.A. SUVmax for predicting regional control in oropharyngeal cancer. Eur. Arch. Otorhinolaryngol. 2022, 279, 3167–3177. [Google Scholar] [CrossRef]
- Im, H.J.; Bradshaw, T.; Solaiyappan, M.; Cho, S.Y. Current Methods to Define Metabolic Tumor Volume in Positron Emission Tomography: Which One is Better? Nucl. Med. Mol. Imaging 2018, 52, 5–15. [Google Scholar] [CrossRef]
- Lee, P.; Weerasuriya, D.K.; Lavori, P.W.; Quon, A.; Hara, W.; Maxim, P.G.; Le, Q.T.; Wakelee, H.A.; Donington, J.S.; Graves, E.E.; et al. Metabolic tumor burden predicts for disease progression and death in lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2007, 69, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Greven, K.M.; Williams, D.W., 3rd; McGuirt, W.F., Sr.; Harkness, B.A.; D’Agostino, R.B., Jr.; Keyes, J.W., Jr.; Watson, N.E., Jr. Serial positron emission tomography scans following radiation therapy of patients with head and neck cancer. Head Neck 2001, 23, 942–946. [Google Scholar] [CrossRef] [PubMed]
- Sarikaya, I.; Sarikaya, A. Assessing PET Parameters in Oncologic (18)F-FDG Studies. J. Nucl. Med. Technol. 2020, 48, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Burger, I.A.; Casanova, R.; Steiger, S.; Husmann, L.; Stolzmann, P.; Huellner, M.W.; Curioni, A.; Hillinger, S.; Schmidtlein, C.R.; Soltermann, A. 18F-FDG PET/CT of Non-Small Cell Lung Carcinoma Under Neoadjuvant Chemotherapy: Background-Based Adaptive-Volume Metrics Outperform TLG and MTV in Predicting Histopathologic Response. J. Nucl. Med. 2016, 57, 849–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reticker-Flynn, N.E.; Zhang, W.; Belk, J.A.; Basto, P.A.; Escalante, N.K.; Pilarowski, G.O.W.; Bejnood, A.; Martins, M.M.; Kenkel, J.A.; Linde, I.L.; et al. Lymph node colonization induces tumor-immune tolerance to promote distant metastasis. Cell 2022, 185, 1924–1942.e23. [Google Scholar] [CrossRef] [PubMed]
- Gavrielatou, N.; Doumas, S.; Economopoulou, P.; Foukas, P.G.; Psyrri, A. Biomarkers for immunotherapy response in head and neck cancer. Cancer Treat. Rev. 2020, 84, 101977. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.M.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and Activity of Anti-PD-L1 Antibody in Patients with Advanced Cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.H.; Qiu, J.; O’Sullivan, D.; Buck, M.D.; Noguchi, T.; Curtis, J.D.; Chen, Q.; Gindin, M.; Gubin, M.M.; van der Windt, G.J.W.; et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell 2015, 162, 1229–1241. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ge, S.; Sang, S.; Hu, C.; Deng, S. Evaluation of PD-L1 Expression Level in Patients With Non-Small Cell Lung Cancer by (18)F-FDG PET/CT Radiomics and Clinicopathological Characteristics. Front. Oncol. 2021, 11, 789014. [Google Scholar] [CrossRef]
Parameters | Systemic Metastasis(-) (n = 48) | Systemic Metastasis(+) (n = 7) | p Value |
---|---|---|---|
Age (mean) | 57.00 ± 7.81 | 60.86 ± 10.56 | 0.147 |
Sex (%) | 0.205 | ||
Male | 45 (93.8%) | 6 (85.7%) | |
Female | 3 (6.2%) | 1 (14.3%) | |
Smoking (%) | 0.101 | ||
Ex-smoker | 20 (41.7%) | 2 (28.6%) | |
Current smoker | 22 (45.8%) | 4 (57.1%) | |
Never smoker | 6 (12.5%) | 1 (14.3%) | |
HPV status | 0.337 | ||
Positive | 25 (52.1%) | 5 (71.4%) | |
Negative | 23 (47.9%) | 2 (28.6%) | |
TN stage | |||
Clinical T stage (%) | 0.305 | ||
T1/T2 | 43 (89.6%) | 6 (85.7%) | |
T3/T4 | 5 (10.4%) | 1 (14.3%) | |
Clinical N stage at diagnosis (%) | 0.120 | ||
N1/N2a | 34 (70.8%) | 4 (57.1%) | |
N2b/N3 | 14 (29.2%) | 3 (42.9%) | |
Pathologic analysis | |||
p53 positive | 20 (41.7%) | 1 (14.3%) | 0.054 |
Ki-67 (%) | 67.37 | 76.67 | 0.241 |
Differentiation (well & moderately) | 30 (62.5%) | 5 (71.4%) | 0.311 |
Lymphovascular space invasion | 26 (54.2%) | 5 (71.4%) | 0.219 |
Perineural invasion | 20 (41.7%) | 3 (42.9%) | 0.280 |
Extranodal extension | 22 (45.8%) | 4 (57.1%) | 0.163 |
Adjuvant treatment modality (%) | |||
None | 10 (20.8%) | 1 (14.3%) | 0.155 |
Radiation alone | 12 (25.0%) | 2 (28.6%) | |
Chemotherapy alone | 0 (0%) | 0 (0%) | |
Concurrent chemoradiotherapy | 26 (54.2%) | 4 (57.1%) |
Parameters | HPV Negative (n = 25) | HPV Positive (n = 30) | p Value |
---|---|---|---|
Primary tumor | |||
SUVmax | 11.09 ± 5.73 | 9.83 ± 3.60 | 0.157 |
SUVpeak | 8.94 ± 4.84 | 7.79 ± 3.28 | 0.166 |
MTV2.5 | 13.96 ± 13.49 | 8.99 ± 6.57 | 0.003 |
TLG2.5 | 89.15 ± 93.66 | 50.99 ± 43.90 | 0.000 |
TLR | 5.53 ± 2.33 | 4.53 ± 1.59 | 0.220 |
Metastatic lymph node | |||
SUVmax | 7.856 ± 3.65 | 8.89 ± 3.40 | 0.389 |
SUVpeak | 6.133 ± 2.62 | 6.91 ± 3.02 | 0.701 |
MTV2.5 | 13.80 ± 20.08 | 19.45 ± 31.07 | 0.034 |
TLG2.5 | 67.64 ± 104.51 | 110.63 ± 204.50 | 0.029 |
TLR | 4.05 ± 1.93 | 3.98 ± 1.73 | 0.369 |
Primary tumor + Metastatic lymph node | |||
SUVmax | 11.88 ± 5.18 | 10.99 ± 3.46 | 0.129 |
SUVpeak | 9.63 ± 4.38 | 8.74 ± 3.28 | 0.361 |
MTV2.5 | 27.20 ± 26.37 | 27.80 ± 33.56 | 20.391 |
TLG2.5 | 156.66 ± 144.78 | 160.66 ± 219.14 | 0.380 |
TLR | 5.96 ± 2.04 | 5.08 ± 1.59 | 0.433 |
Parameters | Systemic Metastasis(-) (n = 48) | Systemic Metastasis(+) (n = 7) | p Value |
---|---|---|---|
Primary tumor | |||
SUVmax | 10.14 ± 4.73 | 12.17 ± 4.24 | 0.147 |
SUVpeak | 8.08 ± 4.07 | 9.89 ± 4.01 | 0.167 |
MTV2.5 | 14.05 ± 12.94 | 17.46 ± 10.25 | 0.279 |
TLG2.5 | 73.92 ± 78.59 | 103.00 ± 72.62 | 0.156 |
TLR | 4.84 ± 1.89 | 5.99 ± 2.61 | 0.232 |
Metastatic lymph node | |||
SUVmax | 8.18 ± 3.39 | 9.97 ± 4.29 | 0.260 |
SUVpeak | 6.45 ± 2.84 | 7.26 ± 3.03 | 0.254 |
MTV2.5 | 18.76 ± 25.49 | 36.07 ± 54.24 | 0.015 |
TLG2.5 | 88.94 ± 152.30 | 183.46 ± 298.62 | 0.041 |
TLR | 3.88 ± 1.62 | 4.90 ± 2.77 | 0.051 |
Primary tumor + Metastatic lymph node | |||
SUVmax | 11.11 ± 4.39 | 13.14 ± 3.51 | 0.299 |
SUVpeak | 8.99 ± 3.84 | 10.19 ± 3.69 | 0.170 |
MTV2.5 | 32.02 ± 30.80 | 53.53 ± 57.78 | 0.036 |
TLG2.5 | 161.15 ± 173.03 | 286.55 ± 315.30 | 0.093 |
TLR | 5.34 ± 1.74 | 6.42 ± 2.36 | 0.179 |
Cutoff Value | AUC (95% CI) | Sensitivity | Specificity |
---|---|---|---|
≥11.250 | 0.584 (0.336–0.832) | 0.571 | 0.565 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bang, J.; Park, H.L.; Yoo, I.R.; Shin, H.-I.; Kim, G.-J.; Sun, D.-I.; Kim, S.-Y. Predictive Value of 18F-Fluorodeoxyglucose Positron-Emission Tomography Metabolic and Volumetric Parameters for Systemic Metastasis in Tonsillar Cancer. Cancers 2022, 14, 6242. https://doi.org/10.3390/cancers14246242
Bang J, Park HL, Yoo IR, Shin H-I, Kim G-J, Sun D-I, Kim S-Y. Predictive Value of 18F-Fluorodeoxyglucose Positron-Emission Tomography Metabolic and Volumetric Parameters for Systemic Metastasis in Tonsillar Cancer. Cancers. 2022; 14(24):6242. https://doi.org/10.3390/cancers14246242
Chicago/Turabian StyleBang, Jooin, Hye Lim Park, Ie Ryung Yoo, Hyun-Il Shin, Geun-Jeon Kim, Dong-Il Sun, and Sang-Yeon Kim. 2022. "Predictive Value of 18F-Fluorodeoxyglucose Positron-Emission Tomography Metabolic and Volumetric Parameters for Systemic Metastasis in Tonsillar Cancer" Cancers 14, no. 24: 6242. https://doi.org/10.3390/cancers14246242
APA StyleBang, J., Park, H. L., Yoo, I. R., Shin, H. -I., Kim, G. -J., Sun, D. -I., & Kim, S. -Y. (2022). Predictive Value of 18F-Fluorodeoxyglucose Positron-Emission Tomography Metabolic and Volumetric Parameters for Systemic Metastasis in Tonsillar Cancer. Cancers, 14(24), 6242. https://doi.org/10.3390/cancers14246242