Mutational Status of SMAD4 and FBXW7 Affects Clinical Outcome in TP53–Mutated Metastatic Colorectal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cohort of Patients, Clinical Information, and Ethics Statement
2.2. Datasets Obtained from Public Repositories
2.3. Targeted Next–Generation Sequencing
2.4. Whole–Exome Sequencing Data Analysis
2.5. RNA–Seq Data Analysis
2.6. Study Endpoints and Statistical Analysis
2.7. Machine Learning–Based Classifier Model
3. Results
3.1. Clinico–Pathological Description of the Study Population
3.2. Recurrently Mutated Genes in mCRC
3.3. Prognostic Estimates of PFS and OS by Individual Mutated Genes
3.4. Survival Modelling Based on the Combination of Mutated Genes
3.5. Gene Expression Profiling Underlying Double–Mutation Genotypes for TP53/SMAD4 and TP53/FBXW7
3.6. Discriminative Performance of the Clinico–Genetic Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef] [PubMed]
- Saltz, L.B.; Clarke, S.; Díaz–Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.-S.; Rivera, F.; et al. Bevacizumab in combination with oxaliplatin–based chemotherapy as first–line therapy in metastatic colorectal cancer: A randomized phase III study. J. Clin. Oncol. 2008, 26, 2013–2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Cutsem, E.; Köhne, C.-H.; Hitre, E.; Zaluski, J.; Chang Chien, C.-R.; Makhson, A.; D’Haens, G.; Pintér, T.; Lim, R.; Bodoky, G.; et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. 2009, 360, 1408–1417. [Google Scholar] [CrossRef] [Green Version]
- Douillard, J.-Y.; Siena, S.; Cassidy, J.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first–line treatment in patients with previously untreated metastatic colorectal cancer: The PRIME study. J. Clin. Oncol. 2010, 28, 4697–4705. [Google Scholar] [CrossRef]
- Mosele, F.; Remon, J.; Mateo, J.; Westphalen, C.B.; Barlesi, F.; Lolkema, M.P.; Normanno, N.; Scarpa, A.; Robson, M.; Meric–Bernstam, F.; et al. Recommendations for the use of next–generation sequencing (NGS) for patients with metastatic cancers: A report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2020, 31, 1491–1505. [Google Scholar] [CrossRef]
- Stahler, A.; Stintzing, S.; von Einem, J.C.; Westphalen, C.B.; Heinrich, K.; Krämer, N.; Michl, M.; Modest, D.P.; von Weikersthal, L.F.; Decker, T.; et al. Single–nucleotide variants, tumour mutational burden and microsatellite instability in patients with metastatic colorectal cancer: Next–generation sequencing results of the FIRE–3 trial. Eur. J. Cancer 2020, 137, 250–259. [Google Scholar] [CrossRef]
- Tsilimigras, D.I.; Ntanasis-Stathopoulos, I.; Bagante, F.; Moris, D.; Cloyd, J.; Spartalis, E.; Pawlik, T.M. Clinical significance and prognostic relevance of KRAS, BRAF, PI3K and TP53 genetic mutation analysis for resectable and unresectable colorectal liver metastases: A systematic review of the current evidence. Surg. Oncol. 2018, 27, 280–288. [Google Scholar] [CrossRef]
- Venderbosch, S.; Nagtegaal, I.D.; Maughan, T.S.; Smith, C.G.; Cheadle, J.P.; Fisher, D.; Kaplan, R.; Quirke, P.; Seymour, M.T.; Richman, S.D.; et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: A pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin. Cancer Res. 2014, 20, 5322–5330. [Google Scholar] [CrossRef] [Green Version]
- Løes, I.M.; Immervoll, H.; Sorbye, H.; Angelsen, J.-H.; Horn, A.; Knappskog, S.; Lønning, P.E. Impact of KRAS, BRAF, PIK3CA, TP53 status and intraindividual mutation heterogeneity on outcome after liver resection for colorectal cancer metastases. Int. J. Cancer 2016, 139, 647–656. [Google Scholar] [CrossRef]
- Lièvre, A.; Bachet, J.-B.; Le Corre, D.; Boige, V.; Landi, B.; Emile, J.-F.; Côté, J.-F.; Tomasic, G.; Penna, C.; Ducreux, M.; et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006, 66, 3992–3995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benvenuti, S.; Sartore-Bianchi, A.; Di Nicolantonio, F.; Zanon, C.; Moroni, M.; Veronese, S.; Siena, S.; Bardelli, A. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti–epidermal growth factor receptor antibody therapies. Cancer Res. 2007, 67, 2643–2648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrvarz Sarshekeh, A.; Advani, S.; Overman, M.J.; Manyam, G.; Kee, B.K.; Fogelman, D.R.; Dasari, A.; Raghav, K.; Vilar, E.; Manuel, S.; et al. Association of SMAD4 mutation with patient demographics, tumor characteristics, and clinical outcomes in colorectal cancer. PLoS ONE 2017, 12, e0173345. [Google Scholar]
- Mizuno, T.; Cloyd, J.M.; Vicente, D.; Omichi, K.; Chun, Y.S.; Kopetz, S.E.; Maru, D.; Conrad, C.; Tzeng, C.-W.D.; Wei, S.H.; et al. SMAD4 gene mutation predicts poor prognosis in patients undergoing resection for colorectal liver metastases. Eur. J. Surg. Oncol. 2018, 44, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Lang, H.; Baumgart, J.; Heinrich, S.; Tripke, V.; Passalaqua, M.; Maderer, A.; Galle, P.R.; Roth, W.; Kloth, M.; Moehler, M. Extended Molecular Profiling Improves Stratification and Prediction of Survival After Resection of Colorectal Liver Metastases. Ann. Surg. 2019, 270, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Korphaisarn, K.; Morris, V.K.; Overman, M.J.; Fogelman, D.R.; Kee, B.K.; Raghav, K.P.S.; Manuel, S.; Shureiqi, I.; Wolff, R.A.; Eng, C.; et al. FBXW7 missense mutation: A novel negative prognostic factor in metastatic colorectal adenocarcinoma. Oncotarget 2017, 8, 39268–39279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Ouyang, C.; Cho, M.; Ji, J.; Sandhu, J.; Goel, A.; Kahn, M.; Fakih, M. Wild–type APC Is Associated with Poor Survival in Metastatic Microsatellite Stable Colorectal Cancer. Oncologist 2021, 26, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Schell, M.J.; Yang, M.; Teer, J.K.; Lo, F.Y.; Madan, A.; Coppola, D.; Monteiro, A.N.A.; Nebozhyn, M.V.; Yue, B.; Loboda, A.; et al. A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC. Nat. Commun. 2016, 7, 11743. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, Y.; Kopetz, S.; Newhook, T.E.; De Bellis, M.; Chun, Y.S.; Tzeng, C.-W.D.; Aloia, T.A.; Vauthey, J.-N. Mutation Status of RAS, TP53, and SMAD4 is Superior to Mutation Status of RAS Alone for Predicting Prognosis after Resection of Colorectal Liver Metastases. Clin. Cancer Res. 2019, 25, 5843–5851. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.T.; Mitchell, T.N.; Zehir, A.; Shah, R.H.; Benayed, R.; Syed, A.; Chandramohan, R.; Liu, Z.Y.; Won, H.H.; Scott, S.N.; et al. Memorial Sloan Kettering–Integrated Mutation Profiling of Actionable Cancer Targets (MSK–IMPACT): A Hybridization Capture–Based Next–Generation Sequencing Clinical Assay for Solid Tumor Molecular Oncology. J. Mol. Diagn. 2015, 17, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- D’Haene, N.; Fontanges, Q.; De Nève, N.; Blanchard, O.; Melendez, B.; Delos, M.; Dehou, M.-F.; Maris, C.; Nagy, N.; Rousseau, E.; et al. Clinical application of targeted next–generation sequencing for colorectal cancer patients: A multicentric Belgian experience. Oncotarget 2018, 9, 20761–20768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyaki, M.; Iijima, T.; Konishi, M.; Sakai, K.; Ishii, A.; Yasuno, M.; Hishima, T.; Koike, M.; Shitara, N.; Iwama, T.; et al. Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene 1999, 18, 3098–3103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papageorgis, P.; Cheng, K.; Ozturk, S.; Gong, Y.; Lambert, A.W.; Abdolmaleky, H.M.; Zhou, J.-R.; Thiagalingam, S. Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Res. 2011, 71, 998–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancer, T.; Atlas, G. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012, 487, 330–337. [Google Scholar]
- Camps, J.; Nguyen, Q.T.; Padilla–nash, H.M.; Knutsen, T.; Mcneil, N.E.; Wangsa, D. Integrative Genomics Reveals Mechanisms of Copy Number Alterations Responsible for Transcriptional Deregulation in Colorectal Cancer. Genes Chromosom. Cancer 2009, 1017, 1002–1017. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Shanmugam, C.; Paluri, R.K.; Jhala, N.C.; Behring, M.P.; Katkoori, V.R.; Sugandha, S.P.; Bae, S.; Samuel, T.; Manne, U. Prognostic value of loss of heterozygosity and sub–cellular localization of SMAD4 varies with tumor stage in colorectal cancer. Oncotarget 2017, 8, 20198–20212. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, I.; Lee, L.H.; Ogino, S.; Marco, M.R.; Wu, C.; Chen, X.; Datta, J.; Sadot, E.; Szeglin, B.; Guillem, J.G.; et al. SMAD4 Loss in Colorectal Cancer Patients Correlates with Recurrence, Loss of Immune Infiltrate, and Chemoresistance. Clin. Cancer Res. 2019, 25, 1948–1956. [Google Scholar] [CrossRef]
- Voorneveld, P.W.; Kodach, L.L.; Jacobs, R.J.; van Noesel, C.J.M.; Peppelenbosch, M.P.; Korkmaz, K.S.; Molendijk, I.; Dekker, E.; Morreau, H.; van Pelt, G.W.; et al. The BMP pathway either enhances or inhibits the Wnt pathway depending on the SMAD4 and p53 status in CRC. Br. J. Cancer 2015, 112, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Boulay, J.L.; Mild, G.; Lowy, A.; Reuter, J.; Lagrange, M.; Terracciano, L.; Laffer, U.; Herrmann, R.; Rochlitz, C. SMAD4 is a predictive marker for 5–fluorouracil–based chemotherapy in patients with colorectal cancer. Br. J. Cancer 2002, 87, 630–634. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhang, B.; Chen, X.; Bae, S.; Singh, K.; Washington, M.K.; Datta, P.K. Loss of Smad4 in colorectal cancer induces resistance to 5–fluorouracil through activating Akt pathway. Br. J. Cancer 2014, 110, 946–957. [Google Scholar] [CrossRef] [PubMed]
- Umeda, Y.; Nagasaka, T.; Mori, Y.; Sadamori, H.; Sun, D.-S.; Shinoura, S.; Yoshida, R.; Satoh, D.; Nobuoka, D.; Utsumi, M.; et al. Poor prognosis of KRAS or BRAF mutant colorectal liver metastasis without microsatellite instability. J. Hepato–Biliary–Pancreat. Sci. 2013, 20, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Brudvik, K.W.; Kopetz, S.E.; Li, L.; Conrad, C.; Aloia, T.A.; Vauthey, J.-N. Meta–analysis of KRAS mutations and survival after resection of colorectal liver metastases. Br. J. Surg. 2015, 102, 1175–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welcker, M.; Clurman, B.E. FBW7 ubiquitin ligase: A tumour suppressor at the crossroads of cell division, growth and differentiation. Nat. Rev. Cancer 2008, 8, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Inuzuka, H.; Shaik, S.; Onoyama, I.; Gao, D.; Tseng, A.; Maser, R.S.; Zhai, B.; Wan, L.; Gutierrez, A.; Lau, A.W.; et al. SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 2011, 471, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Takeishi, S.; Nakayama, K.I. Role of Fbxw7 in the maintenance of normal stem cells and cancer–initiating cells. Br. J. Cancer 2014, 111, 1054–1059. [Google Scholar] [CrossRef]
- Li, N.; Babaei–Jadidi, R.; Lorenzi, F.; Spencer–Dene, B.; Clarke, P.; Domingo, E.; Tulchinsky, E.; Vries, R.G.J.; Kerr, D.; Pan, Y.; et al. An FBXW7–ZEB2 axis links EMT and tumour microenvironment to promote colorectal cancer stem cells and chemoresistance. Oncogenesis 2019, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Grim, J.E.; Knoblaugh, S.E.; Guthrie, K.A.; Hagar, A.; Swanger, J.; Hespelt, J.; Delrow, J.J.; Small, T.; Grady, W.M.; Nakayama, K.I.; et al. Fbw7 and p53 cooperatively suppress advanced and chromosomally unstable intestinal cancer. Mol. Cell. Biol. 2012, 32, 2160–2167. [Google Scholar] [CrossRef] [Green Version]
- Cui, D.; Xiong, X.; Shu, J.; Dai, X.; Sun, Y.; Zhao, Y. FBXW7 Confers Radiation Survival by Targeting p53 for Degradation. Cell Rep. 2020, 30, 497–509.e4. [Google Scholar] [CrossRef]
- Malapelle, U.; Pisapia, P.; Sgariglia, R.; Vigliar, E.; Biglietto, M.; Carlomagno, C.; Giuffrè, G.; Bellevicine, C.; Troncone, G. Less frequently mutated genes in colorectal cancer: Evidences from next–generation sequencing of 653 routine cases. J. Clin. Pathol. 2016, 69, 767–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, C.-H.; Bellon, M.; Nicot, C. FBXW7: A critical tumor suppressor of human cancers. Mol. Cancer 2018, 17, 115. [Google Scholar] [CrossRef] [PubMed]
- Yokobori, T.; Mimori, K.; Iwatsuki, M.; Ishii, H.; Onoyama, I.; Fukagawa, T.; Kuwano, H.; Nakayama, K.I.; Mori, M. p53–Altered FBXW7 expression determines poor prognosis in gastric cancer cases. Cancer Res. 2009, 69, 3788–3794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, A.E.; Furumo, Q.; Stelloh, C.; Minella, A.C.; Rao, S. Loss of Fbxw7 triggers mammary tumorigenesis associated with E2F/c–Myc activation and Trp53 mutation. Neoplasia 2020, 22, 644–658. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Lorenzi, F.; Kalakouti, E.; Normatova, M.; Babaei–Jadidi, R.; Tomlinson, I.; Nateri, A.S. FBXW7–mutated colorectal cancer cells exhibit aberrant expression of phosphorylated–p53 at Serine–15. Oncotarget 2015, 6, 9240–9256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galindo–Moreno, M.; Giráldez, S.; Limón–Mortés, M.C.; Belmonte–Fernández, A.; Reed, S.I.; Sáez, C.; Japón, M.Á.; Tortolero, M.; Romero, F. SCF(FBXW7)–mediated degradation of p53 promotes cell recovery after UV–induced DNA damage. FASEB J. 2019, 33, 11420–11430. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, V.; Kaur, E.; Kharat, S.S.; Hussain, M.; Damodaran, A.P.; Kulshrestha, S.; Sengupta, S. Abrogation of FBW7α–dependent p53 degradation enhances p53’s function as a tumor suppressor. J. Biol. Chem. 2019, 294, 13224–13232. [Google Scholar] [CrossRef]
- Giráldez, S.; Herrero–Ruiz, J.; Mora–Santos, M.; Japón, M.Á.; Tortolero, M.; Romero, F. SCF(FBXW7α) modulates the intra–S–phase DNA–damage checkpoint by regulating Polo like kinase–1 stability. Oncotarget 2014, 5, 4370–4383. [Google Scholar] [CrossRef] [Green Version]
- Hong, X.; Liu, W.; Song, R.; Shah, J.J.; Feng, X.; Tsang, C.K.; Morgan, K.M.; Bunting, S.F.; Inuzuka, H.; Zheng, X.F.S.; et al. SOX9 is targeted for proteasomal degradation by the E3 ligase FBW7 in response to DNA damage. Nucleic Acids Res. 2016, 44, 8855–8869. [Google Scholar] [CrossRef]
- Haan, J.C.; Labots, M.; Rausch, C.; Koopman, M.; Tol, J.; Mekenkamp, L.J.M.; van de Wiel, M.A.; Israeli, D.; van Essen, H.F.; van Grieken, N.C.T.; et al. Genomic landscape of metastatic colorectal cancer. Nat. Commun. 2014, 5, 5457. [Google Scholar] [CrossRef] [Green Version]
- Iwatsuki, M.; Mimori, K.; Ishii, H.; Yokobori, T.; Takatsuno, Y.; Sato, T.; Toh, H.; Onoyama, I.; Nakayama, K.I.; Baba, H.; et al. Loss of FBXW7, a cell cycle regulating gene, in colorectal cancer: Clinical significance. Int. J. Cancer 2010, 126, 1828–1837. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, Y.; Newhook, T.E.; Tran Cao, H.S.; Tzeng, C.-W.D.; Chun, Y.S.; Aloia, T.A.; Dasari, A.; Kopetz, S.; Vauthey, J.-N. Alteration of FBXW7 is Associated with Worse Survival in Patients Undergoing Resection of Colorectal Liver Metastases. J. Gastrointest. Surg. 2021, 25, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Mouradov, D.; Domingo, E.; Gibbs, P.; Jorissen, R.N.; Li, S.; Soo, P.Y.; Lipton, L.; Desai, J.; Danielsen, H.E.; Oukrif, D.; et al. Survival in stage II/III colorectal cancer is independently predicted by chromosomal and microsatellite instability, but not by specific driver mutations. Am. J. Gastroenterol. 2013, 108, 1785–1793. [Google Scholar] [CrossRef] [PubMed]
- Ciombor, K.K.; Goldberg, R.M. Highlights in Gastrointestinal (Colorectal) Cancer Treatment: The Primary Tumor Sidedness Debate and Advances in Immunotherapy. JAMA Oncol. 2016, 2, 1537–1538. [Google Scholar] [CrossRef] [PubMed]
- Lupini, L.; Bassi, C.; Mlcochova, J.; Musa, G.; Russo, M.; Vychytilova–Faltejskova, P.; Svoboda, M.; Sabbioni, S.; Nemecek, R.; Slaby, O.; et al. Prediction of response to anti–EGFR antibody–based therapies by multigene sequencing in colorectal cancer patients. BMC Cancer 2015, 15, 808. [Google Scholar] [CrossRef] [Green Version]
- Mendelaar, P.A.J.; Smid, M.; van Riet, J.; Angus, L.; Labots, M.; Steeghs, N.; Hendriks, M.P.; Cirkel, G.A.; van Rooijen, J.M.; Ten Tije, A.J.; et al. Whole genome sequencing of metastatic colorectal cancer reveals prior treatment effects and specific metastasis features. Nat. Commun. 2021, 12, 574. [Google Scholar] [CrossRef]
- García–Albéniz, X.; Alonso, V.; Escudero, P.; Méndez, M.; Gallego, J.; Rodríguez, J.R.; Salud, A.; Fernández–Plana, J.; Manzano, H.; Zanui, M.; et al. Prospective Biomarker Study in Advanced RAS Wild–Type Colorectal Cancer: POSIBA Trial (GEMCAD 10–02). Oncologist 2019, 24, e1115–e1122. [Google Scholar] [CrossRef] [Green Version]
- Kawai, K.; Sunami, E.; Yamaguchi, H.; Ishihara, S.; Kazama, S.; Nozawa, H.; Hata, K.; Kiyomatsu, T.; Tanaka, J.; Tanaka, T.; et al. Nomograms for colorectal cancer: A systematic review. World J. Gastroenterol. 2015, 21, 11877–11886. [Google Scholar] [CrossRef]
- Meigs, J.B.; Shrader, P.; Sullivan, L.M.; McAteer, J.B.; Fox, C.S.; Dupuis, J.; Manning, A.K.; Florez, J.C.; Wilson, P.W.F.; D’Agostino, R.B.; et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N. Engl. J. Med. 2008, 359, 2208–2219. [Google Scholar] [CrossRef]
Variable | All Patients | Patients Unmutated for TP53/SMAD4 or TP53/FBXW7 | Patients Mutated for TP53/SMAD4 | Patients Mutated for TP53/FBXW7 |
---|---|---|---|---|
Num. of patients | 200 (100%) | 169/200 (85.5%) | 17/200 (8.5%) | 16/200 (8%) |
Age, years (median, range) | 66 (30–85) | 65 (30–85) | 63 (42–79) | 67 (53–77) |
Sex (number, %) | ||||
Male | 115 (57.5%) | 96 (56.8%) | 11 (64.7%) | 9 (56.25%) |
Female | 85 (42.5%) | 73 (43.2) | 6 (35.3%) | 7 (43.75%) |
Primary tumor location (number, %) | ||||
Right | 52 (26%) | 46 (27.2%) | 4 (23.5%) | 2 (12.5%) |
Left | 148 (74%) | 123 (72.8%) | 13 (76.5%) | 14 (87.5%) |
Stage at diagnosis (number, %) | ||||
I | 6 (3%) | 6 (3.6%) | 0 (0%) | 0 (0%) |
II | 13 (6.5%) | 13 (7.7%) | 0 (0%) | 0 (0%) |
III | 42 (21%) | 30 (17.7%) | 7 (41.2%) | 5 (31.3%) |
IV | 139 (69.5%) | 120 (71%) | 10 (58.8%) | 11 (68.7%) |
Metastatic sites (number of organs affected) (number, %) | ||||
1 | 93 (46.5%) | 76 (45%) | 9 (53%) | 9 (56.25%) |
>1 | 107 (53.5%) | 93 (55%) | 8 (47%) | 7 (43.75%) |
ECOG PS (number, %) | ||||
0 | 73 (36.5%) | 55 (33%) | 9 (53%) | 10 (62.5%) |
1 | 87 (43.5%) | 80 (47%) | 5 (29.4%) | 3 (18.75%) |
>1 | 38 (19%) | 32 (19%) | 3 (17.6%) | 3 (18.75%) |
No data | 2 (1%) | 2 (1%) | 0 (0%) | 0 (0%) |
LDH, units/L (median, range) | 351.5 (99–18,585) | 351.5 (99–18,585) | 331.5 (152–967) | 396.5 (137–2856) |
ALP, units/L (median, range) | 100 (36–902) | 105 (36–902) | 109 (65–450) | 89 (57–473) |
PCR, mg/L (median, range) | 2 (0–73.4) | 2 (0–73.4) | 1.62 (0–14.92) | 2.4 (0.04–22.03) |
Leukocytes, 106/L (median, range) | 7600 (1294–32,290) | 7730 (1294–32,290) | 7360 (4400–15,470) | 7125 (4890–14,580) |
CEA, ng/mL (median, range) | 19.35 (0.3–7956) | 20.75 (0.9–7956) | 35.2 (0.3–1274) | 10.8 (2.1–1179) |
1st line of treatment | ||||
Doublets (FOLFOX/FOLFIRI/CAPOX) | 139 (69.5%) | 114 (67.5%) | 14 (82.3%) | 13 (81.25%) |
Doublets + anti–EGFR (cetuximab/panitumumab) | 41 (20.5%) | 39 (23%) | 1 (6%) | 1 (6.25%) |
Doublets + anti–VEGF (bevacizumab) | 20 (10%) | 16 (9.5%) | 2 (11.7%) | 2 (12.5%) |
MMR status (number, %) | ||||
Proficient | 195 (98%) | 164 (97.5%) | 17 (100%) | 16 (100%) |
Deficient | 4 (2%) | 4 (2.5%) | 0 (0%) | 0 (0%) |
Primary tumor resected (number, %) | 126 (63%) | 104 (61.5%) | 12 (70.6%) | 10 (58.8%) |
Location of metastases (number, %) | ||||
Liver metastasis | 149 (74.5%) | 127 (75%) | 9 (53%) | 13 (81.25%) |
Lung metastases | 65 (32.5%) | 55 (32.5%) | 6 (35.3%) | 4 (24%) |
Peritoneal metastases | 30 (15%) | 23 (13.65%) | 6 (35.3%) | 1 (6.25%) |
Node metastases | 68 (34%) | 58 (34.3%) | 4 (23.4%) | 6 (37.5%) |
Variable | PFS | OS | |||||||
---|---|---|---|---|---|---|---|---|---|
Univariate Analysis | Multivariable Analysis | Univariate Analysis | Multivariable Analysis | ||||||
HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | ||
Age | <continuous> | – | 0.11 | – | 0.43 | – | 0.0001 | – | 0.015 |
Sex | Female vs. Male | 0.85 (0.62–1.17) | 0.32 | 0.70 (0.48–1.02) | 0.06 | 0.91 (0.61–1.35) | 0.64 | 0.71 (0.43–1.16) | 0.17 |
Location of primary tumor | Right vs. Left | 1.19 (0.82–1.73) | 0.36 | 1.09 (0.69–1.72) | 0.71 | 1.66 (1.06–2.59) | 0.025 | 1.16 (0.67–1.96) | 0.57 |
Metastatic sites (number organs affected) | 1 vs. >1 | 1.88 (1.35–2.61) | 0.0002 | 1.97 (1.28–3) | 0.0015 | 1.82 (1.21–2.75) | 0.004 | 1.21 (0.96–1.53) | 0.11 |
MMR status | MSS vs. MSI | 0.31 (0.10–0.99) | 0.049 | 0.42 (0.56–3.21) | 0.41 | 0.32 (0.1–1.03) | 0.056 | 0.21 (0.03–1.61) | 0.13 |
ECOG PS | 1/2/3 vs. 0 | 1.72 (1.23–2.40) | 0.002 | 1.30 (0.83–2.05) | 0.25 | 3.75 (2.27–6.2) | <0.0001 | 2.1 (1.07–4.12) | 0.03 |
2/3 vs. 0/1 | 2.90 (1.98–4.25) | <0.0001 | 2.36 (1.44–3.88) | 0.0007 | 6.29 (4.04–9.8) | <0.0001 | 3.39 (1.97–5.84) | <0.0001 | |
<continuous> | 1.77 (1.41–2.23) | <0.0001 | 1.57 (1.15–2.14) | 0.0045 | 3.41 (2.53–4.6) | <0.0001 | 2.28 (1.56–3.33) | <0.0001 | |
LDH | <continuous> | – | <0.0001 | – | 0.006 | – | <0.0001 | – | 0.0009 |
ALP | <continuous> | – | <0.0001 | – | 0.057 | – | <0.0001 | – | 0.005 |
PCR | <continuous> | – | 0.0007 | – | 0.47 | – | 0.002 | – | 0.86 |
Leukocytes | <continuous> | – | <0.0001 | – | 0.126 | – | <0.0001 | – | 0.008 |
CEA | <continuous> | – | 0.017 | – | 0.85 | – | 0.0002 | – | 0.98 |
Mutated Genes | PFS | OS | |||||||
---|---|---|---|---|---|---|---|---|---|
Univariate Analysis | Multivariable Analysis | Univariate Analysis | Multivariable Analysis | ||||||
HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | ||
TP53 | Mut vs. wt | 1.07 (0.77–1.48) | 0.70 | 1.31 (0.84–2.04) | 0.24 | 1.09 (0.71–1.66) | 0.69 | 1.10 (0.65–1.86) | 0.72 |
RAS | Mut vs. wt | 1.15 (0.84–1.57) | 0.40 | 1.37 (0.92–2.05) | 0.12 | 1.20 (0.80–178) | 0.38 | 0.99 (0.60–1.64) | 0.98 |
PIK3CA | Mut vs. wt | 1.74 (1.12–2.70) | 0.014 | 1.42 (0.79–2.54) | 0.24 | 2.03 (1.21–3.41) | 0.007 | 1.53 (0.75–3.13) | 0.25 |
SMAD4 | Mut vs. wt | 1.52 (0.98–2.36) | 0.06 | 2.63 (1.45–4.79) | 0.0015 | 1.39 (0.81–2.39) | 0.23 | 1.74 (0.80–3.76) | 0.16 |
BRAF | Mut vs. wt | 0.93 (0.54–1.58) | 0.78 | 0.87 (0.45–1.65) | 0.66 | 1.54 (0.84–2.79) | 0.16 | 1.40 (0.65–3.03) | 0.39 |
FBXW7 | Mut vs. wt | 1.54 (0.90–2.64) | 0.12 | 1.69 (0.87–3.26) | 0.12 | 1.85 (1–3.41) | 0.049 | 2.24 (1.06–4.76) | 0.036 |
TP53/RAS | Double mut vs. TP53 mut | 1.01 (0.69–1.50) | 0.94 | 1.36 (0.81–2.29) | 0.25 | 1.28 (0.79–2.09) | 0.32 | 1.08 (0.57–2.03) | 0.82 |
TP53/PIK3CA | Double mut vs. TP53 mut | 1.58 (0.82–3.07) | 0.17 | 0.90 (0.32–2.57) | 0.85 | 2.78 (1.35–5.71) | 0.006 | 1.17 (9.32–4.23) | 0.81 |
TP53/SMAD4 | Double mut vs. TP53 mut | 1.94 (1.12–3.38) | 0.019 | 4.32 (2–9.30) | 0.0002 | 1.80 (0.91–3.55) | 0.09 | 2.91 (1.08–7.85) | 0.035 |
TP53/FBXW7 | Double mut vs. TP53 mut | 1.72 (0.92–3.24) | 0.09 | 2.65 (1.13–6.23) | 0.025 | 1.83 (0.90–3.73) | 0.09 | 3.31 (1.22–8.96) | 0.019 |
TP53/BRAF | Double mut vs. TP53 mut | 2.24 (1.19–4.20) | 0.01 | 1.56 (0.71–3.42) | 0.27 | 3.18 (1.56–6.50) | 0.0015 | 1.82 (0.63–5.27) | 0.27 |
RAS/PIK3CA | Double mut vs. RAS mut | 1.58 (0.89–2.79) | 0.12 | 0.75 (0.28–1.99) | 0.56 | 1.82 (0.63–5.27) | 0.20 | 0.51 (0.13–1.98) | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahoz, S.; Rodríguez, A.; Fernández, L.; Gorría, T.; Moreno, R.; Esposito, F.; Oliveres, H.; Albiol, S.; Saurí, T.; Pesantez, D.; et al. Mutational Status of SMAD4 and FBXW7 Affects Clinical Outcome in TP53–Mutated Metastatic Colorectal Cancer. Cancers 2022, 14, 5921. https://doi.org/10.3390/cancers14235921
Lahoz S, Rodríguez A, Fernández L, Gorría T, Moreno R, Esposito F, Oliveres H, Albiol S, Saurí T, Pesantez D, et al. Mutational Status of SMAD4 and FBXW7 Affects Clinical Outcome in TP53–Mutated Metastatic Colorectal Cancer. Cancers. 2022; 14(23):5921. https://doi.org/10.3390/cancers14235921
Chicago/Turabian StyleLahoz, Sara, Adela Rodríguez, Laia Fernández, Teresa Gorría, Reinaldo Moreno, Francis Esposito, Helena Oliveres, Santiago Albiol, Tamara Saurí, David Pesantez, and et al. 2022. "Mutational Status of SMAD4 and FBXW7 Affects Clinical Outcome in TP53–Mutated Metastatic Colorectal Cancer" Cancers 14, no. 23: 5921. https://doi.org/10.3390/cancers14235921