Point-of-Care Diagnosis of Endometrial Cancer Using the Surgical Intelligent Knife (iKnife)—A Prospective Pilot Study of Diagnostic Accuracy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Population and Samples
2.2. The iKnife and Sample Processing
2.3. Histological Validation
2.4. Statistical Analysis and Classification Models
2.5. Univariate Analysis and Lipid Identification
3. Results
3.1. Tissue Characteristics and Processing
3.2. Statistical Modelling with the iKnife—Normal Tissue versus Cancer
3.3. Learning Curve
3.4. Loading Plot and Univariate Analysis
4. Discussion
4.1. Key Findings
4.2. Implications and Comparison with Other Studies
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Tissue Type | Pre-spectrum QC | Post Spectrum QC | Post Histology QC | |||
---|---|---|---|---|---|---|
Samples | Spectra | Samples | Spectra | Samples | Spectra | |
CANCER | 59 | 210 | 59 | 189 | 43 | 145 |
HYPERPLASIA | 4 | 12 | 4 | 12 | 1 | 5 |
NORMAL | 78 | 231 | 75 | 200 | 45 | 131 |
TOTAL | 141 | 453 | 138 | 401 | 89 | 281 |
References
- International Agency for Research on Cancer. Corpus Uteri Factsheet, Estimated Cancer Incidence, Mortality and Prevalence Worldwide 2018; World Health Organisation: Geneva, Switzerland, 2018.
- Boinon, D.; Dauchy, S.; Charles, C.; Fasse, L.; Cano, A.; Balleyguier, C.; Mazouni, C.; Caron, H.; Vielh, P.; Delaloge, S. Patient satisfaction with a rapid diagnosis of suspicious breast lesions: Association with distress and anxiety. Breast J. 2018, 24, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Hislop, T.G.; Harris, S.R.; Jackson, J.; Thorne, S.E.; Rousseau, E.J.; Coldman, A.J.; Vestrup, J.A.; Wright, C.J.; Olivotto, I.A. Satisfaction and anxiety for women during investigation of an abnormal screening mammogram. Breast Cancer Res. Treat. 2002, 76, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Brocken, P.; Prins, J.B.; Dekhuijzen, P.N.; van der Heijden, H.F. The faster the better?-A systematic review on distress in the diagnostic phase of suspected cancer, and the influence of rapid diagnostic pathways. Psycho-Oncol. 2012, 21, 1–10. [Google Scholar] [CrossRef]
- Liao, M.N.; Chen, M.F.; Chen, S.C.; Chen, P.L. Uncertainty and anxiety during the diagnostic period for women with suspected breast cancer. Cancer Nurs. 2008, 31, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Marcus, D.; King, A.; Yazbek, J.; Hughes, C.; Ghaem-Maghami, S. Anxiety and stress in women with suspected endometrial cancer: Survey and paired observational study. Psycho-Oncol. 2021, 30, 1393–1400. [Google Scholar] [CrossRef]
- Shalowitz, D.I.; Epstein, A.J.; Buckingham, L.; Ko, E.M.; Giuntoli, R.L., 2nd. Survival implications of time to surgical treatment of endometrial cancers. Am. J. Obs. Gynecol. 2017, 216, 268.e1–268.e18. [Google Scholar] [CrossRef] [Green Version]
- Strohl, A.E.; Feinglass, J.M.; Shahabi, S.; Simon, M.A. Surgical wait time: A new health indicator in women with endometrial cancer. Gynecol. Oncol. 2016, 141, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Elit, L.M.; O’Leary, E.M.; Pond, G.R.; Seow, H.Y. Impact of wait times on survival for women with uterine cancer. J. Clin. Oncol. 2014, 32, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Balog, J.; Szaniszlo, T.; Schaefer, K.C.; Denes, J.; Lopata, A.; Godorhazy, L.; Szalay, D.; Balogh, L.; Sasi-Szabo, L.; Toth, M.; et al. Identification of biological tissues by rapid evaporative ionization mass spectrometry. Anal. Chem. 2010, 82, 7343–7350. [Google Scholar] [CrossRef]
- Balog, J.; Sasi-Szabó, L.; Kinross, J.; Lewis, M.R.; Muirhead, L.J.; Veselkov, K.; Mirnezami, R.; Dezső, B.; Damjanovich, L.; Darzi, A.; et al. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci. Transl. Med. 2013, 5, 194ra193. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.; Gildea, L.; Balog, J.; Speller, A.; McKenzie, J.; Muirhead, L.; Scott, A.; Kontovounisios, C.; Rasheed, S.; Teare, J.; et al. A novel methodology for in vivo endoscopic phenotyping of colorectal cancer based on real-time analysis of the mucosal lipidome: A prospective observational study of the iKnife. Surg. Endosc. 2017, 31, 1361–1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St John, E.R.; Balog, J.; McKenzie, J.S.; Rossi, M.; Covington, A.; Muirhead, L.; Bodai, Z.; Rosini, F.; Speller, A.V.M.; Shousha, S.; et al. Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the identification of breast pathology: Towards an intelligent knife for breast cancer surgery. Breast Cancer Res. BCR 2017, 19, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzafetas, M.; Mitra, A.; Paraskevaidi, M.; Bodai, Z.; Kalliala, I.; Bowden, S.; Lathouras, K.; Rosini, F.; Szasz, M.; Savage, A.; et al. The intelligent knife (iKnife) and its intraoperative diagnostic advantage for the treatment of cervical disease. Proc. Natl. Acad. Sci. USA 2020, 117, 7338–7346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phelps, D.L.; Balog, J.; Gildea, L.F.; Bodai, Z.; Savage, A.; El-Bahrawy, M.A.; Speller, A.V.; Rosini, F.; Kudo, H.; McKenzie, J.S.; et al. The surgical intelligent knife distinguishes normal, borderline and malignant gynaecological tissues using rapid evaporative ionisation mass spectrometry (REIMS). Br. J. Cancer 2018, 118, 1349–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preetha, A.; Banerjee, R.; Huilgol, N. Surface activity, lipid profiles and their implications in cervical cancer. J. Cancer Res. Ther. 2005, 1, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Freter, C. Lipid metabolism, apoptosis and cancer therapy. Int. J. Mol. Sci. 2015, 16, 924–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.F.; Korevaar, D.A.; Altman, D.G.; Bruns, D.E.; Gatsonis, C.A.; Hooft, L.; Irwig, L.; Levine, D.; Reitsma, J.B.; de Vet, H.C.; et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: Explanation and elaboration. BMJ Open 2016, 6, e012799. [Google Scholar] [CrossRef] [Green Version]
- Genangeli, M.; Heeren, R.M.A.; Porta Siegel, T. Tissue classification by rapid evaporative ionization mass spectrometry (REIMS): Comparison between a diathermic knife and CO(2) laser sampling on classification performance. Anal. Bioanal. Chem. 2019, 411, 7943–7955. [Google Scholar] [CrossRef] [Green Version]
- Omi, T.; Numano, K. The Role of the CO2 Laser and Fractional CO2 Laser in Dermatology. Laser Ther. 2014, 23, 49–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wang, C.; Han, X. Tutorial on lipidomics. Anal Chim Acta 2019, 1061, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Farrokhi Yekta, R.; Rezaie Tavirani, M.; Arefi Oskouie, A.; Mohajeri-Tehrani, M.R.; Soroush, A.R. The metabolomics and lipidomics window into thyroid cancer research. Biomark. Biochem. Indic. Expo. Response Susceptibility Chem. 2017, 22, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Min, H.K.; Lim, S.; Chung, B.C.; Moon, M.H. Shotgun lipidomics for candidate biomarkers of urinary phospholipids in prostate cancer. Anal. Bioanal. Chem. 2011, 399, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Perez, O.; Margolis, M.; Santander, A.M.; Martinez, M.; Bhattacharya, S.; Torroella-Kouri, M. Abstract 3496: Breast cancer and obesity impact the lipid composition of breast adipose tissue: A preliminary study using shotgun lipidomics. Cancer Res. 2014, 74, 3496. [Google Scholar] [CrossRef]
- Clarke, M.A.; Long, B.J.; Del Mar Morillo, A.; Arbyn, M.; Bakkum-Gamez, J.N.; Wentzensen, N. Association of Endometrial Cancer Risk With Postmenopausal Bleeding in Women: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2018, 178, 1210–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannini, A.; Bogani, G.; Vizza, E.; Chiantera, V.; Laganà, A.S.; Muzii, L.; Salerno, M.G.; Caserta, D.; D’Oria, O. Advances on Prevention and Screening of Gynecologic Tumors: Are We Stepping Forward? Healthcare 2022, 10, 1605. [Google Scholar] [CrossRef] [PubMed]
- Njoku, K.; Abiola, J.; Russell, J.; Crosbie, E.J. Endometrial cancer prevention in high-risk women. Best Pract. Res. Clin. Obstet. Gynaecol. 2020, 65, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Njoku, K.; Barr, C.E.; Sutton, C.J.J.; Crosbie, E.J. Urine CA125 and HE4 for the Triage of Symptomatic Women with Suspected Endometrial Cancer. Cancers 2022, 14, 3306. [Google Scholar] [CrossRef] [PubMed]
- Paraskevaidi, M.; Morais, C.L.M.; Ashton, K.M.; Stringfellow, H.F.; McVey, R.J.; Ryan, N.A.J.; O’Flynn, H.; Sivalingam, V.N.; Kitson, S.J.; MacKintosh, M.L.; et al. Detecting Endometrial Cancer by Blood Spectroscopy: A Diagnostic Cross-Sectional Study. Cancers 2020, 12, 1256. [Google Scholar] [CrossRef] [PubMed]
- Knapp, P.; Baranowski, M.; Knapp, M.; Zabielski, P.; Błachnio-Zabielska, A.U.; Górski, J. Altered sphingolipid metabolism in human endometrial cancer. Prostaglandins Other Lipid Mediat. 2010, 92, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Adambekov, S.; Goughnour, S.L.; Mansuria, S.; Donnellan, N.; Elishaev, E.; Villanueva, H.J.; Edwards, R.P.; Bovbjerg, D.H.; Linkov, F. Patient and provider factors associated with endometrial Pipelle sampling failure. Gynecol. Oncol. 2017, 144, 324–328. [Google Scholar] [CrossRef]
- Talbi, S.; Hamilton, A.E.; Vo, K.C.; Tulac, S.; Overgaard, M.T.; Dosiou, C.; Le Shay, N.; Nezhat, C.N.; Kempson, R.; Lessey, B.A.; et al. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinology 2006, 147, 1097–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altmäe, S.; Esteban, F.J.; Stavreus-Evers, A.; Simón, C.; Giudice, L.; Lessey, B.A.; Horcajadas, J.A.; Macklon, N.S.; D’Hooghe, T.; Campoy, C.; et al. Guidelines for the design, analysis and interpretation of ‘omics’ data: Focus on human endometrium. Hum. Reprod. Update 2014, 20, 12–28. [Google Scholar] [CrossRef] [PubMed]
Demographics | Normal (n = 85) | Cancer (n = 59) |
---|---|---|
Age | 54 (22–80yo) | 64 (35–85yo) |
Presentation: PMB HMB IMB Abdo pain Other | 36 (42%) 26 (31%) 10 (12%) 11 (13%) 2 (2%) | 49 (83%) 3 (5%) 0 (0%) 5 (8%) 2 (3%) |
Type of Cancer | N/a | Endometrioid Low grade: 30 (51%) High grade (G2/3) 19 (32%) Serous 7 (12%) Carcinosarcoma 2 (3%) Clear cell 1 (2%) |
Quality Pipelle: Small/Bloody Moderate Good/Polyp | 40 (47%) 22 (26%) 23 (27%) | 14 (24%) 9 (15%) 36 (61%) |
Model | m/z Value | p Value | Potential Lipid |
---|---|---|---|
Cancer vs. Normal CO2 laser | 600.55 | 0.00000137 | Cer (36:1;O2) * |
671.45 | 0.000000345 | PA (34:2) * | |
679.55 | 0.00000265 | PG (O-16:0/14:0) * | |
699.55 | 0.000000340 | PA (36:2) * | |
722.54 | 0.0000600 | PE (16:0/20:4) | |
738.51 | 0.0259 | PE (P-16:0/20:4) (12OH[S]) | |
750.57 | 0.00680 | PE (18:0/20:4) | |
766.56 | 0.0282 | PE (18:0/20:4) | |
770.45 | 0.00000631 | PE (20:0/18:2) | |
786.55 | 0.0000000559 | PS (36:2) * | |
794.57 | 0.00426 | PC (O-18:0/20:4) | |
794.65 | 0.00363 | PE (20:4) | |
864.57 * | 0.000177 | PI-Cer (d18:0/22:0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcus, D.; Phelps, D.L.; Savage, A.; Balog, J.; Kudo, H.; Dina, R.; Bodai, Z.; Rosini, F.; Ip, J.; Amgheib, A.; et al. Point-of-Care Diagnosis of Endometrial Cancer Using the Surgical Intelligent Knife (iKnife)—A Prospective Pilot Study of Diagnostic Accuracy. Cancers 2022, 14, 5892. https://doi.org/10.3390/cancers14235892
Marcus D, Phelps DL, Savage A, Balog J, Kudo H, Dina R, Bodai Z, Rosini F, Ip J, Amgheib A, et al. Point-of-Care Diagnosis of Endometrial Cancer Using the Surgical Intelligent Knife (iKnife)—A Prospective Pilot Study of Diagnostic Accuracy. Cancers. 2022; 14(23):5892. https://doi.org/10.3390/cancers14235892
Chicago/Turabian StyleMarcus, Diana, David L. Phelps, Adele Savage, Julia Balog, Hiromi Kudo, Roberto Dina, Zsolt Bodai, Francesca Rosini, Jacey Ip, Ala Amgheib, and et al. 2022. "Point-of-Care Diagnosis of Endometrial Cancer Using the Surgical Intelligent Knife (iKnife)—A Prospective Pilot Study of Diagnostic Accuracy" Cancers 14, no. 23: 5892. https://doi.org/10.3390/cancers14235892
APA StyleMarcus, D., Phelps, D. L., Savage, A., Balog, J., Kudo, H., Dina, R., Bodai, Z., Rosini, F., Ip, J., Amgheib, A., Abda, J., Manoli, E., McKenzie, J., Yazbek, J., Takats, Z., & Ghaem-Maghami, S. (2022). Point-of-Care Diagnosis of Endometrial Cancer Using the Surgical Intelligent Knife (iKnife)—A Prospective Pilot Study of Diagnostic Accuracy. Cancers, 14(23), 5892. https://doi.org/10.3390/cancers14235892