DNA and mRNA Vaccines for Chronic Viral Infections and Cancer: Rationale, Mechanisms, and Progress
Abstract
:Simple Summary
Abstract
1. Introduction
2. Immunologic Issues
2.1. Considerations for Antigens
2.2. Challenges and Types of Immune Responses
3. Rationale for Immunotherapeutic Vaccines for Chronic Viral Infections and Cancer
3.1. Non-Specific Immunostimulation
3.2. Immune-Mediated Cancer Therapies
3.2.1. Cytokines
3.2.2. Monoclonal Antibodies Including Bispecific (Heterobifunctional) Antibodies
3.2.3. T Cell Specific Mechanisms
4. Characteristics of DNA and mRNA Vaccines Relevant to Immunotherapeutic Vaccines
5. Designing Immunotherapeutic Vaccines for Chronic Viral Infections and Cancer
5.1. Antigens
5.2. Potential Contributions and Issues of Innate Stimulation by Nucleic Acid Vaccines
5.3. Antibody Responses from mRNA and DNA Vaccines
5.4. T Cells: Induction by Nucleic Acid Vaccines and the Role for Immunotherapy
6. DNA and mRNA Immunotherapeutic Vaccines under Development
6.1. Chronic Viral Infections
6.2. Cancer
7. An Additional Potential Immunotherapeutic Mechanism and Role for Nucleic Acid Vaccines?
8. Conclusions: What Can We Expect in the Future for Immunotherapeutic Nucleic Acid Vaccines for Chronic Infections and Cancer?
Funding
Conflicts of Interest
References
- Zitvogel, L.; Tesniere, A.; Kroemer, G. Cancer despite Immunosurveillance: Immunoselection and Immunosubversion. Nat. Rev. Immunol. 2006, 6, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Jha, H.C.; Banerjee, S.; Robertson, E.S. The Role of Gammaherpesviruses in Cancer Pathogenesis. Pathogens 2016, 5, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szymonowicz, K.A.; Chen, J. Biological and Clinical Aspects of HPV-Related Cancers. Cancer Biol. Med. 2020, 17, 864–878. [Google Scholar] [CrossRef] [PubMed]
- El-Sharkawy, A.; Al Zaidan, L.; Malki, A. Epstein–Barr Virus-Associated Malignancies: Roles of Viral Oncoproteins in Carcinogenesis. Front. Oncol. 2018, 8, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehermann, B.; Lau, D.; Hoofnagle, J.H.; Chisari, F.V. Cytotoxic T Lymphocyte Responsiveness after Resolution of Chronic Hepatitis B Virus Infection. J. Clin. Investig. 1996, 97, 1655–1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cargill, T.; Barnes, E. Therapeutic Vaccination for Treatment of Chronic Hepatitis B. Clin. Exp. Immunol. 2021, 205, 106–118. [Google Scholar] [CrossRef]
- Boni, C.; Fisicaro, P.; Valdatta, C.; Amadei, B.; Di Vincenzo, P.; Giuberti, T.; Laccabue, D.; Zerbini, A.; Cavalli, A.; Missale, G.; et al. Characterization of Hepatitis B Virus (HBV)-Specific T-Cell Dysfunction in Chronic HBV Infection. J. Virol. 2007, 81, 4215–4225. [Google Scholar] [CrossRef] [Green Version]
- Ye, B.; Liu, X.; Li, X.; Kong, H.; Tian, L.; Chen, Y. T-Cell Exhaustion in Chronic Hepatitis B Infection: Current Knowledge and Clinical Significance. Cell Death Dis. 2015, 6, e1694. [Google Scholar] [CrossRef] [Green Version]
- Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer Immunoediting: From Immunosurveillance to Tumor Escape. Nat. Immunol. 2002, 3, 991–998. [Google Scholar] [CrossRef]
- Okoye, A.A.; Picker, L.J. CD4+ T Cell Depletion in HIV Infection: Mechanisms of Immunological Failure. Immunol. Rev. 2013, 254, 54–64. [Google Scholar] [CrossRef]
- Gutierrez-Dalmau, A.; Campistol, J.M. Immunosuppressive Therapy and Malignancy in Organ Transplant Recipients: A Systematic Review. Drugs 2007, 67, 1167–1198. [Google Scholar] [CrossRef] [PubMed]
- Hoption Cann, S.A.; van Netten, J.P.; van Netten, C. Dr William Coley and Tumour Regression: A Place in History or in the Future. Postgrad. Med. J. 2003, 79, 672–680. [Google Scholar] [PubMed]
- Carlson, R.D.; Flickinger, J.C.; Snook, A.E. Talkin’ Toxins: From Coley’s to Modern Cancer Immunotherapy. Toxins 2020, 12, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, E.S.; Joensen, U.N.; Poulsen, A.M.; Goletti, D.; Johansen, I.S. Bacillus Calmette-Guérin Immunotherapy for Bladder Cancer: A Review of Immunological Aspects, Clinical Effects and BCG Infections. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2020, 128, 92–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Gu, X.; Li, Y.; Wu, Q. Mechanisms of BCG in the Treatment of Bladder Cancer-Current Understanding and the Prospect. Biomed. Pharmacother. Biomed. Pharmacother. 2020, 129, 110393. [Google Scholar] [CrossRef]
- Borden, E.C. Interferons α and β in Cancer: Therapeutic Opportunities from New Insights. Nat. Rev. Drug Discov. 2019, 18, 219–234. [Google Scholar] [CrossRef]
- Rosenberg, S.A. IL-2: The First Effective Immunotherapy for Human Cancer. J. Immunol. Baltim. 2014, 192, 5451–5458. [Google Scholar] [CrossRef] [Green Version]
- KÖHLER, G.; MILSTEIN, C. Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef]
- Liu, M.A.; Kranz, D.M.; Kurnick, J.T.; Boyle, L.A.; Levy, R.; Eisen, H.N. Heteroantibody Duplexes Target Cells for Lysis by Cytotoxic T Lymphocytes. Proc. Natl. Acad. Sci. USA 1985, 82, 8648–8652. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.A.; Nussbaum, S.R.; Eisen, H.N. Hormone Conjugated with Antibody to CD3 Mediates Cytotoxic T Cell Lysis of Human Melanoma Cells. Science 1988, 239, 395–398. [Google Scholar] [CrossRef]
- Robert, C. A Decade of Immune-Checkpoint Inhibitors in Cancer Therapy. Nat. Commun. 2020, 11, 3801. [Google Scholar] [CrossRef] [PubMed]
- Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front. Oncol. 2018, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A Guide to Cancer Immunotherapy: From T Cell Basic Science to Clinical Practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, N.; MacFie, T.S.; MacDonald, T.T.; Pennington, D.; Silver, A.R. Cancer Immunoediting and “Spontaneous” Tumor Regression. Pathol. Res. Pract. 2010, 206, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Huang, L.; Liu, T. Development and Delivery Systems of MRNA Vaccines. Front. Bioeng. Biotechnol. 2021, 9, 718753. [Google Scholar] [CrossRef]
- Manam, S.; Ledwith, B.J.; Barnum, A.B.; Troilo, P.J.; Pauley, C.J.; Harper, L.B.; Griffiths, T.G.; Niu, Z.; Denisova, L.; Follmer, T.T.; et al. Plasmid DNA Vaccines: Tissue Distribution and Effects of DNA Sequence, Adjuvants and Delivery Method on Integration into Host DNA. Intervirology 2000, 43, 273–281. [Google Scholar] [CrossRef]
- Ledwith, B.J.; Manam, S.; Troilo, P.J.; Barnum, A.B.; Pauley, C.J.; Ii, T.G.G.; Harper, L.B.; Beare, C.M.; Bagdon, W.J.; Nichols, W.W. Plasmid DNA Vaccines: Investigation of Integration into Host Cellular DNA Following Intramuscular Injection in Mice. Intervirology 2000, 43, 258–272. [Google Scholar] [CrossRef]
- Ulmer, J.B.; Liu, M.A. Path to Success and Future Impact of Nucleic Acid Vaccines: DNA and MRNA. Mol. Front. J. 2021, 05, 38–57. [Google Scholar] [CrossRef]
- Guidelines for Assuring the Quality, Safety, and Efficacy of Plasmid DNA Vaccines-Post ECBS Version/1 September 2020. Available online: https://www.who.int/publications/m/item/DNA-post-ECBS-1-sept-2020 (accessed on 11 January 2021).
- COVID-19 Vaccine Doses Administered by Manufacturer. Available online: https://ourworldindata.org/grapher/covid-vaccine-doses-by-manufacturer (accessed on 17 November 2022).
- Klein, N.P.; Lewis, N.; Goddard, K.; Fireman, B.; Zerbo, O.; Hanson, K.E.; Donahue, J.G.; Kharbanda, E.O.; Naleway, A.; Nelson, J.C.; et al. Surveillance for Adverse Events After COVID-19 MRNA Vaccination. JAMA 2021, 326, 1390–1399. [Google Scholar] [CrossRef]
- Toepfner, N.; von Meißner, W.C.G.; Strumann, C.; Drinka, D.; Stuppe, D.; Jorczyk, M.; Moor, J.; Püschel, J.; Liss, M.; von Poblotzki, E.; et al. Comparative Safety of the BNT162b2 Messenger RNA COVID-19 Vaccine vs Other Approved Vaccines in Children Younger Than 5 Years. JAMA Netw. Open 2022, 5, e2237140. [Google Scholar] [CrossRef]
- Ventura, C.; Luís, Â.; Soares, C.P.; Venuti, A.; Paolini, F.; Pereira, L.; Sousa, Â. The Effectiveness of Therapeutic Vaccines for the Treatment of Cervical Intraepithelial Neoplasia 3: A Systematic Review and Meta-Analysis. Vaccines 2022, 10, 1560. [Google Scholar] [CrossRef] [PubMed]
- Boilesen, D.R.; Nielsen, K.N.; Holst, P.J. Novel Antigenic Targets of HPV Therapeutic Vaccines. Vaccines 2021, 9, 1262. [Google Scholar] [CrossRef] [PubMed]
- Sengsayadeth, S.; Savani, B.N.; Oluwole, O.; Dholaria, B. Overview of Approved CAR-T Therapies, Ongoing Clinical Trials, and Its Impact on Clinical Practice. EJHaem 2021, 3, 6–10. [Google Scholar] [CrossRef]
- Caspar, C.B.; Levy, S.; Levy, R. Idiotype Vaccines for Non-Hodgkin’s Lymphoma Induce Polyclonal Immune Responses That Cover Mutated Tumor Idiotypes: Comparison of Different Vaccine Formulations. Blood 1997, 90, 3699–3706. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, F.K.; Zhu, D.; King, C.A.; Ashworth, L.J.; Kumar, S.; Hawkins, R.E. Idiotypic DNA Vaccines against B-Cell Lymphoma. Immunol. Rev. 1995, 145, 211–228. [Google Scholar] [CrossRef]
- Stevenson, F.K.; Zhu, D.; King, C.A.; Ashworth, L.J.; Kumar, S.; Thompsett, A.; Hawkins, R.E. A Genetic Approach to Idiotypic Vaccination for B Cell Lymphoma. Ann. N. Y. Acad. Sci. 1995, 772, 212–226. [Google Scholar] [CrossRef]
- Syrengelas, A.D.; Chen, T.T.; Levy, R. DNA Immunization Induces Protective Immunity against B–Cell Lymphoma. Nat. Med. 1996, 2, 1038–1041. [Google Scholar] [CrossRef] [PubMed]
- Vaccines to Treat Cancer Possible by 2030, Say BioNTech Founders. The Guardian. 2022. Available online: https://www.theguardian.com/society/2022/oct/16/vaccines-to-treat-cancer-possible-by-2030-say-biontech-founders (accessed on 23 November 2022).
- Alameh, M.-G.; Tombácz, I.; Bettini, E.; Lederer, K.; Ndeupen, S.; Sittplangkoon, C.; Wilmore, J.R.; Gaudette, B.T.; Soliman, O.Y.; Pine, M.; et al. Lipid Nanoparticles Enhance the Efficacy of MRNA and Protein Subunit Vaccines by Inducing Robust T Follicular Helper Cell and Humoral Responses. Immunity 2021, 54, 2877–2892.e7. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. MRNA Vaccines—A New Era in Vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef] [Green Version]
- Pardi, N.; Weissman, D. Measuring the Adjuvant Activity of RNA Vaccines. Methods Mol. Biol. 2017, 1499, 143–153. [Google Scholar] [CrossRef]
- Sahin, U.; Karikó, K.; Türeci, Ö. MRNA-Based Therapeutics—Developing a New Class of Drugs. Nat. Rev. Drug Discov. 2014, 13, 759–780. [Google Scholar] [CrossRef]
- Edwards, D.K.; Jasny, E.; Yoon, H.; Horscroft, N.; Schanen, B.; Geter, T.; Fotin-Mleczek, M.; Petsch, B.; Wittman, V. Adjuvant Effects of a Sequence-Engineered MRNA Vaccine: Translational Profiling Demonstrates Similar Human and Murine Innate Response. J. Transl. Med. 2017, 15, 1. [Google Scholar] [CrossRef] [Green Version]
- Doener, F.; Hong, H.S.; Meyer, I.; Tadjalli-Mehr, K.; Daehling, A.; Heidenreich, R.; Koch, S.D.; Fotin-Mleczek, M.; Gnad-Vogt, U. RNA-Based Adjuvant CV8102 Enhances the Immunogenicity of a Licensed Rabies Vaccine in a First-in-Human Trial. Vaccine 2019, 37, 1819–1826. [Google Scholar] [CrossRef]
- Arunachalam, P.S.; Scott, M.K.D.; Hagan, T.; Li, C.; Feng, Y.; Wimmers, F.; Grigoryan, L.; Trisal, M.; Edara, V.V.; Lai, L.; et al. Systems Vaccinology of the BNT162b2 MRNA Vaccine in Humans. Nature 2021, 596, 410–416. [Google Scholar] [CrossRef]
- Li, C.; Lee, A.; Grigoryan, L.; Arunachalam, P.S.; Scott, M.K.D.; Trisal, M.; Wimmers, F.; Sanyal, M.; Weidenbacher, P.A.; Feng, Y.; et al. Mechanisms of Innate and Adaptive Immunity to the Pfizer-BioNTech BNT162b2 Vaccine. Nat. Immunol. 2022, 23, 543–555. [Google Scholar] [CrossRef]
- Lee, G.-H.; Lim, S.-G. CpG-Adjuvanted Hepatitis B Vaccine (HEPLISAV-B®) Update. Expert Rev. Vaccines 2021, 20, 487–495. [Google Scholar] [CrossRef]
- Payne, R.P.; Longet, S.; Austin, J.A.; Skelly, D.T.; Dejnirattisai, W.; Adele, S.; Meardon, N.; Faustini, S.; Al-Taei, S.; Moore, S.C.; et al. Immunogenicity of Standard and Extended Dosing Intervals of BNT162b2 MRNA Vaccine. Cell 2021, 184, 5699–5714.e11. [Google Scholar] [CrossRef] [PubMed]
- Ledgerwood, J.E.; Zephir, K.; Hu, Z.; Wei, C.-J.; Chang, L.; Enama, M.E.; Hendel, C.S.; Sitar, S.; Bailer, R.T.; Koup, R.A.; et al. Prime-Boost Interval Matters: A Randomized Phase 1 Study to Identify the Minimum Interval Necessary to Observe the H5 DNA Influenza Vaccine Priming Effect. J. Infect. Dis. 2013, 208, 418–422. [Google Scholar] [CrossRef] [Green Version]
- Eisen, H.N. Affinity Enhancement of Antibodies: How Low-Affinity Antibodies Produced Early in Immune Responses Are Followed by High-Affinity Antibodies Later and in Memory B-Cell Responses. Cancer Immunol. Res. 2014, 2, 381–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S. Heterologous Prime-Boost Vaccination. Curr. Opin. Immunol. 2009, 21, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Ledgerwood, J.E.; Pierson, T.C.; Hubka, S.A.; Desai, N.; Rucker, S.; Gordon, I.J.; Enama, M.E.; Nelson, S.; Nason, M.; Gu, W.; et al. A West Nile Virus DNA Vaccine Utilizing a Modified Promoter Induces Neutralizing Antibody in Younger and Older Healthy Adults in a Phase I Clinical Trial. J. Infect. Dis. 2011, 203, 1396–1404. [Google Scholar] [CrossRef] [Green Version]
- Garver, K.A.; LaPatra, S.E.; Kurath, G. Efficacy of an Infectious Hematopoietic Necrosis (IHN) Virus DNA Vaccine in Chinook Oncorhynchus Tshawytscha and Sockeye O. Nerka Salmon. Dis. Aquat. Organ. 2005, 64, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Long, A.; Richard, J.; Hawley, L.; LaPatra, S.E.; Garver, K.A. Transmission Potential of Infectious Hematopoietic Necrosis Virus in APEX-IHN®-Vaccinated Atlantic Salmon. Dis. Aquat. Organ. 2017, 122, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Thorarinsson, R.; Wolf, J.C.; Inami, M.; Phillips, L.; Jones, G.; Macdonald, A.M.; Rodriguez, J.F.; Sindre, H.; Skjerve, E.; Rimstad, E.; et al. Effect of a Novel DNA Vaccine against Pancreas Disease Caused by Salmonid Alphavirus Subtype 3 in Atlantic Salmon (Salmo Salar). Fish Shellfish Immunol. 2021, 108, 116–126. [Google Scholar] [CrossRef]
- Iyer, A.V.; Kousoulas, K.G. A Review of Vaccine Approaches for West Nile Virus. Int. J. Environ. Res. Public. Health 2013, 10, 4200–4223. [Google Scholar] [CrossRef] [PubMed]
- Ulmer, J.B.; Donnelly, J.J.; Parker, S.E.; Rhodes, G.H.; Felgner, P.L.; Dwarki, V.J.; Gromkowski, S.H.; Deck, R.R.; DeWitt, C.M.; Friedman, A. Heterologous Protection against Influenza by Injection of DNA Encoding a Viral Protein. Science 1993, 259, 1745–1749. [Google Scholar] [CrossRef]
- Mudd, P.A.; Minervina, A.A.; Pogorelyy, M.V.; Turner, J.S.; Kim, W.; Kalaidina, E.; Petersen, J.; Schmitz, A.J.; Lei, T.; Haile, A.; et al. SARS-CoV-2 MRNA Vaccination Elicits a Robust and Persistent T Follicular Helper Cell Response in Humans. Cell 2022, 185, 603–613.e15. [Google Scholar] [CrossRef]
- Lane, E.G.; Eisen, C.S.; Drotman, M.B.; Dodelzon, K.; Mema, E.; Thomas, C.; Prince, M.R. Time for Resolution of COVID-19 Vaccine–Related Axillary Lymphadenopathy and Associated Factors. Am. J. Roentgenol. 2022, 219, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Özütemiz, C.; Krystosek, L.A.; Church, A.L.; Chauhan, A.; Ellermann, J.M.; Domingo-Musibay, E.; Steinberger, D. Lymphadenopathy in COVID-19 Vaccine Recipients: Diagnostic Dilemma in Oncologic Patients. Radiology 2021, 300, E296–E300. [Google Scholar] [CrossRef]
- Calarota, S.; Bratt, G.; Nordlund, S.; Hinkula, J.; Leandersson, A.C.; Sandström, E.; Wahren, B. Cellular Cytotoxic Response Induced by DNA Vaccination in HIV-1-Infected Patients. Lancet Lond. Engl. 1998, 351, 1320–1325. [Google Scholar] [CrossRef]
- MacGregor, R.R.; Boyer, J.D.; Ugen, K.E.; Lacy, K.E.; Gluckman, S.J.; Bagarazzi, M.L.; Chattergoon, M.A.; Baine, Y.; Higgins, T.J.; Ciccarelli, R.B.; et al. First Human Trial of a DNA-Based Vaccine for Treatment of Human Immunodeficiency Virus Type 1 Infection: Safety and Host Response. J. Infect. Dis. 1998, 178, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Woo, A.S.J.; Kwok, R.; Ahmed, T. Alpha-Interferon Treatment in Hepatitis B. Ann. Transl. Med. 2017, 5, 159. [Google Scholar] [CrossRef] [Green Version]
- Vincenti, F.; Budde, K.; Merville, P.; Shihab, F.; Ram Peddi, V.; Shah, M.; Wyburn, K.; Cassuto-Viguier, E.; Weidemann, A.; Lee, M.; et al. A Randomized, Phase 2 Study of ASP0113, a DNA-Based Vaccine, for the Prevention of CMV in CMV-Seronegative Kidney Transplant Recipients Receiving a Kidney from a CMV-Seropositive Donor. Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 2018, 18, 2945–2954. [Google Scholar] [CrossRef] [Green Version]
- Ljungman, P.; Bermudez, A.; Logan, A.C.; Kharfan-Dabaja, M.A.; Chevallier, P.; Martino, R.; Wulf, G.; Selleslag, D.; Kakihana, K.; Langston, A.; et al. A Randomised, Placebo-Controlled Phase 3 Study to Evaluate the Efficacy and Safety of ASP0113, a DNA-Based CMV Vaccine, in Seropositive Allogeneic Haematopoietic Cell Transplant Recipients. eClinicalMedicine 2021, 33, 100787. [Google Scholar] [CrossRef]
- de Jong, W.; Leal, L.; Buyze, J.; Pannus, P.; Guardo, A.; Salgado, M.; Mothe, B.; Molto, J.; Moron-Lopez, S.; Gálvez, C.; et al. Therapeutic Vaccine in Chronically HIV-1-Infected Patients: A Randomized, Double-Blind, Placebo-Controlled Phase IIa Trial with HTI-TriMix. Vaccines 2019, 7, E209. [Google Scholar] [CrossRef] [Green Version]
- Kübler, H.; Scheel, B.; Gnad-Vogt, U.; Miller, K.; Schultze-Seemann, W.; vom Dorp, F.; Parmiani, G.; Hampel, C.; Wedel, S.; Trojan, L.; et al. Self-Adjuvanted MRNA Vaccination in Advanced Prostate Cancer Patients: A First-in-Man Phase I/IIa Study. J. Immunother. Cancer 2015, 3, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorentzen, C.L.; Haanen, J.B.; Met, Ö.; Svane, I.M. Clinical Advances and Ongoing Trials on MRNA Vaccines for Cancer Treatment. Lancet Oncol. 2022, 23, e450–e458. [Google Scholar] [CrossRef]
- Roth, A.; Garly, M.L.; Jensen, H.; Nielsen, J.; Aaby, P. Bacillus Calmette-Guérin Vaccination and Infant Mortality. Expert Rev. Vaccines 2006, 5, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Malave Sanchez, M.; Saleeb, P.; Kottilil, S.; Mathur, P. Oral Polio Vaccine to Protect Against COVID-19: Out of the Box Strategies? Open Forum Infect. Dis. 2021, 8, ofab367. [Google Scholar] [CrossRef]
- Gong, W.; Mao, Y.; Li, Y.; Qi, Y. BCG Vaccination: A Potential Tool Against COVID-19 and COVID-19-like Black Swan Incidents. Int. Immunopharmacol. 2022, 33, 108870. [Google Scholar] [CrossRef]
- Rivas, M.N.; Ebinger, J.E.; Wu, M.; Sun, N.; Braun, J.; Sobhani, K.; Eyk, J.E.V.; Cheng, S.; Arditi, M. BCG Vaccination History Associates with Decreased SARS-CoV-2 Seroprevalence across a Diverse Cohort of Health Care Workers. J. Clin. Investig. 2021, 131, 1–11. [Google Scholar] [CrossRef]
- Laupèze, B.; Del Giudice, G.; Doherty, M.T.; Van der Most, R. Vaccination as a Preventative Measure Contributing to Immune Fitness. Npj Vaccines 2021, 6, 93. [Google Scholar] [CrossRef]
- Whiteside, T.L. Immune Suppression in Cancer: Effects on Immune Cells, Mechanisms and Future Therapeutic Intervention. Semin. Cancer Biol. 2006, 16, 3–15. [Google Scholar] [CrossRef]
Pathogen | Infectious Disease | Malignancy |
---|---|---|
Hepatitis B Virus | Acute and Chronic Hepatitis | Hepatocellular Carcinoma |
Hepatitis C Virus | Acute and Chronic Hepatitis | Hepatocellular Carcinoma |
Human Papilloma Virus (outcome is strain-dependent) | Warts | Cervical Carcinoma Non-Melanoma Skin Cancer (NMSC), Anogenital Carcinoma |
Epstein–Barr Virus | Mononucleosis | B-cell Lymphoproliferative Diseases including various B Cell Lymphomas, Post-transplantation Lymphoproliferative Disease, Nasopharyngeal Carcinoma |
H. pylori | Peptic Ulcers | Gastric Carcinoma, Gastric Mucosa-Associated Lymphoid Tissue (MALT) lymphoma. |
|
|
|
|
|
DNA | mRNA |
---|---|
COVID-19 authorized, needle-free delivery (India) | COVID-19 Vaccines: Licensed: multiple countries |
Equine West Nile Virus (2005, USA) | |
Fish Hematopoietic Necrosis Virus (2005, Canada) | |
Fish Salmon Alphavirus Subtype 3 (2016, Europe) | |
Dog Melanoma: Cancer immunotherapeutic vaccine (2007, USA) | |
Non-vaccine: Pig Growth Hormone Releasing Hormone (2008, Australia; Pregnant sows; electroporation) |
Vaccine | Mechanism/Comments |
---|---|
Fish Hematopoietic Necrosis Virus | Neutralizing antibody Complete or near-complete prevention of viral spread to unimmunized co-habiting fish [55,56] |
Fish Salmon Alphavirus Subtype 3 | Neutralizing antibody Better protection than traditional vaccine; Decreased viral spread to unimmunized fish [57] |
Equine West Nile Virus | Neutralizing antibody [58] (Antibodies in human trials for WNV with a DNA vaccine including the eldery yielded antibody titers also expected to be protective. Promoter for DNA vaccine had been optimized [54]) |
Virus | Name | Title | Antigen(s) | Formulation/Additional Interventions | NCT Number(s) | Phase | Start/Finish (or Estimated Study Completion) | Status |
---|---|---|---|---|---|---|---|---|
Hepatitis B | pCMV-S2.S DNA | A Randomized Controlled Trial of Dual-plasmid HBV DNA Vaccine Mediated by in Vivo Electroporation in Chronic Hepatitis B Patients Under Lamivudine Chemotherapy | Small (S), Middle (preS2 + S) Envelope proteins | Enrolled following viral breakthrough while on lamivudine | NCT00988767 | 1 | February 2001–October 2004 | Completed |
Hepatitis B | JNJ-64300535 | A First-In-Human Study to Evaluate Safety, Tolerability, Reactogenicity, and Immunogenicity of JNJ-64300535, a DNA Vaccines, Administered by Electroporation-Mediated Intramuscular Injection, in Participants with Chronic Hepatitis B Who Are on Stable Nucleos(t)ide Therapy and Virologically Suppressed | Core, Polymerase (Pol) | Electroporation, nucleos(t)ide therapy | NCT03463369 | I | 18 April 2018–23 March 2021 | Completed |
Hepatitis B | JNJ-64300535 | A Phase 1b, Open-label, Single-arm, Multicenter Study to Assess Efficacy, Safety, and Tolerability of Treatment With JNJ-73763989, JNJ-64300535, and Nucleos(t)Ide Analogs in Virologically Suppressed, HBeAg-negative Participants With Chronic Hepatitis B Virus Infection | Core, Polymerase (Pol) | Electroporation, nucleos(t)ide analogs, experimental RNAi | NCT05123599 | Ib | 6 December 2021–2 August 2024 | Recruiting |
Hepatitis B | INO-1800 | Phase I, Randomized, Open-Label, Active-Controlled, Dose Escalation Study to Evaluate the Safety, Tolerability & Immunogenicity of INO-1800 Alone or in Combination With INO-9112 Delivered IM Followed by EP in Select Nucleos(t)Ide Analogue-Treated, Chronic Hepatitis B Patients | Surface Ag, Core | Electroporation, nucleos(t)ide Analogs, +/−IL-2 delivered as DNA (INO-9112) | NCT02431312 | I | 12 January 2015–22 May 2018 | Completed |
Hepatitis C | INO-8000 | Phase I Trial of a Therapeutic DNA Vaccine for Chronic Hepatitis C Virus (HCV) Infection | Nonstructural proteins 3 (NS3), 4A (NS4A), 4B (NS4B) and 5A (NS5A) | Electroporation, INO-9012 (IL-12 adjuvant DNA) | NCT02772003 | 1 | 6 June 2016–4 March 2020 | Active, Not Recruiting |
Hepatitis C | CHRONVAC-C® | A Phase I/IIa Open-Label, Dose Ranging, Parallel, Safety, Tolerability and Efficacy Study of i.m. Administered CHRONVAC-C® in Combination With Electroporation in Chronic HCV Genotype 1 Infected and Treatment Naïve Patients With Low Viral Load | Nonstructural proteins NS3/NS4a | Electroporation, Peg-IFNα/Ribavirin | NCT00563173 | 1/2a | October 2007–April 2010 | Unknown |
Hepatitis C | CHRONVAC-C® | A Phase II Open-Label, Randomized, Parallel Group, Safety, Tolerability and Efficacy Study of i.m. Administered CHRONVAC-C in Combination With Electroporation Followed by Standard of Care in Chronic Hepatitis C Virus Genotype 1 Infected and Treatment Naïve Subjects | Nonstructural proteins NS3/NS4a | Electroporation, Peg-IFN-α-2a/Ribavirin | NCT03463369 | 2 | April 2011–June 2012 | Unknown |
CMV | ASP0113 | A Phase 1, Single-Blind, Parallel-Group, Pharmacokinetic and Immunogenicity Study With ASP0113 in CMV-Seropositive and CMV-Seronegative Healthy Subjects and CMV-Seronegative Dialysis Patients | Two plasmids: Glycoprotein B and phosphoprotein 65 (pp65) | Formulated with CRL1005 poloxamer and benzalkonium chloride; Patients seropositive and seronegative | NCT02103426 | 1 | 30 December 2013–10 May 2016 | Completed |
CMV | ASP0113 | A Randomized, Double-Blind, Placebo-Controlled, Phase 2 Trial to Evaluate the Efficacy and Safety of a Vaccine, ASP0113, in Cytomegalovirus (CMV)-Seronegative Kidney Transplant Recipients Receiving an Organ From a CMV-Seropositive Donor | Two plasmids: Glycoprotein B and phosphoprotein 65 (pp65) | Formulated with CRL1005 poloxamer and benzalkonium chloride. Immunization started after transplant performed. | NCT01974206 | 2 | 20 November 2013–5 November 2020 | Completed; No efficacy |
CMV | ASP0113 | A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Trial to Evaluate the Protective Efficacy and Safety of a Therapeutic Vaccine, ASP0113, in Cytomegalovirus (CMV)-Seropositive Recipients Undergoing Allogeneic, Hematopoietic Cell Transplant (HCT) | Two plasmids: Glycoprotein B and phosphoprotein 65 (pp65); | Formulated with CRL1005 poloxamer and benzalkonium chloride; Patients seropositive but no active infection or disease | NCT01877655 | 3 | 11 September 2013–1 March 2022 | Completed; No efficacy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.A. DNA and mRNA Vaccines for Chronic Viral Infections and Cancer: Rationale, Mechanisms, and Progress. Cancers 2022, 14, 5874. https://doi.org/10.3390/cancers14235874
Liu MA. DNA and mRNA Vaccines for Chronic Viral Infections and Cancer: Rationale, Mechanisms, and Progress. Cancers. 2022; 14(23):5874. https://doi.org/10.3390/cancers14235874
Chicago/Turabian StyleLiu, Margaret A. 2022. "DNA and mRNA Vaccines for Chronic Viral Infections and Cancer: Rationale, Mechanisms, and Progress" Cancers 14, no. 23: 5874. https://doi.org/10.3390/cancers14235874
APA StyleLiu, M. A. (2022). DNA and mRNA Vaccines for Chronic Viral Infections and Cancer: Rationale, Mechanisms, and Progress. Cancers, 14(23), 5874. https://doi.org/10.3390/cancers14235874