Utility of ctDNA Liquid Biopsies from Cancer Patients: An Institutional Study of 285 ctDNA Samples
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. ctDNA Liquid Biopsy Processing for Mutation Determination by the IdyllaTM System
2.3. Tissue Biopsy Processing by the IdyllaTM System for Mutation Determination
3. Results
3.1. Clinical Findings
3.2. ctDNA Liquid Biopsy for Treatment Selection
3.3. ctDNA Liquid Biopsy and Resistance to Oncological Treatment
3.4. ctDNA Liquid Biopsy in Follow-Up Care
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Domínguez-Vigil, I.G.; Moreno-Martínez, A.K.; Wang, J.Y.; Roehrl, M.H.; Barrera-Saldaña, H.A. The dawn of the liquid biopsy in the fight against cancer. Oncotarget 2017, 9, 2912–2922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedard, P.L.; Hansen, A.R.; Ratain, M.J.; Siu, L.L. Tumour heterogeneity in the clinic. Nature 2013, 501, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galbiati, S.; Damin, F.; Ferraro, L.; Soriani, N.; Burgio, V.; Ronzoni, M.; Gianni, L.; Ferrari, M.; Chiari, M. Microarray Approach Combined with ddPCR: An Useful Pipeline for the Detection and Quantification of Circulating Tumour dna Mutations. Cells 2019, 24, 769. [Google Scholar] [CrossRef] [Green Version]
- Pinzani, P.; D’Argenio, V.; Del Re, M.; Pellegrini, C.; Cucchiara, F.; Salvianti, F.; Galbiati, S. Updates on liquid biopsy: Current trends and future perspectives for clinical application in solid tumors. Clin. Chem. Lab. Med. 2021, 5, 1181–1200. [Google Scholar] [CrossRef]
- Ignatiadis, M.; Sledge, G.W.; Jeffrey, S.S. Liquid biopsy enters the clinic—Implementation issues and future challenges. Nat. Rev. Clin. Oncol. 2021, 18, 297–312. [Google Scholar] [CrossRef]
- De Mattos-Arruda, L.; Siravegna, G. How to use liquid biopsies to treat patients with cancer. ESMO Open 2021, 6, 100060. [Google Scholar] [CrossRef]
- Siravegna, G.; Mussolin, B.; Venesio, T.; Marsoni, S.; Seoane, J.; Dive, C.; Papadopoulos, N.; Kopetz, S.; Corcoran, R.B.; Siu, L.L.; et al. How liquid biopsies can change clinical practice in oncology. Ann. Oncol. 2019, 30, 1580–1590. [Google Scholar] [CrossRef] [Green Version]
- Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 2017, 14, 531–548. [Google Scholar] [CrossRef]
- Pérez-Soler, R.; Chachoua, A.; Hammond, L.A.; Rowinsky, E.K.; Huberman, M.; Karp, D.; Rigas, J.; Clark, G.M.; Santabárbara, P.; Bonomi, P. Determinants of tumor response and survival with erlotinib in patients with non-small-cell lung cancer. J. Clin. Oncol. 2004, 22, 3238–3247. [Google Scholar] [CrossRef]
- Asahina, H.; Yamazaki, K.; Kinoshita, I.; Sukoh, N.; Harada, M.; Yokouchi, H.; Ishida, T.; Ogura, S.; Kojima, T.; Okamoto, Y.; et al. A phase II trial of gefitinib as first-line therapy for advanced non-small cell lung cancer with epidermal growth factor receptor mutations. Br. J. Cancer 2006, 95, 998–1004. [Google Scholar] [CrossRef]
- Esteban, E.; Majem, M.; Martinez Aguillo, M.; Martinez Banaclocha, N.; Dómine, M.; Gómez Aldaravi, L.; Juan, O.; Cajal, R.; Gonzalez Arenas, M.C.; Provencio, M. Prevalence of EGFR mutations in newly diagnosed locally advanced or metastatic non-small cell lung cancer Spanish patients and its association with histological subtypes and clinical features: The Spanish REASON study. Cancer Epidemiol. 2015, 39, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Verzè, M.; Minari, R.; Gnetti, L.; Bordi, P.; Leonetti, A.; Cosenza, A.; Ferri, L.; Majori, M.; De Filippo, M.; Buti, S.; et al. Monitoring cfDNA in Plasma and in Other Liquid Biopsies of Advanced EGFR Mutated NSCLC Patients: A Pilot Study and a Review of the Literature. Cancers 2021, 13, 5403. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benvenuti, S.; Sartore-Bianchi, A.; Di Nicolantonio, F.; Zanon, C.; Moroni, M.; Veronese, S.; Siena, S.; Bardelli, A. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res. 2007, 67, 2643–2648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lièvre, A.; Bachet, J.B.; Boige, V.; Cayre, A.; Le Corre, D.; Buc, E.; Ychou, M.; Bouché, O.; Landi, B.; Louvet, C.; et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J. Clin. Oncol. 2008, 26, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Douillard, J.Y.; Oliner, K.S.; Siena, S.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med. 2013, 369, 1023–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stintzing, S.; Miller-Phillips, L.; Modest, D.P.; Fischer von Weikersthal, L.; Decker, T.; Kiani, A.; Vehling-Kaiser, U.; Al-Batran, S.E.; Heintges, T.; Kahl, C.; et al. FIRE-3 Investigators. Impact of BRAF and RAS mutations on first-line efficacy of FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab: Analysis of the FIRE-3 (AIO KRK-0306) study. Eur. J. Cancer 2017, 79, 50–60. [Google Scholar] [CrossRef]
- Mok, T.S.; Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.; et al. AURA3 Investigators. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N. Engl. J. Med. 2017, 376, 629–640. [Google Scholar] [CrossRef] [Green Version]
- Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer 2019, 121, 725–737. [Google Scholar] [CrossRef]
- Gilson, P.; Saurel, C.; Salleron, J.; Husson, M.; Demange, J.; Merlin, J.L.; Harlé, A. Evaluation of the Idylla ctEGFR mutation assay to detect EGFR mutations in plasma from patients with non-small cell lung cancers. Sci. Rep. 2021, 11, 10470. [Google Scholar] [CrossRef]
- Remon, J.; Steuer, C.E.; Ramalingam, S.S.; Felip, E. Osimertinib and other third-generation EGFR TKI in EGFR-mutant NSCLC patients. Ann. Oncol. 2018, 29, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef]
- Kanemaru, H.; Mizukami, Y.; Kaneko, A.; Kajihara, I.; Fukushima, S. Promising Blood-Based Biomarkers for Melanoma: Recent Progress of Liquid Biopsy and Its Future Perspectives. Curr. Treat. Options Oncol. 2022, 23, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Karaszewska, B.; Schachter, J.; Rutkowski, P.; Mackiewicz, A.; Stroiakovski, D.; Lichinitser, M.; Dummer, R.; Grange, F.; Mortier, L.; et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med. 2015, 372, 30–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.K.; Hoon, D.S. Liquid biopsy utility for the surveillance of cutaneous malignant melanoma patients. Mol. Oncol. 2016, 10, 450–463. [Google Scholar] [CrossRef]
- Calapre, L.; Warburton, L.; Millward, M.; Ziman, M.; Gray, E.S. Circulating tumour DNA (ctDNA) as a liquid biopsy for melanoma. Cancer Lett. 2017, 404, 62–69. [Google Scholar] [CrossRef]
- Salvianti, F.; Massi, D.; De Giorgi, V.; Gori, A.; Pazzagli, M.; Pinzani, P. Evaluation of the liquid biopsy for the detection of BRAFV600E mutation in metastatic melanoma patients. Cancer Biomark. 2019, 26, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Alrabadi, N.; Haddad, R.; Alomari, A.K. Detection of Gene Mutations in Liquid Biopsy of Melanoma Patients: Overview and Future Perspectives. Curr. Treat. Options Oncol. 2020, 21, 19. [Google Scholar] [CrossRef]
- Di Guardo, L.; Randon, G.; Corti, F.; Vallacchi, V.; Raimondi, A.; Fucà, G.; Bini, M.; Maurichi, A.; Patuzzo, R.; Gallino, G.; et al. Liquid Biopsy and Radiological Response Predict Outcomes Following Discontinuation of Targeted Therapy in Patients with BRAF Mutated Melanoma. Oncologist 2021, 26, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Schreuer, M.; Meersseman, G.; Van Den Herrewegen, S.; Jansen, Y.; Chevolet, I.; Bott, A.; Wilgenhof, S.; Seremet, T.; Jacobs, B.; Buyl, R.; et al. Quantitative assessment of BRAF V600 mutant circulating cell-free tumor DNA as a tool for therapeutic monitoring in metastatic melanoma patients treated with BRAF/MEK inhibitors. J. Transl. Med. 2016, 14, 95. [Google Scholar] [CrossRef] [PubMed]
- Honoré, N.; Galot, R.; van Marcke, C.; Limaye, N.; Machiels, J.-P. Liquid Biopsy to Detect Minimal Residual Disease: Methodology and Impact. Cancers 2021, 13, 5364. [Google Scholar] [CrossRef]
- Aggarwal, C.; Bubendorf, L.; Cooper, W.A.; Illei, P.; Borralho Nunes, P.; Ong, B.H.; Tsao, M.S.; Yatabe, Y.; Kerr, K.M. Molecular testing in stage I-III non-small cell lung cancer: Approaches and challenges. Lung Cancer 2021, 162, 42–53. [Google Scholar] [CrossRef]
Total | Treatment Selection | Treatment Resistance | Disease Follow-Up | |
---|---|---|---|---|
Patients | 199 | 157 | 20 | 24 |
Liquid biopsies | 285 | 157 | 37 | 91 |
Age, median (Q1, Q3) | 68 (60, 75) | 69 (63, 76) | 62 (59, 71) | 59 (49, 68) |
Sex, n (%) | ||||
Male | 114 (57%) | 96 (61%) | 7 (35%) | 12 (50%) |
Female | 85 (43%) | 61 (39%) | 13 (65%) | 12 (50%) |
Stage, n (%) | ||||
II | 3 (2%) | 3 (2%) | 0 | 0 |
III | 30 (15%) | 12 (8%) | 0 | 18 (75%) |
IV | 165 (83%) | 141 (90%) | 20 (100%) | 6 (25%) |
Not available | 1 (<1%) | 1 (<1%) | 0 | 0 |
Tumor location, n (%) | ||||
Colorectal | 53 (27%) | 53 (34%) | 0 | 0 |
Lung | 122 (61%) | 104 (66%) | 20 (100%) | 0 |
Melanoma | 24 (12%) | 0 | 0 | 24 (100%) |
Histology, n (%) | ||||
SCLC | 1 (0.5%) | 1 (1%) | 0 | 0 |
NSCLC | 5 (2.5%) | 5 (3%) | 0 | 0 |
Adenocarcinoma | 150 (75%) | 132 (84%) | 20 (100%) | 0 |
Large cell neuroendocrine carcinoma | 2 (1%) | 2 (1%) | 0 | 0 |
Squamous | 10 (5%) | 10 (6%) | 0 | 0 |
Melanoma | 26 (13%) | 2 (1%) | 0 | 24 (100%) |
Not available | 5 (2.5%) | 5 (3%) | 0 | 0 |
Liquid Biopsy Positive | Liquid Biopsy Negative | |
---|---|---|
Overall (n = 157) | 28 | 129 |
Tissue biopsy positive | 12 | 6 |
Tissue biopsy negative | 2 | 80 |
No tissue biopsy | 14 | 43 |
Lung (n = 104) | 9 | 95 |
Tissue biopsy positive | 2 | 2 |
Tissue biopsy negative | 2 | 65 |
No tissue biopsy | 5 | 28 |
Colorectal cancer (n = 53) | 19 | 34 |
Tissue biopsy positive | 10 | 4 |
Tissue biopsy negative | 0 | 15 |
No tissue biopsy | 9 | 15 |
Tumor | Total Patients (n, %) | Tissue Biopsy Positive (n, %) | Tissue Biopsy Negative (n, %) | No Tissue Biopsy (n, %) |
---|---|---|---|---|
Lung | 104 | 4 | 67 | 33 |
LB− total | 95 (91.3%) | 2 (50%) | 65 (97%) | 28 (84.8%) |
LB+ total | 9 (8.7%) | 2 (50%) | 2 (3%) | 5 (15.2%) |
EGFR-DEL19 | 3 (2.9%) | 1 (25%) | 0 | 2 (6.1%) |
EGFR-L858R | 6 (5.8%) | 1 (25%) | 2 (3%) | 3 (9.1%) |
Colorectal | 53 | 14 | 15 | 24 |
LB− total | 34 (64.2%) | 4 (28.6%) | 15 (100%) | 15 (62.5%) |
LB+ total | 19 (35.8%) | 10 (71.4%) | 0 | 9 (37.5%) |
KRAS G12C | 2 (3.8%) | 0 | 0 | 2 (8.3%) |
KRAS G12D | 5 (9.4%) | 3 (27.3%) | 0 | 2 (8.3%) |
KRAS G12S | 1 (1.9%) | 0 | 0 | 1 (4.2%) |
KRAS G12V | 3 (7.5%) | 1 (9.1%) | 0 | 3 (12.5%) |
KRAS G13D | 3 (5.7%) | 3 (27.3%) | 0 | 0 |
KRAS NOS | 1 (1.9%) | 0 | 0 | 1 (4.2%) |
BRAF V600E/D | 3 (5.7%) | 3 (27.3%) | 0 | 0 |
Initial Alteration n | Follow-Up EGFR-T790M n (%) | |
---|---|---|
EGFR mutations | 20 | 9 (45) |
EGFR-DEL19 (exon 19) | 11 | 4 (36) |
EGFR-L858R (exon 21) | 8 | 5 (62) |
EGFR-G719X (exon 18) | 1 | 0 (0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumà, J.; Peña, K.; Riu, F.; Guilarte, C.; Hernandez, A.; Lucía, C.; Martínez-Madueño, F.; Miranda, M.J.; Cabezas, I.; Grifoll, M.; et al. Utility of ctDNA Liquid Biopsies from Cancer Patients: An Institutional Study of 285 ctDNA Samples. Cancers 2022, 14, 5859. https://doi.org/10.3390/cancers14235859
Gumà J, Peña K, Riu F, Guilarte C, Hernandez A, Lucía C, Martínez-Madueño F, Miranda MJ, Cabezas I, Grifoll M, et al. Utility of ctDNA Liquid Biopsies from Cancer Patients: An Institutional Study of 285 ctDNA Samples. Cancers. 2022; 14(23):5859. https://doi.org/10.3390/cancers14235859
Chicago/Turabian StyleGumà, Josep, Karla Peña, Francesc Riu, Carmen Guilarte, Anna Hernandez, Clara Lucía, Francisca Martínez-Madueño, Maria José Miranda, Inés Cabezas, Marc Grifoll, and et al. 2022. "Utility of ctDNA Liquid Biopsies from Cancer Patients: An Institutional Study of 285 ctDNA Samples" Cancers 14, no. 23: 5859. https://doi.org/10.3390/cancers14235859
APA StyleGumà, J., Peña, K., Riu, F., Guilarte, C., Hernandez, A., Lucía, C., Martínez-Madueño, F., Miranda, M. J., Cabezas, I., Grifoll, M., Peralta, S., Serrano, S., Muñoz, F., Delamo, L., Roig, B., Borràs, J., Badia, J., Rodriguez-Balada, M., & Parada, D. (2022). Utility of ctDNA Liquid Biopsies from Cancer Patients: An Institutional Study of 285 ctDNA Samples. Cancers, 14(23), 5859. https://doi.org/10.3390/cancers14235859