Current Radiotherapy Considerations for Nasopharyngeal Carcinoma †
Abstract
:Simple Summary
Abstract
1. Introduction
2. Target Delineation
2.1. CTV Delineation of Primary Tumors
2.2. CTV Delineation of Regional Lymphatics
3. Optimizing Prescription Doses
3.1. Dose De-Escalation
3.2. Dose Escalation
4. Sparing Organs at Risk
5. Future Directions
5.1. Adaptive Radiotherapy
5.2. Particle Therapy
5.3. Artificial Intelligence
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Au, K.H.; Ngan, R.K.C.; Ng, A.W.Y.; Poon, D.M.C.; Ng, W.T.; Yuen, K.T.; Lee, V.H.F.; Tung, S.Y.; Chan, A.T.C.; Sze, H.C.K.; et al. Treatment outcomes of nasopharyngeal carcinoma in modern era after intensity modulated radiotherapy (IMRT) in Hong Kong: A report of 3328 patients (HKNPCSG 1301 study). Oral Oncol. 2018, 77, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.-B.; Wang, Y.; Chun-Yan, C.; He, S.-S.; Yang, X.-L.; Liu, L.-Z.; Cui, C.-Y.; Chen, Y.; Fu, L.-W. Survival and Toxicities of IMRT Based on the RTOG Protocols in Patients with Nasopharyngeal Carcinoma from the Endemic Regions of China. J. Cancer 2017, 8, 3718–3724. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.W.; Ng, W.T.; Pan, J.J.; Chiang, C.-L.; Poh, S.S.; Choi, H.C.; Ahn, Y.C.; AlHussain, H.; Corry, J.; Grau, C.; et al. International Guideline on Dose Prioritization and Acceptance Criteria in Radiation Therapy Planning for Nasopharyngeal Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 567–580. [Google Scholar] [CrossRef]
- Lee, A.W.; Ng, W.T.; Pan, J.J.; Poh, S.S.; Ahn, Y.C.; AlHussain, H.; Corry, J.; Grau, C.; Grégoire, V.; Harrington, K.J.; et al. International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma. Radiother. Oncol. 2018, 126, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yang, S.; Xu, P.; Xu, Y.; Zhou, G.; Ou, X.; Wu, R.; Lan, M.; Fontanarosa, D.; Dowling, J.; et al. Variations of Clinical Target Volume Delineation for Primary Site of Nasopharyngeal Cancer Among Five Centers in China. Front. Oncol. 2020, 10, 1572. [Google Scholar] [CrossRef]
- Corry, J.; Ng, W.T.; Moore, A.; Choi, H.C.; Le, Q.; Holmes, S.; Munandar, A.; Wang, S.; Camacho, A.; Setakornnukul, J.; et al. Can Radiation Therapy Quality Assurance Improve Nasopharyngeal Cancer Outcomes in Low- and Middle-Income Countries: Reporting the First Phase of a Prospective International Atomic Energy Agency Study. Int. J. Radiat. Oncol. 2021, 111, 1227–1236. [Google Scholar] [CrossRef]
- Grégoire, V.; Evans, M.; Le, Q.-T.; Bourhis, J.; Budach, V.; Chen, A.; Eisbruch, A.; Feng, M.; Giralt, J.; Gupta, T.; et al. Delineation of the primary tumour Clinical Target Volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma: AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG Oncology, PHNS, SBRT, SOMERA, SRO, SSHNO, TROG consensus guidelines. Radiother. Oncol. 2018, 126, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Li, A.-C.; Zhang, Y.-Y.; Zhang, C.; Wang, D.-S.; Xu, B.-H. Pathologic study of tumour extension for clinically localized unilateral nasopharyngeal carcinoma: Should the contralateral side be included in the clinical target volume? J. Med. Imaging Radiat. Oncol. 2018, 62, 540–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Yu, X.-L.; Zhang, G.-S.; Liu, Y.-M.; Tao, C.-J.; Guo, R.; Tang, L.-L.; Zhang, R.; Guo, Y.; Ma, J. Reduction of clinical target volume in patients with lateralized cancer of the nasopharynx and without contralateral lymph node metastasis receiving intensity-modulated radiotherapy. Head Neck 2016, 38 (Suppl. 1), E468–E472. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, L.; He, Q.; Li, F.; Ma, H.; Zhou, Y.; Wang, H.; Han, Y. Characteristics of locoregional extension of unilateral nasopharyngeal carcinoma and suggestions for clinical target volume delineation. Radiat. Oncol. 2022, 17, 52. [Google Scholar] [CrossRef]
- Xie, D.-H.; Wu, Z.; Li, W.-Z.; Cheng, W.-Q.; Tao, Y.-L.; Wang, L.; Lv, S.-W.; Lin, F.-F.; Cui, N.-J.; Zhao, C.; et al. Individualized clinical target volume delineation and efficacy analysis in unilateral nasopharyngeal carcinoma treated with intensity-modulated radiotherapy (IMRT): 10-year summary. J. Cancer Res. Clin. Oncol. 2022, 148, 1931–1942. [Google Scholar] [CrossRef] [PubMed]
- Sanford, N.N.; Lau, J.; Lam, M.B.; Juliano, A.F.; Adams, J.A.; Goldberg, S.I.; Lu, H.-M.; Lu, Y.C.; Liebsch, N.J.; Curtin, H.D.; et al. Individualization of Clinical Target Volume Delineation Based on Stepwise Spread of Nasopharyngeal Carcinoma: Outcome of More Than a Decade of Clinical Experience. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 654–668. [Google Scholar] [CrossRef]
- Sun, Y.; Li, W.-F.; Chen, N.-Y.; Zhang, N.; Hu, G.-Q.; Xie, F.-Y.; Sun, Y.; Chen, X.-Z.; Li, J.-G.; Zhu, X.-D.; et al. Induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: A phase 3, multicentre, randomised controlled trial. Lancet Oncol. 2016, 17, 1509–1520. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, L.; Hu, G.-Q.; Zhang, N.; Zhu, X.-D.; Yang, K.-Y.; Jin, F.; Shi, M.; Chen, Y.P.; Hu, W.-H.; et al. Gemcitabine and Cisplatin Induction Chemotherapy in Nasopharyngeal Carcinoma. N. Engl. J. Med. 2019, 381, 1124–1135. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.-F.; Ni, M.-S.; Zhai, R.-P.; Ying, H.-M.; Hu, C.-S. Local control and failure patterns after intensity modulated radiotherapy with reduced target volume delineation after induction chemotherapy for patients with T4 nasopharyngeal carcinoma. Transl. Oncol. 2022, 16, 101324. [Google Scholar] [CrossRef]
- Xue, F.; Ou, D.; Ou, X.; Zhou, X.; Hu, C.; He, X. Long-term results of the phase II dose and volume de-escalation trial for locoregionally advanced nasopharyngeal carcinoma. Oral Oncol. 2022, 134, 106139. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, X.; Lin, S.; Rong, J.; Yang, M.; Wen, Q.; Shang, C.; He, L.; Ren, P.; Xu, S.; et al. Treatment outcomes after reduction of the target volume of intensity-modulated radiotherapy following induction chemotherapy in patients with locoregionally advanced nasopharyngeal carcinoma: A prospective, multi-center, randomized clinical trial. Radiother. Oncol. 2018, 126, 37–42. [Google Scholar] [CrossRef]
- Zhao, C.; Miao, J.-J.; Hua, Y.-J.; Wang, L.; Han, F.; Lu, L.-X.; Xiao, W.-W.; Wu, H.-J.; Zhu, M.-Y.; Huang, S.-M.; et al. Locoregional Control and Mild Late Toxicity After Reducing Target Volumes and Radiation Doses in Patients With Locoregionally Advanced Nasopharyngeal Carcinoma Treated With Induction Chemotherapy (IC) Followed by Concurrent Chemoradiotherapy: 10-Year Results of a Phase 2 Study. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 836–844. [Google Scholar] [CrossRef]
- Ho, F.C.H.; Tham, I.W.K.; Earnest, A.; Lee, K.M.; Lu, J.J. Patterns of regional lymph node metastasis of nasopharyngeal carcinoma: A meta-analysis of clinical evidence. BMC Cancer 2012, 12, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, W.-R.; Suami, H.; Corlett, R.J.; Ashton, M.W. Lymphatic drainage of the nasal fossae and nasopharynx: Preliminary anatomical and radiological study with clinical implications. Head Neck J. Sci. Spec. Head Neck 2009, 31, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Lu, Y.; Wang, X.-J.; Chen, H.; Yu, S.; Tian, J.; Zhou, G.-Q.; Zhang, L.-L.; Qi, Z.-Y.; Hu, J.; et al. Delineation of Neck Clinical Target Volume Specific to Nasopharyngeal Carcinoma Based on Lymph Node Distribution and the International Consensus Guidelines. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 891–902. [Google Scholar] [CrossRef]
- Grégoire, V.; Ang, K.; Budach, W.; Grau, C.; Hamoir, M.; Langendijk, J.A.; Lee, A.; Le, Q.-T.; Maingon, P.; Nutting, C.; et al. Delineation of the neck node levels for head and neck tumors: A 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines. Radiother. Oncol. 2014, 110, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.T.; Ms, R.K.Y.T.; Beitler, J.J.; Bree, R.; Coca-Pelaz, A.; Eisbruch, A.; Guntinas-Lichius, O.; Lee, A.W.M.; Mäkitie, A.A.; Mendenhall, W.M.; et al. Contemporary management of the neck in nasopharyngeal carcinoma. Head Neck 2021, 43, 1949–1963. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liao, X.; Wang, Y.; Lan, W.; Ren, J.; Yang, N.; Li, C.; Lang, J.; Zhang, S. Level Ib CTV delineation in nasopharyngeal carcinoma based on lymph node distribution and topographic anatomy. Radiother. Oncol. 2022, 172, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Huang, C.; Yang, K.; Guo, R.; Qiu, Y.; Li, W.; Mao, Y.; Tang, L.; Ma, J. Neck level Ib-sparing versus level Ib-irradiation in intensity-modulated radiotherapy for the treatment of nasopharyngeal carcinoma with high-risk factors: A propensity score-matched cohort study. Radiother. Oncol. 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.-L.; Huang, C.-L.; Zhang, N.; Jiang, W.; Wu, Y.-S.; Huang, S.H.; Mao, Y.-P.; Liu, Q.; Li, J.-B.; Liang, S.-Q.; et al. Elective upper-neck versus whole-neck irradiation of the uninvolved neck in patients with nasopharyngeal carcinoma: An open-label, non-inferiority, multicentre, randomised phase 3 trial. Lancet Oncol. 2022, 23, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Kaanders, J.H.; Bosch, S.V.D.; Dijkema, T.; Al-Mamgani, A.; Raaijmakers, C.P.; Vogel, W.V. Advances in cancer imaging require renewed radiotherapy dose and target volume concepts. Radiother. Oncol. 2020, 148, 140–142. [Google Scholar] [CrossRef]
- Bosch, S.V.D.; Vogel, W.V.; Raaijmakers, C.P.; Dijkema, T.; Terhaard, C.H.; Al-Mamgani, A.; Kaanders, J.H. Implications of improved diagnostic imaging of small nodal metastases in head and neck cancer: Radiotherapy target volume transformation and dose de-escalation. Radiother. Oncol. 2018, 128, 472–478. [Google Scholar] [CrossRef]
- Guo, Q.; Zheng, Y.; Lin, J.; Xu, Y.; Hu, C.; Zong, J.; Lu, T.; Xu, H.; Chen, B.; Liang, Q.; et al. Modified reduced-volume intensity-modulated radiation therapy in non-metastatic nasopharyngeal carcinoma: A prospective observation series. Radiother. Oncol. 2021, 156, 251–257. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Jiang, S.; Zhao, J.; Wang, P.; Zhang, X.; Wang, F.; Yin, Z.; Wang, P. Safety and Effectiveness of De-escalated Radiation Dose in T1-3 Nasopharyngeal Carcinoma: A Propensity Matched Analysis. J. Cancer 2019, 10, 5057–5064. [Google Scholar] [CrossRef] [PubMed]
- Buehrlen, M.; Zwaan, C.M.; Granzen, B.; Lassay, L.; Deutz, P.; Vorwerk, P.; Staatz, G.; Gademann, G.; Christiansen, H.; Oldenburger, F.; et al. Multimodal treatment, including interferon beta, of nasopharyngeal carcinoma in children and young adults: Preliminary results from the prospective, multicenter study NPC-2003-GPOH/DCOG. Cancer 2012, 118, 4892–4900. [Google Scholar] [CrossRef] [PubMed]
- Kontny, U.; Franzen, S.; Behrends, U.; Bührlen, M.; Christiansen, H.; Delecluse, H.; Eble, M.; Feuchtinger, T.; Gademann, G.; Granzen, B.; et al. Diagnosis and Treatment of Nasopharyngeal Carcinoma in Children and Adolescents—Recommendations of the GPOH-NPC Study Group. Klin. Padiatr. 2016, 228, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.-J.; Jin, Y.-N.; Lin, Y.-J.; Zhang, W.-J.; Marks, T.; Ryan, I.; Zhang, H.-Y.; Xia, L.-P. The feasibility of reduced-dose radiotherapy in childhood nasopharyngeal carcinoma with favorable response to neoadjuvant chemotherapy. Radiother. Oncol. 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- Mai, H.-Q.; Yang, J.-H.; Guo, S.-S.; Sun, X.-S.; Liu, L.-Z.; Yang, Z.-C.; Liu, L.; Liu, S.-L.; Li, X.Y.; Luo, D.-H.; et al. Reduced-dose radiotherapy for pretreatment EBV DNA selected low-risk stage III nasopharyngeal carcinoma: A single-arm, phase II trial. J. Clin. Oncol. 2022, 40, 6002. [Google Scholar] [CrossRef]
- Kong, F.; Ying, H.; Du, C.; Huang, S.; Zhou, J.; Chen, J.; Sun, L.; Chen, X.; Hu, C. Patterns of local-regional failure after primary intensity modulated radiotherapy for nasopharyngeal carcinoma. Radiat. Oncol. 2014, 9, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakst, R.L.; Lee, N.; Pfister, D.G.; Zelefsky, M.J.; Hunt, M.A.; Kraus, D.H.; Wolden, S.L. Hypofractionated Dose-Painting Intensity Modulated Radiation Therapy With Chemotherapy for Nasopharyngeal Carcinoma: A Prospective Trial. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 148–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwong, D.L.; Sham, J.S.; Leung, L.H.; Cheng, A.C.; Ng, W.; Kwong, P.W.; Lui, W.; Yau, C.; Wu, P.; Wei, W.; et al. Preliminary results of radiation dose escalation for locally advanced nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 374–381. [Google Scholar] [CrossRef]
- Saleh-Ebrahimi, L.; Zwicker, F.; Muenter, M.W.; Bischof, M.; Lindel, K.; Debus, J.; E Huber, P.; Roeder, F. Intensity modulated radiotherapy (IMRT) combined with concurrent but not adjuvant chemotherapy in primary nasopharyngeal cancer—A retrospective single center analysis. Radiat. Oncol. 2013, 8, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.-N.; Zhou, B.; Shi, M.; Wang, J.-H.; Xiao, F.; Xu, M.; Luo, S.-Q.; Xue, Y.; Li, J.-P.; Tan, L.-N. Clinical outcome for nasopharyngeal carcinoma with predominantly WHO II histology treated with intensity-modulated radiation therapy in non-endemic region of China. Oral Oncol. 2012, 48, 864–869. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, J.; Tang, T.; Zhu, F.; Yao, Y.; Xu, J.; Wang, A.Z.; Zhang, L. A Randomized Pilot Trial Comparing Position Emission Tomography (PET)-Guided Dose Escalation Radiotherapy to Conventional Radiotherapy in Chemoradiotherapy Treatment of Locally Advanced Nasopharyngeal Carcinoma. PLoS ONE 2015, 10, e0124018. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Xi, X.-P.; Wang, H.; Han, Y.-Q.; Xiao, F.; Hu, Y.; He, Q.; Zhang, L.; Xiao, Q.; Liu, L.; et al. PET/CT-guided dose-painting versus CT-based intensity modulated radiation therapy in locoregional advanced nasopharyngeal carcinoma. Radiat. Oncol. 2017, 12, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, D.-F.; Zhang, W.-B.; Ke, S.-B.; Zhao, F.; Yan, S.-X.; Wang, Q.-D.; Teng, L.-S. The prognostic value of pretreatment tumor apparent diffusion coefficient values in nasopharyngeal carcinoma. BMC Cancer 2017, 17, 678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, S.; Li, Y.; Han, Y.; Wang, H.; Chen, Y.; Yan, O.; He, Q.; Ma, H.; Liu, L.; Liu, F. Diffusion-Weighted Magnetic Resonance Imaging-Guided Dose Painting in Patients With Locoregionally Advanced Nasopharyngeal Carcinoma Treated With Induction Chemotherapy Plus Concurrent Chemoradiotherapy: A Randomized, Controlled Clinical Trial. Int. J. Radiat. Oncol. Biol. Phys. 2022, 113, 101–113. [Google Scholar] [CrossRef]
- Ng, S.P.; Corry, J.; Ng, W.-T. The Janus Face in Defining the Optimal Radiation Dose for Nasopharyngeal Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2022, 113, 114–116. [Google Scholar] [CrossRef] [PubMed]
- Mui, A.W.; Lee, A.W.; Lee, V.H.; Ng, W.; Vardhanabhuti, V.; Man, S.S.; Chua, D.T.; Law, S.C.; Guan, X. Prognostic and therapeutic evaluation of nasopharyngeal carcinoma by dynamic contrast-enhanced (DCE), diffusion-weighted (DW) magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). Magn. Reson. Imaging 2021, 83, 50–56. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, X.-L.; Luo, W.; Lee, A.W.; Wee, J.T.S.; Lee, N.; Zhou, G.-Q.; Tang, L.-L.; Tao, C.-J.; Guo, R.; et al. Recommendation for a contouring method and atlas of organs at risk in nasopharyngeal carcinoma patients receiving intensity-modulated radiotherapy. Radiother. Oncol. 2014, 110, 390–397. [Google Scholar] [CrossRef] [Green Version]
- Kam, M.K.; Leung, S.-F.; Zee, B.C.-Y.; Chau, R.M.; Suen, J.J.; Mo, F.; Lai, M.; Ho, R.; Cheung, K.-Y.; Yu, B.K.; et al. Prospective Randomized Study of Intensity-Modulated Radiotherapy on Salivary Gland Function in Early-Stage Nasopharyngeal Carcinoma Patients. J. Clin. Oncol. 2007, 25, 4873–4879. [Google Scholar] [CrossRef]
- Pow, E.H.; Kwong, D.L.; McMillan, A.S.; Wong, M.C.; Sham, J.S.; Leung, L.H.; Leung, W.K. Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: Initial report on a randomized controlled clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 981–991. [Google Scholar] [CrossRef]
- Peng, G.; Wang, T.; Yang, K.-Y.; Zhang, S.; Zhang, T.; Li, Q.; Han, J.; Wu, G. A prospective, randomized study comparing outcomes and toxicities of intensity-modulated radiotherapy vs. conventional two-dimensional radiotherapy for the treatment of nasopharyngeal carcinoma. Radiother. Oncol. 2012, 104, 286–293. [Google Scholar] [CrossRef]
- Bhandare, N.; Jackson, A.; Eisbruch, A.; Pan, C.C.; Flickinger, J.; Antonelli, P.; Mendenhall, W.M. Radiation Therapy and Hearing Loss. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S50–S57. [Google Scholar] [CrossRef]
- Brodin, N.; Tomé, W.A. Revisiting the dose constraints for head and neck OARs in the current era of IMRT. Oral Oncol. 2018, 86, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Qian, T.-L.; Tao, C.-Z.; Zhang, Y.-H.; Zhou, Y.; Yang, J.; He, J.; Wang, R.; Zhou, P.-J. SmartArc-based volumetric modulated arc therapy can improve the middle ear, vestibule and cochlea sparing for locoregionally advanced nasopharyngeal carcinoma: A dosimetric comparison with step-and-shoot intensity-modulated radiotherapy. Br. J. Radiol. 2015, 88, 20150052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamaj, E.; Vu, E.; van Timmeren, J.E.; Leonardi, C.; Marc, L.; Pytko, I.; Nuernberger, M.; Balermpas, P. Cochlea sparing optimized radiotherapy for nasopharyngeal carcinoma. Radiat. Oncol. 2021, 16, 64. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, L.-X.; Li, W.-Z.; Liang, W.; Chen, Z.-H.; Huang, X.-H.; Qi, J.; Chen, X.-H.; Liang, J.-G.; Cao, X.-L. Cochlea sparing with a stratified scheme of dose limitation employed in intensity-modulated radiotherapy for nasopharyngeal carcinoma: A dosimetry study. Med. Dosim. 2019, 44, 226–232. [Google Scholar] [CrossRef]
- Lu, S.-H.; Cheng, J.C.-H.; Kuo, S.-H.; Lee, J.J.-S.; Chen, L.-H.; Wu, J.-K.; Chen, Y.-H.; Chen, W.-Y.; Wen, S.-Y.; Chong, F.-C.; et al. Volumetric modulated arc therapy for nasopharyngeal carcinoma: A dosimetric comparison with TomoTherapy and step-and-shoot IMRT. Radiother. Oncol. 2012, 104, 324–330. [Google Scholar] [CrossRef]
- Lee, T.-F.; Ting, H.-M.; Chao, P.-J.; Fang, F.-M. Dual Arc Volumetric-modulated Arc Radiotherapy (VMAT) of Nasopharyngeal Carcinomas: A Simultaneous Integrated Boost Treatment Plan Comparison with Intensity-modulated Radiotherapies and Single Arc VMAT. Clin. Oncol. 2012, 24, 196–207. [Google Scholar] [CrossRef]
- Delanian, S.; Lefaix, J.-L.; Pradat, P.-F. Radiation-induced neuropathy in cancer survivors. Radiother. Oncol. 2012, 105, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Rong, X.; Tang, Y.; Chen, M.; Lu, K.; Peng, Y. Radiation-induced cranial neuropathy in patients with nasopharyngeal carcinoma. A follow-up study. Strahlenther. Onkol. 2012, 188, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.; Cheung, K.-M.; Au, K.-H.; Zee, B.C.-Y.; Lee, J.; Ngan, R.K.; Lee, A.W.; Yiu, H.H.; Li, K.W.; Leung, A.K.; et al. Radiation-induced hypoglossal nerve palsy after definitive radiotherapy for nasopharyngeal carcinoma: Clinical predictors and dose–toxicity relationship. Radiother. Oncol. 2019, 138, 93–98. [Google Scholar] [CrossRef]
- Chow, J.C.; Lui, J.C.; Au, K.-H.; Cheung, K.-M.; Ngan, R.K.; Leung, A.K.; Li, K.W.; Chan, J.C.; Wong, K.-H.; Lee, F.K. Application of hypoglossal nerve constraint in definitive radiotherapy for nasopharyngeal carcinoma: A dosimetric feasibility study. Med. Dosim. 2020, 46, 39–44. [Google Scholar] [CrossRef]
- Hu, Y.-C.; Tsai, K.-W.; Lee, C.-C.; Peng, N.-J.; Chien, J.-C.; Tseng, H.-H.; Chen, P.-C.; Lin, J.-C.; Liu, W.-S.; Hu, Y.-C.; et al. Which nasopharyngeal cancer patients need adaptive radiotherapy? BMC Cancer 2018, 18, 1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Wan, Q.; Zhou, Y.; Deng, X.; Xie, C.; Wu, S. The role of replanning in fractionated intensity modulated radiotherapy for nasopharyngeal carcinoma. Radiother. Oncol. 2011, 98, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Qin, Y.; Lang, J. Effect of adaptive replanning in patients with locally advanced nasopharyngeal carcinoma treated by intensity-modulated radiotherapy: A propensity score matched analysis. Clin. Transl. Oncol. 2017, 19, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Hu, W.; Wang, W.; Chen, P.; Ding, W.; Luo, W. Replanning During Intensity Modulated Radiation Therapy Improved Quality of Life in Patients With Nasopharyngeal Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, e47–e54. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, W.; Zhou, C.; Zhu, J.; Ding, W.; Chen, M.; Chen, K.; Shi, Y.; Chen, X.; Kong, F.-M.; et al. Long-term outcomes of replanning during intensity-modulated radiation therapy in patients with nasopharyngeal carcinoma: An updated and expanded retrospective analysis. Radiother. Oncol. 2022, 170, 136–142. [Google Scholar] [CrossRef]
- Li, J.; Xu, Z.; Pilar, A.; O’Sullivan, B.; Huang, S.H. Adaptive radiotherapy for nasopharyngeal carcinoma. Ann. Nasopharynx Cancer 2020, 4, 1–11. [Google Scholar] [CrossRef]
- Alterio, D.; D’Ippolito, E.; Vischioni, B.; Fossati, P.; Gandini, S.; Bonora, M.; Ronchi, S.; Vitolo, V.; Mastella, E.; Magro, G.; et al. Mixed-beam approach in locally advanced nasopharyngeal carcinoma: IMRT followed by proton therapy boost versus IMRT-only. Evaluation of toxicity and efficacy. Acta Oncol. 2020, 59, 541–548. [Google Scholar] [CrossRef]
- Beddok, A.; Feuvret, L.; Noel, G.; Bolle, S.; Deberne, M.; Mammar, H.; Chaze, A.; Le Tourneau, C.; Goudjil, F.; Zefkili, S.; et al. Efficacy and toxicity of proton with photon radiation for locally advanced nasopharyngeal carcinoma. Acta Oncol. 2019, 58, 472–474. [Google Scholar] [CrossRef]
- Chou, Y.-C.; Fan, K.-H.; Lin, C.-Y.; Hung, T.-M.; Huang, B.-S.; Chang, K.-P.; Kang, C.-J.; Huang, S.-F.; Chang, P.-H.; Hsu, C.-L.; et al. Intensity Modulated Proton Beam Therapy versus Volumetric Modulated Arc Therapy for Patients with Nasopharyngeal Cancer: A Propensity Score-Matched Study. Cancers 2021, 13, 3555. [Google Scholar] [CrossRef]
- Jiří, K.; Vladimír, V.; Michal, A.; Matěj, N.; Silvia, S.; Pavel, V.; Kateřina, D.; Jana, P.; Barbora, O.; Eliška, R.; et al. Proton pencil-beam scanning radiotherapy in the treatment of nasopharyngeal cancer: Dosimetric parameters and 2-year results. Eur. Arch. Otorhinolaryngol. 2021, 278, 763–769. [Google Scholar] [CrossRef]
- Lee, A.; Kitpanit, S.; Chilov, M.M.; Langendijk, J.A.; Lu, J.; Lee, N.Y. A Systematic Review of Proton Therapy for the Management of Nasopharyngeal Cancer. Int. J. Part. Ther. 2021, 8, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.D.; Holliday, E.B.; Kocak-Uzel, E.; Ms, M.H.; Garden, A.; Rosenthal, D.; Frank, S.J. Intensity-modulated proton therapy for nasopharyngeal carcinoma: Decreased radiation dose to normal structures and encouraging clinical outcomes. Head Neck 2016, 38 (Suppl. 1), E1886–E1895. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kitpanit, S.; Lee, A.; Mah, D.; Sine, K.; Sherman, E.J.; Dunn, L.A.; Michel, L.S.; Fetten, J.; Zakeri, K.; et al. Toxicity Profiles and Survival Outcomes Among Patients With Nonmetastatic Nasopharyngeal Carcinoma Treated With Intensity-Modulated Proton Therapy vs. Intensity-Modulated Radiation Therapy. JAMA Netw. Open 2021, 4, e2113205. [Google Scholar] [CrossRef] [PubMed]
- Park, S.G.; Ahn, Y.C.; Oh, N.; Noh, J.M.; Ju, S.G.; Kwon, D.; Jo, K.; Chung, K.; Chung, E.; Lee, W.; et al. Early clinical outcomes of helical tomotherapy/intensity-modulated proton therapy combination in nasopharynx cancer. Cancer Sci. 2019, 110, 2867–2874. [Google Scholar] [CrossRef]
- Ng, W.T.; But, B.; Wong, C.H.; Choi, C.-W.; Chua, M.L.; Blanchard, P.; Lee, A.W. Particle beam therapy for nasopharyngeal cancer: A systematic review and meta-analysis. Clin. Transl. Radiat. Oncol. 2022, 37, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Akbaba, S.; Held, T.; Lang, K.; Forster, T.; Federspil, P.; Herfarth, K.; Häfner, M.; Plinkert, P.; Rieken, S.; Debus, J.; et al. Bimodal Radiotherapy with Active Raster-Scanning Carbon Ion Radiotherapy and Intensity-Modulated Radiotherapy in High-Risk Nasopharyngeal Carcinoma Results in Excellent Local Control. Cancers 2019, 11, 379. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Huang, Q.; Gao, J.; Hu, W.; Yang, J.; Guan, X.; Qiu, X.; Zhang, W.; Kong, L.; Lu, J.J. Mixed Photon and Carbon-Ion Beam Radiotherapy in the Management of Non-Metastatic Nasopharyngeal Carcinoma. Front. Oncol. 2021, 11, 653050. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Head and Neck Cancers (Version 2.2022). Available online: https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf (accessed on 20 November 2022).
- van der Veen, J.; Gulyban, A.; Nuyts, S. Interobserver variability in delineation of target volumes in head and neck cancer. Radiother. Oncol. 2019, 137, 9–15. [Google Scholar] [CrossRef]
- Vandewinckele, L.; Claessens, M.; Dinkla, A.; Brouwer, C.; Crijns, W.; Verellen, D.; van Elmpt, W. Overview of artificial intelligence-based applications in radiotherapy: Recommendations for implementation and quality assurance. Radiother. Oncol. 2020, 153, 55–66. [Google Scholar] [CrossRef]
- Ng, W.T.; But, B.; Choi, H.C.W.; de Bree, R.; Lee, A.W.M.; Lee, V.H.F.; López, F.; Mäkitie, A.A.; Rodrigo, J.P.; Saba, N.F.; et al. Application of Artificial Intelligence for Nasopharyngeal Carcinoma Management—A Systematic Review. Cancer Manag. Res. 2022, 14, 339–366. [Google Scholar] [CrossRef]
- Liang, S.; Tang, F.; Huang, X.; Yang, K.; Zhong, T.; Hu, R.; Liu, S.; Yuan, X.; Zhang, Y. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning. Eur. Radiol. 2019, 29, 1961–1967. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, L.V.; Bosch, L.V.D.; Aljabar, P.; Peressutti, D.; Both, S.; Steenbakkers, R.J.; Langendijk, J.A.; Gooding, M.J.; Brouwer, C.L. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring. Radiother. Oncol. 2020, 142, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, T.; Huang, X.; Tang, F.; Liang, S.; Deng, X.; Zhang, Y. Boosting-based cascaded convolutional neural networks for the segmentation of CT organs-at-risk in nasopharyngeal carcinoma. Med. Phys. 2019, 46, 5602–5611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Men, K.; Chen, X.; Zhang, Y.; Zhang, T.; Dai, J.; Yi, J.; Li, Y. Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images. Front. Oncol. 2017, 7, 315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, L.; Deng, Y.; Xia, W.; Qiang, M.; Chen, X.; Liu, K.; Jing, B.; He, C.; Xie, C.; Guo, X.; et al. Development of a self-constrained 3D DenseNet model in automatic detection and segmentation of nasopharyngeal carcinoma using magnetic resonance images. Oral Oncol. 2020, 110, 104862. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Dou, Q.; Jin, Y.-M.; Zhou, G.-Q.; Tang, Y.-Q.; Chen, W.-L.; Su, B.-A.; Liu, F.; Tao, C.-J.; Jiang, N.; et al. Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma. Radiology 2019, 291, 677–686. [Google Scholar] [CrossRef]
- Cardenas, C.E.; Beadle, B.M.; Garden, A.S.; Skinner, H.D.; Yang, J.; Rhee, D.J.; McCarroll, R.E.; Netherton, T.J.; Gay, S.S.; Zhang, L.; et al. Generating High-Quality Lymph Node Clinical Target Volumes for Head and Neck Cancer Radiation Therapy Using a Fully Automated Deep Learning-Based Approach. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 801–812. [Google Scholar] [CrossRef]
Components of Radiotherapy Planning for NPC | Areas of Consideration and Recent Developments |
---|---|
Target delineation (gross tumor volume (GTV)) |
|
Target delineation (clinical target volume (CTV): primary tumor) |
|
Target delineation (CTV: regional lymphatics) |
|
Dose de-escalation |
|
Dose escalation |
|
Sparing of organ at risk (OAR) |
|
Others |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, W.T.; Chow, J.C.H.; Beitler, J.J.; Corry, J.; Mendenhall, W.; Lee, A.W.M.; Robbins, K.T.; Nuyts, S.; Saba, N.F.; Smee, R.; et al. Current Radiotherapy Considerations for Nasopharyngeal Carcinoma. Cancers 2022, 14, 5773. https://doi.org/10.3390/cancers14235773
Ng WT, Chow JCH, Beitler JJ, Corry J, Mendenhall W, Lee AWM, Robbins KT, Nuyts S, Saba NF, Smee R, et al. Current Radiotherapy Considerations for Nasopharyngeal Carcinoma. Cancers. 2022; 14(23):5773. https://doi.org/10.3390/cancers14235773
Chicago/Turabian StyleNg, Wai Tong, James C. H. Chow, Jonathan J. Beitler, June Corry, William Mendenhall, Anne W. M. Lee, K Thomas Robbins, Sandra Nuyts, Nabil F. Saba, Robert Smee, and et al. 2022. "Current Radiotherapy Considerations for Nasopharyngeal Carcinoma" Cancers 14, no. 23: 5773. https://doi.org/10.3390/cancers14235773
APA StyleNg, W. T., Chow, J. C. H., Beitler, J. J., Corry, J., Mendenhall, W., Lee, A. W. M., Robbins, K. T., Nuyts, S., Saba, N. F., Smee, R., Stokes, W. A., Strojan, P., & Ferlito, A. (2022). Current Radiotherapy Considerations for Nasopharyngeal Carcinoma. Cancers, 14(23), 5773. https://doi.org/10.3390/cancers14235773