A Retrospective, Single-Institution Experience of Bullous Pemphigoid as an Adverse Effect of Immune Checkpoint Inhibitors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Exclusive Case Series
3.1. Case 1—Bullous Pemphigoid Induced by Nivolumab in Patient with Brain Pineoblastoma
3.2. Case 2—Bullous Pemphigoid Induced by Ipilimumab and Nivolumab in Patient with Metastatic Clear Cell Renal Cell Carcinoma (mRCC)
3.3. Case 3—Bullous Pemphigoid Induced by Pembrolizumab in Patient with Urothelial Carcinoma (UC)
4. Immune Checkpoint Inhibitors
4.1. Ipilimumab
4.2. Pembrolizumab
4.3. Nivolumab
4.4. Atezolizumab
4.5. Durvalumab
4.6. Cemiplimab
5. Dermatotoxicities
5.1. General
5.2. Bullous Pemphigoid (Appendix A)
5.3. Treatment
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ICI | Immune checkpoint inhibitor |
irAE | Immune-related adverse event |
BP | Bullous Pemphigoid |
SCARS | Severe cutaneous adverse reactions |
SJS/TEN | Stevens–Johnson Syndrome/Toxic Epidermal Necrolysis |
AGEP | Acute Generalized Exanthematous Pustulosis |
DRESS | Drug Reaction with Eosinophilia and Systemic Syndromes |
DIF | Direct immunofluorescence |
IIF | Indirect immunofluorescence |
EBA | Epidermolysis bullosa acquisita |
Appendix A
Sex (Male/Female) | Age (Years) | Primary Tumor | Immunotherapy | Clinical Presentation | Time to Develop BP (Weeks) | Treatment | Refs. |
---|---|---|---|---|---|---|---|
Male | 75 | Melanoma | Pembrolizumab | Cutaneous BP | 22 | Oral steroids | [78] |
Male | 63 | Tongue SCC | Nivolumab | Oral and cutaneous BP | 8 | Topical/oral steroids | [79] |
Male | 68 | Melanoma | Pembrolizumab | Cutaneous BP | 16 | Topical/oral steroids | [79] |
Female | 74 | Urothelial Ca. | Nivolumab | Cutaneous BP | 18 | IV/oral steroids | [79] |
Female | 73 | NSCLC | Nivolumab | Cutaneous BP | 6 | Oral and topical steroids and nicotinamide | [79] |
Male | 68 | Melanoma | Nivolumab | Cutaneous BP | 3 | IV/oral steroids | [79] |
Male | 72 | Melanoma | Ipilimumab | Severe BP exacerbation | 2 | Oral steroids | [80] |
Female | 77 | Lung cancer | Nivolumab | Cutaneous BP | 6 | Oral steroids and omalizumab | [81] |
Male | 63 | Melanoma | Pembrolizumab | Cutaneous BP | 84 | Topical and oral steroids | [65] |
Male | 80 | Melanoma | Nivolumab after Ipilimumab | Cutaneous BP | 24 | Topical and oral steroids | [47] |
Female | 78 | Melanoma | Nivolumab after Durvalumab | Cutaneous BP | 52 | Topical steroids | [47] |
Male | 85 | SCC of lung | Nivolumab | Cutaneous BP | 18 | Oral and topical steroids | [47] |
Female | 78 | Melanoma | Pembrolizumab after Ipilimumab | Cutaneous BP | 32 | Oral and topical steroids | [47] |
Male | 68 | Melanoma | Pembrolizumab | Oral and cutaneous BP | 78 | Topical steroid | [62] |
Male | 72 | Melanoma | Pembrolizumab | Oral and cutaneous BP | 18 | Oral steroid and methotrexate | [62] |
Male | 75 | Melanoma | Pembrolizumab | Recurrent BP | 4 | Oral steroid | [62] |
Male | 70 | Melanoma | Nivolumab after Pembrolizumab | Localized BP | 26 | Monitoring | [82] |
Male | 80 | Lung | Nivolumab | Oral and cutaneous BP | 80 | IV Methylpred+ rituximab | [67] |
Male | 42 | Melanoma | Pembrolizumab | Prolonged BP | 44 | Oral and topical steroids | [83] |
Male | 60 | Renal cell Ca. | Nivolumab | Cutaneous BP | 12 | Oral and topical steroids | [84] |
Male | 73 | Melanoma | Pembrolizumab | Cutaneous BP | 24 | Niacinamide | [85] |
Male | 90 | Melanoma | Nivolumab | Cutaneous BP | 12 | Oral and topical steroids | [85] |
Female | 56 | Melanoma | Pembrolizumab and Ipilimumab | Cutaneous BP | 24 | IV and oral steroids and methotrexate | [86] |
Male | 65 | Melanoma | Pembrolizumab | Cutaneous BP | 51 | Oral steroids | [87] |
Male | 80 | Skin SCC | Nivolumab | Cutaneous BP | 30 | Oral steroids and dapsone | [88] |
Male | 85 | Melanoma | Nivolumab | Cutaneous BP | 8 | Topical steroids | [88] |
Female | 77 | Urothelial Ca. | Atezolizumab | Cutaneous BP | 21 | Topical/oral steroids and omalizumab, methotrexate | [48] |
Male | 77 | NSCLC | Nivolumab | Cutaneous BP | 13 | Topical/oral steroids | [48] |
Female | 77 | NSCLC | Nivolumab | Cutaneous BP | 3 | Topical/oral steroids and omalizumab | [48] |
Male | 69 | NSCLC | Nivolumab then Pembrolizumab | Cutaneous BP | 4 | Topical and oral steroids and nicotinamide | [48] |
Male | 68 | Melanoma | Pembrolizumab then Ipilimumab and Nivolumab | Cutaneous BP | 3 | Topical and oral steroids and nicotinamide | [48] |
Male | 48 | Renal cell Ca. | Nivolumab | Cutaneous BP | 43 | Oral steroids and nicotinamide | [48] |
Female | 61 | NSCLC | Pembrolizumab | Cutaneous and oral BP | 39 | Topical and oral steroids | [48] |
Female | 83 | Melanoma | Pembrolizumab | MMP | 66 | Doxycycline only | [89] |
Male | 64 | Melanoma | Pembrolizumab | Cutaneous BP | 12 | Topical and oral steroids | [90] |
Male | 71 | Melanoma | Ipilimumab then Pembrolizumab | Cutaneous BP | 29 | Topical and oral steroids | [90] |
Female | 70 | NSCLC | Nivolumab | Cutaneous BP | 7 | Topical and oral steroids and niacinamide | [91] |
Male | 72 | Melanoma | Ipilimumab after pembrolizumab | BP | 1 | Oral and topical steroid | [58] |
Male | 60 | NSCLC | Nivolumab | BP | 52 | Oral steroids | [92] |
Male | 35 | Melanoma | Nivolumab then Ipilimumab | BP | 50 | Topical steroids | [59] |
Male | 62 | Merkel cell Ca. | Pembrolizumab | MMP | 13 | Topical steroids | [93] |
Male | 64 | Melanoma | Nivolumab | Oral and cutaneous BP | 18 | Topical steroids | [94] |
Male | 62 | Renal cell Ca. | Nivolumab | BP on higher dose immunotherapy | 1 | Oral steroids | [95] |
Female | 69 | Melanoma | Nivolumab | Cutaneous BP | 11 | Topical/oral steroids and dapsone | [96] |
Female | 70 | Melanoma | Nivolumab | MMP | 12 | Topical steroids | [97] |
Female | 47 | Ovarian Ca. | Pembrolizumab | Severe MMP | 3 | Topical and oral steroids | [98] |
Male | 74 | Lung | Nivolumab | Oral and cutaneous BP | 50 | Oral steroid | [99] |
Male | 82 | Penile SCC | Atezolizumab | Photodistributed BP | 52 | Oral steroids | [100] |
Male | 87 | Urothelial cell Ca. | Atezolizumab | Cutaneous BP | 77 | Topical steroids, doxycycline and niacinamide | [101] |
Male | 73 | Renal cell Ca. | Nivolumab | Cutaneous BP | 52 | IV and oral steroids | [102] |
Female | 69 | NSCLC | Durvalumab and Tremelimumab | BP | 42 | Oral steroids | [103] |
Male | 68 | Cutaneous SCC | Cemiplimab | BP | 9 | Oral steroids and rituximab | [104] |
Male | 66 | Renal cell Ca. | Nivolumab | Cutaneous BP and MMP | 36 | IV and oral steroids | [105] |
Male | 87 | Melanoma | Nivolumab | BP | 8 | Topical and oral steroids | [106] |
Male | 72 | melanoma | Pembrolizumab then Ipilimumab | Oral and cutaneous BP | 1 | Topical and oral steroids | [39] |
Male | 47 | Brain pinealoblastoma | Nivolumab | Cutaneous BP | 8 | Topical and oral steroids | Current work |
Male | 69 | Renal cell Ca. | Ipilimumab and Nivolumab then Nivolumab | Cutaneous BP | 22 | Topical and oral steroids | Current work |
Male | 69 | Urothelial cell Ca. | pembrolizumab | Cutaneous BP | 34 | IV and oral steroids and topical | Current work |
References
- Varricchi, G.; Galdiero, M.R.; Marone, G.; Criscuolo, G.; Triassi, M.; Bonaduce, D.; Marone, G.; Tocchetti, C.G. Cardiotoxicity of immune checkpoint inhibitors. ESMO Open 2017, 2, e000247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Rocci, M.L.; Twomey, J.D. Theme: Identification and Implementation of Predictive Biomarkers for Checkpoint Targeted Immunotherapy Cancer Immunotherapy Update: FDA-Approved Checkpoint Inhibitors and Companion Diagnostics. AAPS J. 2021, 23, 39. [Google Scholar]
- Rowshanravan, B.; Halliday, N.; Sansom, D.M. CTLA-4: A moving target in immunotherapy. Blood 2018, 131, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Hu, L.; Zhang, X.; Jiang, S.; Li, J.; Zhang, Z.; Wang, X. The Diverse Function of PD-1/PD-L Pathway Beyond Cancer. Front. Immunol. 2019, 10, 2298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Reynolds, K.L.; Lyon, A.R.; Palaskas, N.; Neilan, T.G. The Evolving Immunotherapy Landscape and the Epidemiology, Diagnosis, and Management of Cardiotoxicity. JACC: CardioOncol. 2021, 3, 35–47. [Google Scholar] [CrossRef]
- Waliany, S.; Lee, D.; Witteles, R.M.; Neal, J.W.; Nguyen, P.; Davis, M.M.; Salem, J.-E.; Wu, S.M.; Moslehi, J.J.; Zhu, H. Immune Checkpoint Inhibitor Cardiotoxicity: Understanding Basic Mechanisms and Clinical Characteristics and Finding a Cure. Annu. Rev. Pharmacol. Toxicol. 2021, 61, 113–134. [Google Scholar] [CrossRef]
- Cathcart-Rake, E.J.; Sangaralingham, L.R.; Henk, H.J.; Shah, N.D.; Bin Riaz, I.; Mansfield, A.S. A Population-based Study of Immunotherapy-related Toxicities in Lung Cancer. Clin. Lung Cancer 2020, 21, 421–427.e2. [Google Scholar] [CrossRef]
- Tarrio, M.L.; Grabie, N.; Bu, D.-X.; Sharpe, A.H.; Lichtman, A.H. PD-1 protects against inflammation and myocyte damage in T cell-mediated myocarditis. J. Immunol. 2012, 188, 4876–4884. [Google Scholar] [CrossRef] [Green Version]
- Michot, J.; Bigenwald, C.; Champiat, S.; Collins, M.; Carbonnel, F.; Postel-Vinay, S.; Berdelou, A.; Varga, A.; Bahleda, R.; Hollebecque, A.; et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur. J. Cancer 2016, 54, 139–148. [Google Scholar] [CrossRef]
- Puzanov, I.; Diab, A.; Abdallah, K.; Bingham, C.O., 3rd; Brogdon, C.; Dadu, R.; Hamad, L.; Kim, S.; Lacouture, M.E.; LeBoeuf, N.R.; et al. Managing toxicities associated with immune checkpoint inhibitors: Consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J. Immunother. Cancer 2017, 5, 95. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.B.; Balko, J.M.; Compton, M.L.; Chalkias, S.; Gorham, J.; Xu, Y.; Hicks, M.; Puzanov, I.; Alexander, M.R.; Bloomer, T.L.; et al. Fulminant Myocarditis with Combination Immune Checkpoint Blockade. N. Engl. J. Med. 2016, 375, 1749–1755. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Infante, N.; Ramírez-Flores, Y.A.; Castillo, E.C.; Lozano, O.; García-Rivas, G.; Torre-Amione, G. Cardiotoxicity associated with immune checkpoint inhibitor therapy: A meta-analysis. Eur. J. Heart Fail. 2021, 23, 1739–1747. [Google Scholar] [CrossRef] [PubMed]
- Persson, M.; Begum, N.; Grainge, M.; Harman, K.; Grindlay, D.; Gran, S. The global incidence of bullous pemphigoid: A systematic review and meta-analysis. Br. J. Dermatol. 2022, 186, 414–425. [Google Scholar] [CrossRef] [PubMed]
- BC Cancer. Ipilimumab. Available online: http://www.bccancer.bc.ca/drug-database-site/Drug%20Index/Ipilimumab_monograph.pdf (accessed on 3 June 2021).
- Chen, D.-Y.; Huang, W.-K.; Wu, V.C.-C.; Chang, W.-C.; Chen, J.-S.; Chuang, C.-K.; Chu, P.-H. Cardiovascular toxicity of immune checkpoint inhibitors in cancer patients: A review when cardiology meets immuno-oncology. J. Formos. Med. Assoc. 2019, 119, 1461–1475. [Google Scholar] [CrossRef] [PubMed]
- FDA. Highlights of Prescribing Information: Ipilimumab. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125377s110lbl.pdf (accessed on 3 June 2021).
- Chahine, J.; Collier, P.; Maroo, A.; Tang, W.W.; Klein, A.L. Myocardial and Pericardial Toxicity Associated With Immune Checkpoint Inhibitors in Cancer Patients. JACC: Case Rep. 2020, 2, 191–199. [Google Scholar] [CrossRef]
- Fecher, L.A.; Agarwala, S.S.; Hodi, F.S.; Weber, J.S. Ipilimumab and its toxicities: A multidisciplinary approach. Oncologist 2013, 18, 733–743. [Google Scholar] [CrossRef] [Green Version]
- Purnamawati, S.; Indrastuti, N.; Danarti, R.; Saefudin, T. The Role of Moisturizers in Addressing Various Kinds of Dermatitis: A Review. Clin. Med. Res. 2017, 15, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Szeto, C.H.; Shalata, W.; Yakobson, A.; Agbarya, A. Neoadjuvant and Adjuvant Immunotherapy in Early-Stage Non-Small-Cell Lung Cancer, Past, Present, and Future. J. Clin. Med. 2021, 10, 5614. [Google Scholar] [CrossRef]
- Pirozzi, F.; Poto, R.; Aran, L.; Cuomo, A.; Galdiero, M.R.; Spadaro, G.; Abete, P.; Bonaduce, D.; Marone, G.; Tocchetti, C.G.; et al. Cardiovascular Toxicity of Immune Checkpoint Inhibitors: Clinical Risk Factors. Curr. Oncol. Rep. 2021, 23, 13. [Google Scholar] [CrossRef]
- FDA. Highlights of Prescribing Information: Pembrolizumab. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125514s096lbl.pdf (accessed on 3 June 2021).
- Sanlorenzo, M.; Vujic, I.; Daud, A.; Algazi, A.; Gubens, M.A.; Luna, S.A.; Lin, K.; Quaglino, P.; Rappersberger, K.; Ortiz-Urda, S. Pembrolizumab Cutaneous Adverse Events and Their Association With Disease Progression. JAMA Dermatol. 2015, 151, 1206–1212. [Google Scholar] [CrossRef] [Green Version]
- FDA. Highlights of Prescribing Information: Nivolumab. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125554s090lbl.pdf (accessed on 3 June 2021).
- Zhou, S.; Khanal, S.; Zhang, H. Risk of immune-related adverse events associated with ipilimumab-plus-nivolumab and nivolumab therapy in cancer patients. Ther. Clin. Risk Manag. 2019, 15, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Muntyanu, A.; Netchiporouk, E.; Gerstein, W.; Gniadecki, R.; Litvinov, I.V. Cutaneous Immune-Related Adverse Events (irAEs) to Immune Checkpoint Inhibitors: A Dermatology Perspective on Management. J. Cutan. Med. Surg. 2020, 25, 59–76. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Drake, C.G.; Wollner, I.; Powderly, J.D.; Picus, J.; Sharfman, W.H.; Stankevich, E.; Pons, A.; Salay, T.M.; McMiller, T.L.; et al. Phase I study of single-agent anti–programmed death-1 (MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 2010, 28, 3167–3175. [Google Scholar] [CrossRef] [PubMed]
- Verzoni, E.; Cartenì, G.; Cortesi, E.; Giannarelli, D.; De Giglio, A.; Sabbatini, R.; Buti, S.; Rossetti, S.; Cognetti, F.; Rastelli, F.; et al. Real-world efficacy and safety of nivolumab in previously-treated metastatic renal cell carcinoma, and association between immune-related adverse events and survival: The Italian expanded access program. J. Immunother. Cancer 2019, 7, 99. [Google Scholar] [CrossRef] [Green Version]
- June 25 2020—EPOV Scott Gettinger—The ASCO Post. Available online: https://ascopost.com/issues/june-25-2020/epov-scott-gettinger/ (accessed on 20 June 2021).
- Varricchi, G.; Galdiero, M.R.; Tocchetti, C.G. Cardiac Toxicity of Immune Checkpoint Inhibitors: Cardio-Oncology Meets Immunology. Circulation 2017, 136, 1989–1992. [Google Scholar] [CrossRef]
- BC Cancer. Atezolizumab. Available online: http://www.bccancer.bc.ca/drug-database-site/Drug%20Index/Atezolizumab_Monograph.pdf (accessed on 6 August 2021).
- FDA. Highlights of Prescribing Information: Atezolizumab. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761034s033s034s035s036s037s038lbl.pdf (accessed on 6 August 2021).
- TECENTRIQ® (Atezolizumab), Identified Risk of Severe Cutaneous Adverse Reactions (SCARs) Direct Healthcare Professional Communication (DHPC). Available online: https://www.medsafe.govt.nz/safety/DHCPLetters/TecentriqNovember2020.pdf (accessed on 9 November 2022).
- FDA. Highlights of Prescribing Information: Durvalumab. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761069s002lbl.pdf (accessed on 6 August 2021).
- Shalata, W.; Abu-Salman, A.; Steckbeck, R.; Jacob, B.M.; Massalha, I.; Yakobson, A. Cardiac Toxicity Associated with Immune Checkpoint Inhibitors: A Systematic Review. Cancers 2021, 13, 5218. [Google Scholar] [CrossRef]
- BC Cancer. Durvalumab. Available online: http://www.bccancer.bc.ca/drug-database-site/Drug%20Index/Durvalumab_monograph.pdf (accessed on 6 August 2021).
- Coustal, C.; Du Thanh, A.; Roubille, F.; Assenat, E.; Maria, A.T. Rare cutaneous toxicity of immune checkpoint inhibitors: A case of durvalumab-induced dermatomyositis. Eur. J. Cancer 2021, 155, 25–27. [Google Scholar] [CrossRef]
- FDA. Highlights of Prescribing Information: Cemiplimab. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761097s007lbl.pdf (accessed on 16 March 2021).
- Curry, J.L.; Tetzlaff, M.T.; Nagarajan, P.; Drucker, C.; Diab, A.; Hymes, S.R.; Duvic, M.; Hwu, W.-J.; Wargo, J.A.; Torres-Cabala, C.A.; et al. Diverse types of dermatologic toxicities from immune checkpoint blockade therapy. J. Cutan. Pathol. 2016, 44, 158–176. [Google Scholar] [CrossRef]
- Villadolid, J.; Amin, A. Immune checkpoint inhibitors in clinical practice: Update on management of immune-related toxicities. Transl. Lung Cancer Res. 2015, 4, 560–575. [Google Scholar] [CrossRef]
- Lacouture, M.; Sibaud, V. Toxic Side Effects of Targeted Therapies and Immunotherapies Affecting the Skin, Oral Mucosa, Hair, and Nails. Am. J. Clin. Dermatol. 2018, 19, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Sibaud, V. Dermatologic Reactions to Immune Checkpoint Inhibitors: Skin Toxicities and Immunotherapy. Am. J. Clin. Dermatol. 2018, 19, 345–361. [Google Scholar] [CrossRef] [PubMed]
- Grávalos, C.; Sanmartín, O.; Gúrpide, A.; España, A.; Majem, M.; Oh, H.J.S.; Aragón, I.; Segura, S.; Beato, C.; Botella, R. Clinical management of cutaneous adverse events in patients on targeted anticancer therapies and immunotherapies: A national consensus statement by the Spanish Academy of Dermatology and Venereology and the Spanish Society of Medical Oncology. Clin. Transl. Oncol. 2018, 21, 556–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haanen, J.; Carbonnel, F.; Robert, C.; Kerr, K.; Peters, S.; Larkin, J.; Jordan, K. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28 (Suppl. S4), iv119–iv142. [Google Scholar] [CrossRef] [PubMed]
- Larsabal, M.; Marti, A.; Jacquemin, C.; Rambert, J.; Thiolat, D.; Dousset, L.; Taieb, A.; Dutriaux, C.; Prey, S.; Boniface, K.; et al. Vitiligo-like lesions occurring in patients receiving anti-programmed cell death–1 therapies are clinically and biologically distinct from vitiligo. J. Am. Acad. Dermatol. 2017, 76, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Shi, V.J.; Rodic, N.; Gettinger, S.; Leventhal, J.S.; Neckman, J.P.; Girardi, M.; Bosenberg, M.; Choi, J.N. Clinical and Histologic Features of Lichenoid Mucocutaneous Eruptions Due to Anti–Programmed Cell Death 1 and Anti–Programmed Cell Death Ligand 1 Immunotherapy. JAMA Dermatol. 2016, 152, 1128–1136. [Google Scholar] [CrossRef] [Green Version]
- Naidoo, J.; Schindler, K.; Querfeld, C.; Busam, K.; Cunningham, J.; Page, D.B.; Postow, M.A.; Weinstein, A.; Lucas, A.S.; Ciccolini, K.T.; et al. Autoimmune Bullous Skin Disorders with Immune Checkpoint Inhibitors Targeting PD-1 and PD-L1. Cancer Immunol. Res. 2016, 4, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Siegel, J.; Totonchy, M.; Damsky, W.; Berk-Krauss, J.; Castiglione, F.; Sznol, M.; Petrylak, D.P.; Fischbach, N.; Goldberg, S.B.; Decker, R.H.; et al. Bullous disorders associated with anti–PD-1 and anti–PD-L1 therapy: A retrospective analysis evaluating the clinical and histopathologic features, frequency, and impact on cancer therapy. J. Am. Acad. Dermatol. 2018, 79, 1081–1088. [Google Scholar] [CrossRef]
- Kostine, M.; Mauric, E.; Tison, A.; Barnetche, T.; Barre, A.; Nikolski, M.; Rouxel, L.; Dutriaux, C.; Dousset, L.; Prey, S.; et al. Baseline co-medications may alter the anti-tumoural effect of checkpoint inhibitors as well as the risk of immune-related adverse events. Eur. J. Cancer 2021, 157, 474–484. [Google Scholar] [CrossRef]
- Teulings, H.-E.; Limpens, J.; Jansen, S.N.; Zwinderman, A.H.; Reitsma, J.B.; Spuls, P.I.; Luiten, R.M. Vitiligo-Like Depigmentation in Patients With Stage III–IV Melanoma Receiving Immunotherapy and Its Association With Survival: A Systematic Review and Meta-Analysis. J. Clin. Oncol. 2015, 33, 773–781. [Google Scholar] [CrossRef]
- Lee, C.K.M.; Li, S.; Tran, D.C.; Zhu, G.; Kim, J.; Kwong, B.Y.; Chang, A.L.S. Characterization of dermatitis after PD-1/PD-L1 inhibitor therapy and association with multiple oncologic outcomes: A retrospective case-control study. J. Am. Acad. Dermatol. 2018, 79, 1047–1052. [Google Scholar] [CrossRef]
- Nelson, C.A.; Singer, S.; Chen, T.; Puleo, A.E.; Lian, C.G.; Wei, E.X.; Giobbie-Hurder, A.; Mostaghimi, A.; Leboeuf, N.R. Bullous pemphigoid after anti-PD-1 therapy: A retrospective case-control study evaluating impact on tumor response and survival outcomes. J. Am. Acad. Dermatol. 2020; e-pub ahead of print. [Google Scholar] [CrossRef]
- Faje, A.T.; Lawrence, D.; Flaherty, K.; Rn, C.F.; Fadden, R.; Rubin, K.; Cohen, J.; Sullivan, R.J. High-dose glucocorticoids for the treatment of ipilimumab-induced hypophysitis is associated with reduced survival in patients with melanoma. Cancer 2018, 124, 3706–3714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.-D.; Chen, W.-T.; Chi, C.-C. Association Between Medication Use and Bullous Pemphigoid: A Systematic Review and Meta-analysis. JAMA Dermatol. 2020, 156, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.; Zillikens, D. Pemphigoid diseases. Lancet 2013, 381, 320–332. [Google Scholar] [CrossRef]
- Bağcı, I.S.; Horváth, O.N.; Ruzicka, T.; Sárdy, M. Bullous pemphigoid. Autoimmun. Rev. 2017, 16, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Hammers, C.M.; Stanley, J.R. Mechanisms of disease: Pemphigus and bullous pemphigoid. Annu. Rev. Pathol. Mech. Dis. 2016, 11, 175–197. [Google Scholar] [CrossRef] [Green Version]
- Hanley, T.; Papa, S.; Saha, M. Bullous pemphigoid associated with ipilimumab therapy for advanced metastatic melanoma. JRSM Open 2018, 9, 2054270418793029. [Google Scholar] [CrossRef]
- Kuwatsuka, Y.; Iwanaga, A.; Kuwatsuka, S.; Okubo, Y.; Murayama, N.; Ishii, N.; Hashimoto, T.; Utani, A. Bullous pemphigoid induced by ipilimumab in a patient with metastatic malignant melanoma after unsuccessful treatment with nivolumab. J. Dermatol. 2017, 45, e21–e22. [Google Scholar] [CrossRef] [Green Version]
- Baum, S.; Sakka, N.; Artsi, O.; Trau, H.; Barzilai, A. Diagnosis and classification of autoimmune blistering diseases. Autoimmun. Rev. 2014, 13, 482–489. [Google Scholar] [CrossRef]
- Molina, G.; Reynolds, K.; Chen, S. Diagnostic and therapeutic differences between immune checkpoint inhibitor-induced and idiopathic bullous pemphigoid: A cross-sectional study. Br. J. Dermatol. 2020, 183, 1126–1128. [Google Scholar] [CrossRef]
- Hwang, S.J.; Carlos, G.; Chou, S.; Wakade, D.; Carlino, M.S.; Fernandez-Penas, P. Bullous Pemphigoid, an Autoantibody-Mediated Disease, is a Novel Immune-Related Adverse Event in Patients Treated With Anti-Programmed Cell Death 1 Antibodies. Melanoma Res. 2016, 26, 413–416. [Google Scholar] [CrossRef]
- Anforth, R.; Carlos, G.; Clements, A.; Kefford, R.; Fernandez-Peñas, P. Cutaneous Adverse Events in Patients Treated With BRAF Inhibitor-Based Therapies for Metastatic Melanoma for Longer Than 52 Weeks. Br. J. Dermatol. 2014, 172, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Anforth, R.; Blumetti, T.; Kefford, R.; Sharma, R.; Scolyer, R.; Kossard, S.; Long, G.; Fernandez-Peñas, P. Cutaneous Manifestations of Dabrafenib (GSK2118436): A Selective Inhibitor of Mutant BRAF in Patients With Metastatic Melanoma: Cutaneous Manifestations of Dabrafenib (GSK2118436). Br. J. Dermatol. 2012, 167, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Mochel, M.C.; Ming, M.E.; Imadojemu, S.; Gangadhar, T.C.; Schuchter, L.M.; Elenitsas, R.; Payne, A.S.; Chu, E.Y. Cutaneous autoimmune effects in the setting of therapeutic immune checkpoint inhibition for metastatic melanoma. J. Cutan. Pathol. 2016, 43, 787–791. [Google Scholar] [CrossRef] [PubMed]
- Ellis, S.R.; Vierra, A.T.; Millsop, J.W.; Lacouture, M.E.; Kiuru, M. Dermatologic toxicities to immune checkpoint inhibitor therapy: A review of histopathologic features. J. Am. Acad. Dermatol. 2020, 83, 1130–1143. [Google Scholar] [CrossRef] [PubMed]
- Sowerby, L.; Dewan, A.K.; Granter, S.; Gandhi, L.; Leboeuf, N.R. Rituximab Treatment of Nivolumab-Induced Bullous Pemphigoid. JAMA Dermatol. 2017, 153, 603–605. [Google Scholar] [CrossRef]
- Damsky, W.; Jilaveanu, L.; Turner, N.; Perry, C.; Zito, C.; Tomayko, M.; Leventhal, J.; Herold, K.; Meffre, E.; Bosenberg, M.; et al. B cell depletion or absence does not impede an-ti-tumor activity of PD-1 inhibitors. J. Immunother. Cancer 2019, 7, 153. [Google Scholar] [CrossRef] [Green Version]
- Kremer, N.; Snast, I.; Cohen, E.S.; Hodak, E.; Mimouni, D.; Lapidoth, M.; Mazor, S.; Levi, A. Rituximab and Omalizumab for the Treatment of Bullous Pemphigoid: A Systematic Review of the Literature. Am. J. Clin. Dermatol. 2018, 20, 209–216. [Google Scholar] [CrossRef]
- Bowman, C.; Delrieu, O. Immunogenetics of drug-induced skin blistering disorders. Part I: Perspective. Pharmacogenomics 2009, 10, 601–621. [Google Scholar] [CrossRef]
- Zitvogel, L.; Kroemer, G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. OncoImmunology 2012, 1, 1223–1225. [Google Scholar] [CrossRef] [Green Version]
- Good-Jacobson, K.L.; Szumilas, C.G.; Chen, L.; Sharpe, A.H.; Tomayko, M.M.; Shlomchik, M.J. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat. Immunol. 2010, 11, 535–542. [Google Scholar] [CrossRef]
- Krenacs, T.; Kiszner, G.; Stelkovics, E.; Balla, P.; Teleki, I.; Nemeth, I.; Varga, E.; Korom, I.; Barbai, T.; Plotar, V.; et al. Collagen XVII is expressed in malignant but not in benign melanocytic tumors and it can mediate antibody induced melanoma apoptosis. Histochem. Cell Biol. 2012, 138, 653–667. [Google Scholar] [CrossRef] [PubMed]
- Iwama, S.; De Remigis, A.; Callahan, M.K.; Slovin, S.F.; Wolchok, J.D.; Caturegli, P. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci. Transl. Med. 2014, 6, 230ra45. [Google Scholar] [CrossRef] [PubMed]
- Fania, L.; Di Zenzo, G.; Mazzanti, C.; Abeni, D. Commentary on ‘Changing prevalence of diabetes mellitus in bullous pemphigoid: It is the dipeptidyl peptidase-4 inhibitors’. J. Eur. Acad. Dermatol. Venereol. 2018, 32, e439–e440. [Google Scholar] [CrossRef] [PubMed]
- Chouchane, K.; Di Zenzo, G.; Pitocco, D.; Calabrese, L.; De Simone, C. Bullous pemphigoid in diabetic patients treated by gliptins: The other side of the coin. J. Transl. Med. 2021, 19, 520. [Google Scholar] [CrossRef] [PubMed]
- Uppsala Monitoring Centre. Available online: https://who-umc.org/media/164200/who-umc-causality-assessment_new-logo.pdf (accessed on 6 April 2018).
- Carlos, G.; Anforth, R.; Chou, S.; Clements, A.; Fernandez-Peñas, P. A case of bullous pemphigoid in a patient with metastatic melanoma treated with pembrolizumab. Melanoma Res. 2015, 25, 265–268. [Google Scholar] [CrossRef]
- Jour, G.; Glitza, I.C.; Ellis, R.M.; Torres-Cabala, C.A.; Tetzlaff, M.T.; Li, J.Y.; Nagarajan, P.; Huen, A.; Aung, P.P.; Ivan, D.; et al. Autoimmune dermatologic toxicities from immune checkpoint blockade with anti-PD-1 antibody therapy: A report on bullous skin eruptions. J. Cutan. Pathol. 2016, 43, 688–696. [Google Scholar] [CrossRef]
- Beck, K.M.; Dong, J.; Geskin, L.J.; Beltrani, V.P.; Phelps, R.G.; Carvajal, R.D.; Schwartz, G.; Saenger, Y.M.; Gartrell, R.D. Disease stabilization with pembrolizumab for metastatic acral melanoma in the setting of autoimmune bullous pemphigoid. J. Immunother. Cancer 2016, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Damsky, W.; Kole, L.; Tomayko, M.M. Development of bullous pemphigoid during nivolumab therapy. JAAD Case Rep. 2016, 2, 442–444. [Google Scholar] [CrossRef] [Green Version]
- Hirotsu, K.; Chiou, A.S.; Chiang, A.; Kim, J.; Kwong, B.Y.; Pugliese, S. Localized bullous pemphigoid in a melanoma patient with dual exposure to PD-1 checkpoint inhibition and radiation therapy. JAAD Case Rep. 2017, 3, 404–406. [Google Scholar] [CrossRef] [Green Version]
- Parakh, S.; Nguyen, R.; Opie, J.M.; Andrews, M.C. Late presentation of generalised bullous pemphigoid-like reaction in a patient treated with pembrolizumab for metastatic melanoma. Australas. J. Dermatol. 2016, 58, e109–e112. [Google Scholar] [CrossRef]
- Kwon, C.; Land, A.; Smoller, B.; Scott, G.; Beck, L.; Mercurio, M. Bullous pemphigoid associated with nivolumab, a programmed cell death 1 protein inhibitor. J. Eur. Acad. Dermatol. Venereol. 2017, 31, e349–e350. [Google Scholar] [CrossRef] [PubMed]
- Bandino, J.P.; Perry, D.M.; Clarke, C.E.; Marchell, R.M.; Elston, D.M. Two cases of anti-programmed cell death 1-associated bullous pemphigoid-like disease and eruptive keratoacanthomas featuring combined histopathology. J. Eur. Acad. Dermatol. Venereol. 2017, 31, e378–e380. [Google Scholar] [CrossRef] [PubMed]
- Rofe, O.; Bar-Sela, G.; Keidar, Z.; Sezin, T.; Sadik, C.D.; Bergman, R. Severe bullous pemphigoid associated with pembrolizumab therapy for metastatic melanoma with complete regression. Clin. Exp. Dermatol. 2017, 42, 309–312. [Google Scholar] [CrossRef]
- Wada, N.; Uchi, H.; Furue, M. Bullous pemphigoid induced by pembrolizumab in a patient with advanced melanoma expressing collagen XVII. J. Dermatol. 2017, 44, e240–e241. [Google Scholar] [CrossRef] [PubMed]
- Nahmias, Z.P.; Merrill, E.D.; Briscoe, C.C.; Mount, C.E.; Abner, S.; Schaffer, A.; Anadkat, M.J. Development of bullous pemphigoid while receiving PD-1 checkpoint inhibitor nivolumab. SKIN J. Cutane. Med. 2018, 2, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Zumelzu, C.; Alexandre, M.; Le Roux, C.; Weber, P.; Guyot, A.; Levy, A.; Aucouturier, F.; Mignot-Grootenboer, S.; Caux, F.; Maubec, E.; et al. Mucous Membrane Pemphigoid, Bullous Pemphigoid, and Anti-programmed Death-1/Programmed Death-Ligand 1: A Case Report of an Elderly Woman With Mucous Membrane Pemphigoid Developing After Pembrolizumab Therapy for Metastatic Melanoma and Review of the Literature. Front. Med. 2018, 5, 268. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, K.; Diernaes, J.; Øllegaard, T.H.; Spaun, E.; Vestergaard, C. Bullous Pemphigoid as an Adverse Reaction to Pembrolizumab: Two Case Reports. Case Rep. Dermatol. 2018, 10, 154–157. [Google Scholar] [CrossRef]
- Lopez, A.T.; Geskin, L. A Case of Nivolumab-Induced Bullous Pemphigoid: Review of Dermatologic Toxicity Associated with Programmed Cell Death Protein-1/Programmed Death Ligand-1 Inhibitors and Recommendations for Diagnosis and Management. Oncologist 2018, 23, 1119–1126. [Google Scholar] [CrossRef] [Green Version]
- Panariello, L.; Fattore, D.; Annunziata, M.C.; Piantedosi, F.; Gilli, M.; Fabbrocini, G. Bullous pemphigoid and nivolumab: Dermatologic management to support and continue oncologic therapy. Eur. J. Cancer 2018, 103, 284–286. [Google Scholar] [CrossRef]
- Haug, V.; Behle, V.; Benoit, S.; Kneitz, H.; Schilling, B.; Goebeler, M.; Gesierich, A. Pembrolizumab-associated mucous membrane pemphigoid in a patient with Merkel cell carcinoma. Br. J. Dermatol. 2018, 179, 993–994. [Google Scholar] [CrossRef]
- Sturque, J.; Boralevi, F.; Fricain, J.-C. Nivolumab-induced oral and cutaneous bullous pemphigoid: A case report. J. Oral Med. Oral Surg. 2019, 25, 17. [Google Scholar] [CrossRef]
- Palla, A.R.; Smith, E.; Doll, D. Bullous pemphigoid associated with the 480-mg nivolumab dose in a patient with metastatic renal cell carcinoma. Immunotherapy 2019, 11, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Sadik, C.D.; Langan, E.A.; Grätz, V.; Zillikens, D.; Terheyden, P. Checkpoint Inhibition May Trigger the Rare Variant of Anti-LAD-1 IgG-Positive, Anti-BP180 NC16A IgG-Negative Bullous Pemphigoid. Front. Immunol. 2019, 10, 1934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sibaud, V.; Vigarios, E.; Siegfried, A.; Bost, C.; Meyer, N.; Pages-Laurent, C. Nivolumab-related mucous membrane pemphigoid. Eur. J. Cancer 2019, 121, 172–176. [Google Scholar] [CrossRef]
- Bezinelli, L.M.; Eduardo, F.P.; Migliorati, C.A.; Ferreira, M.H.; Taranto, P.; Sales, D.B.; Santi, C.G.; Macarenco, R.S.; Godoy, C.P.; Corrêa, L.; et al. A Severe, Refractory Case of Mucous Membrane Pemphigoid After Treatment With Pembrolizumab: Brief Communication. J. Immunother. 2019, 42, 359–362. [Google Scholar] [CrossRef]
- Cuenca-Barrales, C.; Espadafor-López, B.; Martínez-López, A.; Cancela-Díez, B.; Ruiz-Villaverde, R. Bullous pemphigoid in a patient treated with nivolumab. Dermatol. Ther. 2019, 32, e13030. [Google Scholar] [CrossRef]
- Leavitt, E.; Holland, V. A case of atezolizumab-induced photodistributed bullous pemphigoid. Dermatol. Ther. 2019, 32, e12924. [Google Scholar] [CrossRef]
- Kosche, C.; Owen, J.L.; Sadowsky, L.M.; Choi, J.N. Bullous dermatoses secondary to anti-PD-L1 agents: A case report and review of the literature. Dermatol. Online J. 2019, 25, 6. [Google Scholar] [CrossRef]
- Anedda, J.; Atzori, L.; Rongioletti, F.; Pilloni, L. Nivolumab bullous pemphigoid: Case description and literature review. J. Clin. Exp. Pathol. 2019, 9, 364. [Google Scholar]
- Fontecilla, N.M.; Khanna, T.; Bayan, C.-A.Y.; Antonov, N.A.; Geskin, L.J. Bullous Pemphigoid Associated With a New Combination Checkpoint Inhibitor Immunotherapy. J. Drugs Dermatol. 2019, 18, 103–104. [Google Scholar]
- Virgen, C.A.; Nguyen, T.A.; Di Raimondo, C.; Amini, A.; Margolin, K.; Parekh, V.; Abdulla, F.R.; Modi, B. Bullous pemphigoid associated with cemiplimab therapy in a patient with locally advanced cutaneous squamous cell carcinoma. JAAD Case Rep. 2020, 6, 195–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Palvai, S.; Jalil, A. Nivolumab-induced severe bullous pemphigoid in a patient with renal cancer: A case report and literature review. J. Cancer Metastasis Treat. 2020, 6, 40. [Google Scholar] [CrossRef]
- Mihailescu, M.L.; Brockstein, B.E.; Desai, N.; Waldinger, J. Successful reintroduction and continuation of nivolumab in a patient with immune checkpoint inhibitor-induced bullous pemphigoid. Curr. Probl. Cancer Case Rep. 2020, 2, 100031. [Google Scholar] [CrossRef]
Case | IgG | IgA | IgM | C3 | Fibrinogen | Indirect Immunofluorescence | Pathology Findings of Skin Biopsy |
---|---|---|---|---|---|---|---|
1 | +3/+4 linear, continuous deposits along the basement membrane | negative | +1 linear, continuous deposits along the basement membrane. | +4 linear, continuous deposits along the basement membrane. | +3 linear, continuous deposits along the basement membrane. | Negative | Infiltrate composed of mononuclear cells, numerous eosinophils, and sparse neutrophils in upper dermis, consistent with subepidermal blistering disease. |
2 | +3/+4 linear, continuous deposits along the basement membrane | negative | +1 focal, continuous deposits along the basement membrane | +2 granular, continuous deposits along the basement membrane. | +2 linear, continuous deposits along the basement membrane. | Negative | Infiltrate composed of mononuclear cells, numerous eosinophils, and sparse neutrophils in upper dermis, consistent with subepidermal blistering disease. |
3 | +3/+4 linear, continuous deposits along the basement membrane | positive | negative | .+4 linear, continuous deposits along the basement membrane. | +3 linear, continuous deposits along the basement membrane. | Negative | Infiltrate composed of mononuclear cells, numerous eosinophils, and sparse neutrophils in upper dermis, consistent with subepidermal blistering disease. |
Drug | First Approved | Cancers Approved for Treatment | Most Common Side Effects |
---|---|---|---|
Ipilimumab | 2011 | Melanoma, RCC, CRC, HCC, NSCLC | Fatigue, diarrhea, pruritis, rash, colitis |
Pembrolizumab | 2014 | Melanoma, lung cancer, SCC, lymphomas, urothelial carcinoma, cancers high in MSI, MMR-deficient cancers, gastric cancers, esophageal cancers, cervical cancers, HCC, Merkel cell cancer, RCC, endometrial carcinoma, high tumor mutational burden- cancer, triple-negative breast cancer | Fatigue, musculoskeletal pain, decreased appetite, diarrhea, rash, fever, cough, constipation, nausea, abdominal pain, pruritis |
Nivolumab | 2014 | Melanoma, NSCLC, malignant pleural mesothelioma, RCC, classic Hodgkin lymphoma, HNSCC, urothelial carcinoma, CRC, HCC, esophageal squamous cell carcinoma | Fatigue, rash, pruritis, diarrhea |
Atezolizumab | 2016 | Urothelial carcinoma, NSCLC, triple-negative breast cancer, SCLC, HCC, melanoma | Fatigue, nausea, vomiting, cough, dyspnea, decreased appetite, alopecia, constipation or diarrhea, headache, rash |
Durvalumab | 2017 | Urothelial carcinoma and NSCLC | Fatigue, constipation, UTIs, edema, pneumonitis, dyspnea, rash, cough, nausea |
Cemiplimab | 2018 | cSCC, BCC and NSCLC | Pneumonitis, colitis, hepatitis, endocrinopathies, dermatologic reactions, musculoskeletal pain, fatigue, rash, and diarrhea |
Immunotherapy | Average (Weeks) to Develop BP | Number of Studies on Which the Average Is Based |
---|---|---|
Durvalumab then Nivolumab | 52 | 1 |
Nivolumab then Ipilimumab | 50 | 1 |
Atezolizumab | 49.5 | 2 |
Durvalumab and Tremelimumab | 42 | 1 |
Pembrolizumab | 35.3 | 14 |
Ipilimumab then Pembrolizumab | 30.5 | 2 |
Pembrolizumab then Nivolumab | 26 | 1 |
Ipilimumab then Nivolumab | 24 | 1 |
Pembrolizumab and Ipilimumab | 24 | 1 |
Ipilimumab and Nivolumab then Nivolumab | 22 | 1 |
Nivolumab | 19.8 | 24 |
Cemiplimab | 9 | 1 |
Ipilimumab | 2 | 1 |
Pembrolizumab then Ipilimumab | 1 | 2 |
Immune-Related Adverse Effect | Most Common Symptoms |
---|---|
Pruritus | Itch with or without rash |
Morbilliform exanthem | Transient and coalescing pink macules and papules |
Vitiligo-like depigmentation | Loss of skin pigmentation, halo nevi |
Lichenoid dermatitis | Pruritic, violaceous papules/plaques, may involve mucosal surfaces |
Bullous pemphigoid | Tense vesicles/bullae, erosions, urticarial plaques, pruritus |
Stevens–Johnson Syndrome/Toxic Epidermal Necrolysis (SJS/TEN) | Dark patches on skin and mucous membranes, epidermal necrosis and sloughing |
Acute Generalized Exanthematous Pustulosis (AGEP) | Erythematous and edematous plaques covered in pustules, fever, facial edema, may involve mucosal surfaces |
Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) | Morbilliform rash that may be indurated or purpuric, fever, facial edema, lymphadenopathy, end-organ dysfunction |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shalata, W.; Weissmann, S.; Itzhaki Gabay, S.; Sheva, K.; Abu Saleh, O.; Jama, A.A.; Yakobson, A.; Rouvinov, K. A Retrospective, Single-Institution Experience of Bullous Pemphigoid as an Adverse Effect of Immune Checkpoint Inhibitors. Cancers 2022, 14, 5451. https://doi.org/10.3390/cancers14215451
Shalata W, Weissmann S, Itzhaki Gabay S, Sheva K, Abu Saleh O, Jama AA, Yakobson A, Rouvinov K. A Retrospective, Single-Institution Experience of Bullous Pemphigoid as an Adverse Effect of Immune Checkpoint Inhibitors. Cancers. 2022; 14(21):5451. https://doi.org/10.3390/cancers14215451
Chicago/Turabian StyleShalata, Walid, Sarah Weissmann, Sapir Itzhaki Gabay, Kim Sheva, Omar Abu Saleh, Ashraf Abu Jama, Alexander Yakobson, and Keren Rouvinov. 2022. "A Retrospective, Single-Institution Experience of Bullous Pemphigoid as an Adverse Effect of Immune Checkpoint Inhibitors" Cancers 14, no. 21: 5451. https://doi.org/10.3390/cancers14215451
APA StyleShalata, W., Weissmann, S., Itzhaki Gabay, S., Sheva, K., Abu Saleh, O., Jama, A. A., Yakobson, A., & Rouvinov, K. (2022). A Retrospective, Single-Institution Experience of Bullous Pemphigoid as an Adverse Effect of Immune Checkpoint Inhibitors. Cancers, 14(21), 5451. https://doi.org/10.3390/cancers14215451