Interplay between Tumor Mutational Burden and Mutational Profile and Its Effect on Overall Survival: A Pilot Study of Metastatic Patients Treated with Immune Checkpoint Inhibitors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Single Gene Alterations and Implications for Survival
3.3. Multivariate Analysis of Individual Gene Alterations in High TMB Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Samstein, R.M.; Lee, C.H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H., Jr.; et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- Jardim, D.L.; Goodman, A.; de Melo Gagliato, D.; Kurzrock, R. The Challenges of Tumor Mutational Burden as an Immunotherapy Biomarker. Cancer Cell. 2021, 39, 154–173. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.M.; Castro, A.; Pyke, R.M.; Okamura, R.; Kato, S.; Riviere, P.; Frampton, G.; Sokol, E.; Zhang, X.; Ball, E.D.; et al. MHC-I genotype and tumor mutational burden predict response to immunotherapy. Genome Med. 2020, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Axelrod, M.L.; Cook, R.S.; Johnson, D.B.; Balko, J.M. Biological Consequences of MHC-II Expression by Tumor Cells in Cancer. Clin. Cancer Res. 2019, 25, 2392–2402. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data: Figure 1. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, H.; Imai, K. Microsatellite instability: An update. Arch. Toxicol. 2015, 89, 899–921. [Google Scholar] [CrossRef]
- Davidson-Pilon, C. Lifelines: Survival analysis in Python. JOSS 2019, 4, 1317. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, F.R.; Guardia, G.D.; Dos Santos, F.F.; Ohara, D.T.; Galante, P.A. Reboot: A straightforward approach to identify genes and splicing isoforms associated with cancer patient prognosis. NAR Cancer 2021, 3, zcab024. [Google Scholar] [CrossRef]
- Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann. Oncol. 2019, 30, 44–56. [Google Scholar] [CrossRef]
- Alban, T.J.; Chan, T.A. Immunotherapy biomarkers: The long and winding road. Nat. Rev. Clin. Oncol. 2021, 18, 323–324. [Google Scholar] [CrossRef]
- Litchfield, K.; Reading, J.L.; Puttick, C.; Thakkar, K.; Abbosh, C.; Bentham, R.; Watkins, T.B.; Rosenthal, R.; Biswas, D.; Rowan, A.; et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 2021, 184, 596–614. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.M.; Sokol, E.S.; Frampton, G.M.; Lippman, S.M.; Kurzrock, R. Microsatellite-stable tumors with high mutational burden benefit from immunotherapy. Cancer Immunol. Res. 2019, 7, 1570–1573. [Google Scholar] [CrossRef] [Green Version]
- Schenker, M.; Burotto, M.; Richardet, M.; Ciuleanu, T.; Goncalves, A.; Steeghs, N.; Schöffski, P.; Ascierto, P.A.; Maio, M.; Lugowska, I.; et al. CheckMate 848: A randomized, open-label, phase 2 study of nivolumab in combination with ipilimumab or nivolumab monotherapy in patients with advanced or metastatic solid tumors of high tumor mutational burden. In Proceedings of the Presented at: 2022 AACR Annual Meeting, New Orleans, LA, USA, 8 April 2022. [Google Scholar]
- Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N. Engl. J. Med. 2017, 377, 2500–2501. [Google Scholar] [CrossRef]
- Krishnamurthy, N.; Goodman, A.M.; Barkauskas, D.A.; Kurzrock, R. STK11 alterations in the pan-cancer setting: Prognostic and therapeutic implications. Eur. J. Cancer 2021, 148, 215–229. [Google Scholar] [CrossRef]
- Mograbi, B.; Heeke, S.; Hofman, P. The Importance of STK11/LKB1 Assessment in Non-Small Cell Lung Carcinomas. Diagnostics 2021, 11, 196. [Google Scholar] [CrossRef]
- Wu, L.; Wan, S.; Li, J.; Xu, Y.; Lou, X.; Sun, M.; Wang, S. Expression and prognostic value of E2F3 transcription factor in non-small cell lung cancer. Oncol. Lett. 2021, 21, 411. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Y.; Zhang, P.; Ma, G.; Zhang, M.; Liang, Y.; Jiao, W.; Niu, H. Identification of NTRK3 as a Potential Prognostic Biomarker Associated with Tumor Mutation Burden and Immune Infiltration in Bladder Cancer. BMC Cancer 2021, 21, 1–13. [Google Scholar] [CrossRef]
- Wang, X.; Wu, B.; Yan, Z.; Wang, G.; Chen, S.; Zeng, J.; Tao, F.; Xu, B.; Ke, H.; Li, M. Association of PTPRD/PTPRT Mutation with Better Clinical Outcomes in NSCLC Patients Treated with Immune Checkpoint Blockades. Front. Oncol. 2021, 11, 650122. [Google Scholar] [CrossRef]
- Zhang, N.; Shi, X.; Ju, W.; Lou, Y.; Luo, X. Rnf43 Mutation as A Biomarker for Immune Checkpoint Inhibitor Efficacy in Colorectal Cancer. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Deng, J.; Xiao, W.; Wang, Z. FAM46C as a Potential Marker for Pan-Cancer Prognosis and Predicting Immunotherapeutic Efficacy. Front. Genet. 2022, 13, 810252. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.X.; Chen, Y.X.; Wang, Z.X.; Zhao, Q.; He, M.M.; Wang, Y.N.; Wang, F.; Xu, R.H. Alteration in TET1 as potential biomarker for immune checkpoint blockade in multiple cancers. J. Immunother. Cancer 2019, 7, 264. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, N.; Lin, A.; Luo, P.; Chen, X.; Deng, H.; Kang, S.; Guo, L.; Zhu, W.; Zhang, J. ZFHX3 mutation as a protective biomarker for immune checkpoint blockade in non-small cell lung cancer. Cancer Immunol. Immunother. 2021, 70, 137–151. [Google Scholar] [CrossRef]
TMB < 10 mut/Mb | TMB ≥ 10 mut/Mb | Total | |
---|---|---|---|
N (%) | 1173 (70.6) | 488 (29.4) | 1661 (100) |
Tumor Type N (%) | |||
NSCLC | 235 (20) | 115 (23.6) | 350 (21.1) |
Melanoma | 168 (14.3) | 152 (31.1) | 320 (19.3) |
Bladder | 126 (10.7) | 89 (18.2) | 215 (12.9) |
Renal cell carcinoma | 149 (12.7) | 2 (0.4) | 151 (9.1) |
Head and neck cancer | 111 (9.5) | 28 (5.7) | 139 (8.4) |
Esophagogastric cancer | 107 (9.1) | 19 (3.9) | 126 (7.6) |
Glioma | 108 (9.2) | 9 (1.8) | 117 (7) |
Colorectal cancer | 64 (5.5) | 46 (9.4) | 110 (6.6) |
Unknown primary cancer | 64 (5.5) | 24 (4.9) | 88 (5.3) |
Breast cancer | 41 (3.5) | 3 (0.6) | 44 (2.6) |
Skin (non-melanoma) | 0 (0) | 1 (0.2) | 1 (0.1) |
Median age (years) | 62 | 66 | |
Sex | |||
Female | 447 (38.1) | 180 (36.9) | 627 (37.8) |
Male | 726 (61.9) | 308 (63.1) | 1034 (62.2) |
MSI (%) | 72 (6.1) | 142 (29.1) | 214 (12.9) |
ICIs type | |||
anti-PD-1/anti-PD-L1 | 933 (79.5) | 374 (76.6) | 1307 (78.7) |
ANTI-CTLA-4 | 57 (4.9) | 42 (8.6) | 99 (6) |
ICIs combination | 183 (15.6) | 72 (14.8) | 255 (15.4) |
Most frequently found mutations (incidence >10% of all samples) N (%) | |||
TP53 | 467 (39.8) | 271 (55.5) | 738 (44.4) |
TERT | 256 (21.8) | 263 (53.9) | 519 (31.2) |
KMT2D | 67 (5.7) | 169 (34.6) | 236 (14.2) |
KRAS | 138 (11.8) | 88 (18) | 226 (13.6) |
PIK3CA | 104 (8.9) | 96 (19.7) | 200 (12) |
ARID1A | 59 (5.0) | 131 (26.8) | 190 (11.4) |
NF1 | 54 (4.6) | 129 (26.4) | 183 (11) |
PTPRT | 48 (4.1) | 126 (25.8) | 174 (10.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xavier, C.B.; Lopes, C.D.H.; Awni, B.M.; Campos, E.F.; Alves, J.P.B.; Camargo, A.A.; Guardia, G.D.A.; Galante, P.A.F.; Jardim, D.L. Interplay between Tumor Mutational Burden and Mutational Profile and Its Effect on Overall Survival: A Pilot Study of Metastatic Patients Treated with Immune Checkpoint Inhibitors. Cancers 2022, 14, 5433. https://doi.org/10.3390/cancers14215433
Xavier CB, Lopes CDH, Awni BM, Campos EF, Alves JPB, Camargo AA, Guardia GDA, Galante PAF, Jardim DL. Interplay between Tumor Mutational Burden and Mutational Profile and Its Effect on Overall Survival: A Pilot Study of Metastatic Patients Treated with Immune Checkpoint Inhibitors. Cancers. 2022; 14(21):5433. https://doi.org/10.3390/cancers14215433
Chicago/Turabian StyleXavier, Camila B., Carlos Diego H. Lopes, Beatriz M. Awni, Eduardo F. Campos, João Pedro B. Alves, Anamaria A. Camargo, Gabriela D. A. Guardia, Pedro A. F. Galante, and Denis L. Jardim. 2022. "Interplay between Tumor Mutational Burden and Mutational Profile and Its Effect on Overall Survival: A Pilot Study of Metastatic Patients Treated with Immune Checkpoint Inhibitors" Cancers 14, no. 21: 5433. https://doi.org/10.3390/cancers14215433
APA StyleXavier, C. B., Lopes, C. D. H., Awni, B. M., Campos, E. F., Alves, J. P. B., Camargo, A. A., Guardia, G. D. A., Galante, P. A. F., & Jardim, D. L. (2022). Interplay between Tumor Mutational Burden and Mutational Profile and Its Effect on Overall Survival: A Pilot Study of Metastatic Patients Treated with Immune Checkpoint Inhibitors. Cancers, 14(21), 5433. https://doi.org/10.3390/cancers14215433