The Vessels That Encapsulate Tumor Clusters (VETC) Pattern Is a Poor Prognosis Factor in Patients with Hepatocellular Carcinoma: An Analysis of Microvessel Density
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Pathological Analysis and Immunohistochemistry
2.3. Statistical Analysis
3. Results
3.1. Patient Demographics and Pathological Variables
3.2. Comparison of the VETC+ and VETC− Groups
3.3. Prediction of Recurrence by COX Regression Modeling
3.4. Prediction of VETC+ Hepatocellular Carcinoma
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujiwara, N.; Friedman, S.L.; Goossens, N.; Hoshida, Y. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J. Hepatol. 2018, 68, 526–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erstad, D.J.; Tanabe, K.K. Prognostic and Therapeutic Implications of Microvascular Invasion in Hepatocellular Carcinoma. Ann. Surg. Oncol. 2019, 26, 1474–1493. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.Y.; Yu, M.C.; Lee, C.W.; Tsai, H.I.; Sung, C.M.; Chen, C.W.; Huang, S.W.; Lin, C.Y.; Jeng, W.J.; Lee, W.C.; et al. RAM score is an effective predictor for early mortality and recurrence after hepatectomy for hepatocellular carcinoma. BMC Cancer 2017, 17, 742. [Google Scholar] [CrossRef] [PubMed]
- Ponzio, T.A.; Feindt, H.; Ferguson, S. License Compliance Issues For Biopharmaceuticals: Special Challenges For Negotiations Between Companies And Non-Profit Research Institutions. LES Nouv. 2011, 46, 216–225. [Google Scholar] [PubMed]
- Murai, H.; Kodama, T.; Maesaka, K.; Tange, S.; Motooka, D.; Suzuki, Y.; Shigematsu, Y.; Inamura, K.; Mise, Y.; Saiura, A.; et al. Multiomics identifies the link between intratumor steatosis and the exhausted tumor immune microenvironment in hepatocellular carcinoma. Hepatology 2022. [Google Scholar] [CrossRef]
- Pan, C.; Wu, Q.; Wang, S.; Mei, Z.; Zhang, L.; Gao, X.; Qian, J.; Xu, Z.; Zhang, K.; Su, R.; et al. Combination with Toll-like receptor 4 (TLR4) agonist reverses GITR agonism mediated M2 polarization of macrophage in Hepatocellular carcinoma. Oncoimmunology 2022, 11, 2073010. [Google Scholar] [CrossRef]
- Vasuri, F.; Malvi, D.; Bonora, S.; Fittipaldi, S.; Renzulli, M.; Tovoli, F.; Golfieri, R.; Bolondi, L.; D’Errico, A. From large to small: The immunohistochemical panel in the diagnosis of early hepatocellular carcinoma. Histopathology 2018, 72, 414–422. [Google Scholar] [CrossRef]
- Tsujikawa, H.; Masugi, Y.; Yamazaki, K.; Itano, O.; Kitagawa, Y.; Sakamoto, M. Immunohistochemical molecular analysis indicates hepatocellular carcinoma subgroups that reflect tumor aggressiveness. Hum. Pathol. 2016, 50, 24–33. [Google Scholar] [CrossRef]
- Tsai, C.N.; Yu, S.C.; Lee, C.W.; Pang, J.S.; Wu, C.H.; Lin, S.E.; Chung, Y.H.; Tsai, C.L.; Hsieh, S.Y.; Yu, M.C. SOX4 activates CXCL12 in hepatocellular carcinoma cells to modulate endothelial cell migration and angiogenesis in vivo. Oncogene 2020, 39, 4695–4710. [Google Scholar] [CrossRef]
- Wada, H.; Nagano, H.; Yamamoto, H.; Yang, Y.; Kondo, M.; Ota, H.; Nakamura, M.; Yoshioka, S.; Kato, H.; Damdinsuren, B.; et al. Expression pattern of angiogenic factors and prognosis after hepatic resection in hepatocellular carcinoma: Importance of angiopoietin-2 and hypoxia-induced factor-1 alpha. Liver Int. 2006, 26, 414–423. [Google Scholar] [CrossRef]
- Kalasekar, S.M.; VanSant-Webb, C.H.; Evason, K.J. Intratumor Heterogeneity in Hepatocellular Carcinoma: Challenges and Opportunities. Cancers 2021, 13, 5524. [Google Scholar] [CrossRef]
- Hanley, K.L.; Feng, G.S. A new VETC in hepatocellular carcinoma metastasis. Hepatology 2015, 62, 343–345. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.H.; Xu, L.; Shang, L.R.; Pan, C.Z.; Ding, J.; Tang, Y.Q.; Liu, H.; Liu, C.X.; Zheng, J.L.; Zhang, Y.J.; et al. Vessels That Encapsulate Tumor Clusters (VETC) Pattern Is a Predictor of Sorafenib Benefit in Patients with Hepatocellular Carcinoma. Hepatology 2019, 70, 824–839. [Google Scholar] [CrossRef]
- Renne, S.L.; Woo, H.Y.; Allegra, S.; Rudini, N.; Yano, H.; Donadon, M.; Vigano, L.; Akiba, J.; Lee, H.S.; Rhee, H.; et al. Vessels Encapsulating Tumor Clusters (VETC) Is a Powerful Predictor of Aggressive Hepatocellular Carcinoma. Hepatology 2020, 71, 183–195. [Google Scholar] [CrossRef]
- Fang, J.H.; Zhou, H.C.; Zhang, C.; Shang, L.R.; Zhang, L.; Xu, J.; Zheng, L.; Yuan, Y.; Guo, R.P.; Jia, W.H.; et al. A novel vascular pattern promotes metastasis of hepatocellular carcinoma in an epithelial-mesenchymal transition-independent manner. Hepatology 2015, 62, 452–465. [Google Scholar] [CrossRef]
- Chun, Y.S.; Pawlik, T.M.; Vauthey, J.N. 8th Edition of the AJCC Cancer Staging Manual: Pancreas and Hepatobiliary Cancers. Ann. Surg. Oncol. 2018, 25, 845–847. [Google Scholar] [CrossRef]
- Arbuthnot, P.; Kew, M. Hepatitis B virus and hepatocellular carcinoma. Int. J. Exp. Pathol. 2001, 82, 77–100. [Google Scholar] [CrossRef]
- Ng, J.; Wu, J. Hepatitis B- and hepatitis C-related hepatocellular carcinomas in the United States: Similarities and differences. Hepat. Mon. 2012, 12, e7635. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Pan, Y.; Yao, Y.; Zhu, Z.; Chen, J.; Sun, X.; Qiu, Y.; Ding, Y. Expression and significance of caveolin-1 in hepatitis B virus-associated hepatocellular carcinoma. Exp. Ther. Med. 2017, 14, 4356–4362. [Google Scholar] [CrossRef]
- Serafini-Cessi, F.; Monti, A.; Cavallone, D. N-Glycans carried by Tamm-Horsfall glycoprotein have a crucial role in the defense against urinary tract diseases. Glycoconj. J. 2005, 22, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fabrega, J.; Burrel, M.; Garcia-Criado, A.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef]
Variables | All (n = 174) | VETC Positive (n = 53) | VETC Negative (n = 121) | p Value |
---|---|---|---|---|
Age (yr) | 62.6 (53.9~68.9) | 60.6 (52.0~68.0) | 62.2 (54.5~69.3) | 0.371 |
Sex (male) | 125 (71.8) | 39 (73.6) | 86 (71.1) | 0.735 |
Comorbidity (yes) | 89 (51.1) | 31 (58.5) | 54 (44.6) | 0.092 |
HBV positive | 85 (48.9) | 34 (64.2) | 51 (42.1) | 0.008 |
HCV positive | 89 (51.1) | 19 (35.8) | 70 (57.9) | |
ICG R15 | 8.3 (4.0~13.4) | 7.7 (3.8~11.0) | 8.4 (4.1~14.3) | 0.178 |
Major hepatectomy | 32 (18.4) | 13 (24.5) | 19 (15.7) | 0.167 |
Anatomic resection (n = 149) | 48 (32.2) | 12 (28.6) | 36 (33.6) | 0.551 |
AST (IU/L) | 38.0 (26.8~63.3) | 37.0 (26.5~52.0) | 39.0 (27.0~70.0) | 0.497 |
ALT (IU/L) | 40.5 (27.0~74.3) | 37.0 (27.0~53.0) | 43.0 (28.0~82.5) | 0.300 |
ALP (IU/L) | 74.0 (59.0~94.0) | 72.0 (53.5~95.5) | 76.0 (60.0~94.0) | 0.783 |
BIL (mg/dl) | 0.6 (0.5~0.8) | 0.6 (0.5~0.8) | 0.6 (0.4~0.8) | 0.677 |
ALB (g/dl) | 4.2 (3.9~4.5) | 4.2 (3.9~4.5) | 4.2 (3.9~4.5) | 0.343 |
AFP (ng/mL) | 11.7 (4.6~83.8) | 26.8 (5.9~149.4) | 10.5 (3.9~56.4) | 0.280 |
AFP (>200 ng/mL) | 29 (16.7) | 10 (18.9) | 19 (15.7) | 0.606 |
Cirrhosis | 72 (41.4) | 31 (58.5) | 71 (58.7) | 0.982 |
OP time (min) | 250 (202~323) | 249 (215~319) | 255 (195~325) | 0.835 |
Blood loss (mL) | 225 (100~537) | 300 (100~800) | 300 (100~500) | 0.159 |
Encapsulation | 155 (89.1) | 49 (92.5) | 106 (87.6) | 0.435 |
Satellite lesion | 22 (12.6) | 8 (15.1) | 14 (11.6) | 0.520 |
Vascular invasion | ||||
No | 135 (77.6) | 32 (60.4) | 103 (85.1) | 0.002 ** |
Microvascular | 30 (17.2) | 16 (30.2) | 14 (11.6) | |
Gross | 9 (5.2) | 5 (9.4) | 4 (3.3) | |
Tumor size >5 cm | 29 (16.7) | 13 (24.5) | 16 (13.2) | 0.066 |
Tumor size (cm) | 3.2 (2.2~4.5) | 3.7 (2.6~5.7) | 3.0 (2.2~4.0) | 0.025 * |
Grade III, IV/II, I | 67 (38.5)/107 (61.5) | 20 (37.7)/33 (62.3) | 47 (38.8)/74 (61.2) | 0.890 |
AJCC 8 staging IA/IB/II | 32 (18.4)/84(48.3)/58(33.3) | 5 (9.4)/22 (41.5)/26 (49.1) | 27 (22.3)/62 (51.2)/32 (26.4) | 0.008 ** |
Microvessel density (anti-CD31 staining) | ||||
Tumor | 49.0 (27.0~75.3) | 60.3 (42.8~94.0) | 43 (22.2~69.3) | <0.001 *** |
Non-tumor part | 11.7 (7.0~21.0) | 14.7 (7.1~21.7) | 10.5 (7.0~21.0) | 0.096 |
Recurrence (yes) | 93 (53.4) | 35 (66.0) | 58 (47.9) | 0.028 * |
Variable | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | |
Age (yrs) >70 (20.1%) vs. ≤70 (79.9%) | 1.767 | 1.109–2.818 | 0.017 | 1.535 | 0.925–2.548 | 0.097 |
Sex (M/F) F (28.2%) vs. M (71.8%) | 0.735 | 0.459–1.177 | 0.199 | |||
Comorbidity Yes (51.1%) vs. No (48.9%) | 1.101 | 0.733–1.654 | 0.644 | |||
Hepatectomy Major (18.4%) vs. Minor (81.6%) | 1.567 | 0.670–1.919 | 0.638 | |||
ICGR15 (15%) High (18.8%) vs. Low (81.2%) | 1.885 | 1.164–3.052 | 0.010 * | 2.056 | 1.151–3.673 | 0.015 * |
Complication Yes (13.5%) vs. No (86.5%) | 1.681 | 0.960–2.945 | 0.069 | |||
OP time (300 min) More (32.8%) vs. less (67.2%) | 1.233 | 0.809–1.881 | 0.330 | |||
Blood Loss (500 mL) More (25.0%) vs. less (75.0%) | 1.651 | 1.063–2.564 | 0.026 | 1.115 | 0.681–1.824 | 0.666 |
Tumor size (cm) >5.0 (16.7%) vs. ≤5.0 (83.3%) | 1.833 | 1.105–3.040 | 0.019 * | 1.510 | 0.821–2.780 | 0.185 |
Satellite lesions (%) Yes (12.6%) vs. no (87.4%) | 1.354 | 0.753–2.433 | 0.311 | |||
Vascular invasion (%) Gross (5.2%) vs. Micro (17.2%) vs. No (77.6%) | 1.856 | 1.334–2.582 | <0.001 *** | 1.230 | 0.783–1.934 | 0.369 |
Grading I/II/III, IV (%) III, IV (38.5%) vs. I, II (63.5%) | 1.606 | 1.068–2.417 | 0.023 * | 1.724 | 1.111–2.674 | 0.015 * |
Cirrhosis (%) Yes (41.4%) vs. no (58.6%) | 1.656 | 1.071–2.558 | 0.023 * | 1.704 | 1.058–2.747 | 0.028 * |
Encapsulation Yes (89.1%) vs. no (10.9%) | 1.069 | 0.569–2.006 | 0.836 | |||
a-fetal protein; AFP (200 ng/mL) >200 (16.7%) vs. ≤200 (83.3%) | 1.482 | 0.875–2.512 | 0.143 | |||
AJCC 8th Stage a II/III (33.3%) vs. IB (48.3%) vs. IA (18.4%) | 1.728 | 1.270–2.350 | <0.001 *** | 1.322 | 0.892–1.961 | 0.165 |
AST (IU/L) 2ULN >68 (21.8%) vs. ≤68 (78.2%) | 1.921 | 1.226–3.010 | 0.004 | 0.815 | 0.375–1.771 | 0.605 |
ALT (IU/L) 2ULN >72 (25.9%) vs. ≤72 (74.1%) | 1.898 | 1.236–2.915 | 0.003 | 1.819 | 0.915–3.617 | 0.088 |
ALP (IU/L) >100 (18.4%) vs. ≤100 (81.6%) | 1.511 | 0.929–2458 | 0.096 | |||
ALB (g/dl) >3.5 (94.8%) vs. ≤3.5 (5.2%) | 0.505 | 0.220–1.158 | 0.107 | |||
VETC Positive (30.5%) vs. Negative (69.5%) | 1.714 | 1.126–2.609 | 0.012 | 2.066 | 1.280–3.337 | 0.003 * |
Factor | HR (95% CI) | Estimated Median Survival (Months) | |
---|---|---|---|
ICGR15 | 2.056 (1.151–3.673) | High | 22.6 |
Low | 53.9 | ||
Histology grading | 1.724 (1.111–2.674) | III, IV | 32.9 |
I, II | 58.2 | ||
Cirrhosis | 1.704 (1.058–2.747) | Yes | 42.6 |
No | Not met | ||
VETC | 2.066 (1.280–3.337) | Yes | 42.6 |
No | Not met |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-W.; Lin, S.-E.; Huang, S.-F.; Yu, M.-C.; Tang, J.-H.; Tsai, C.-N.; Hsu, H.-Y. The Vessels That Encapsulate Tumor Clusters (VETC) Pattern Is a Poor Prognosis Factor in Patients with Hepatocellular Carcinoma: An Analysis of Microvessel Density. Cancers 2022, 14, 5428. https://doi.org/10.3390/cancers14215428
Huang C-W, Lin S-E, Huang S-F, Yu M-C, Tang J-H, Tsai C-N, Hsu H-Y. The Vessels That Encapsulate Tumor Clusters (VETC) Pattern Is a Poor Prognosis Factor in Patients with Hepatocellular Carcinoma: An Analysis of Microvessel Density. Cancers. 2022; 14(21):5428. https://doi.org/10.3390/cancers14215428
Chicago/Turabian StyleHuang, Chun-Wei, Sey-En Lin, Song-Fong Huang, Ming-Chin Yu, Jui-Hsiang Tang, Chi-Neu Tsai, and Heng-Yuan Hsu. 2022. "The Vessels That Encapsulate Tumor Clusters (VETC) Pattern Is a Poor Prognosis Factor in Patients with Hepatocellular Carcinoma: An Analysis of Microvessel Density" Cancers 14, no. 21: 5428. https://doi.org/10.3390/cancers14215428
APA StyleHuang, C. -W., Lin, S. -E., Huang, S. -F., Yu, M. -C., Tang, J. -H., Tsai, C. -N., & Hsu, H. -Y. (2022). The Vessels That Encapsulate Tumor Clusters (VETC) Pattern Is a Poor Prognosis Factor in Patients with Hepatocellular Carcinoma: An Analysis of Microvessel Density. Cancers, 14(21), 5428. https://doi.org/10.3390/cancers14215428