Transcriptomic Profiling of Breast Cancer Cells Induced by Tumor-Associated Macrophages Generates a Robust Prognostic Gene Signature
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Induction
2.2. RNA Sequencing and Transcriptomic Analysis
2.3. Data Acquisition of Breast Cancer Cohorts
2.4. Generation of A Gene Signature
2.5. Evaluation and Validation of the Gene Signature
2.6. GO Enrichment Analysis and Gene Set Enrichment Analysis (GSEA)
2.7. Drug Sensitivity Prediction
2.8. Statical Analysis
3. Results
3.1. The Effects of TAMs on Breast Cancer Cell Transcriptome
3.2. Establishment of the Prognostic Gene Signature from the TAMs-Regulated Genes
3.3. Evaluation and Validation of the Gene Signature in Breast Cancer Cohorts
3.4. Association of the Risk Score with Molecular Signaling Pathways
3.5. Association of the Risk Score with Clinical Features
3.6. Association of the Risk Score with Biological Features
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, J.S.; Kang, M.J.; Suchar, A.M.; Shimamura, T.; Kohn, E.A.; Michalowska, A.M.; Jordan, V.C.; Hirohashi, S.; Wakefield, L.M. Chemokine (C-C motif) ligand 2 mediates the prometastatic effect of dysadherin in human breast cancer cells. Cancer Res. 2006, 66, 7176–7184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Lu, Y.; Pienta, K.J. Multiple roles of chemokine (C-C motif) ligand 2 in promoting prostate cancer growth. J. Natl. Cancer Inst. 2010, 102, 522–528. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Kang, Y. Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J. Biol. Chem. 2009, 284, 29087–29096. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Qiu, Y.; Lu, W.; Jiang, Y.; Wang, J. Immunotherapeutic interventions of Triple Negative Breast Cancer. J. Transl. Med. 2018, 16, 147. [Google Scholar] [CrossRef] [Green Version]
- Hamada, I.; Kato, M.; Yamasaki, T.; Iwabuchi, K.; Watanabe, T.; Yamada, T.; Itoyama, S.; Ito, H.; Okada, K. Clinical effects of tumor-associated macrophages and dendritic cells on renal cell carcinoma. Anticancer Res. 2002, 22, 4281–4284. [Google Scholar]
- Rigo, A.; Gottardi, M.; Zamo, A.; Mauri, P.; Bonifacio, M.; Krampera, M.; Damiani, E.; Pizzolo, G.; Vinante, F. Macrophages may promote cancer growth via a GM-CSF/HB-EGF paracrine loop that is enhanced by CXCL12. Mol. Cancer 2010, 9, 273. [Google Scholar] [CrossRef] [Green Version]
- Allavena, P.; Sica, A.; Solinas, G.; Porta, C.; Mantovani, A. The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages. Crit. Rev. Oncol. Hematol. 2008, 66, 1–9. [Google Scholar] [CrossRef]
- Chen, J.; Yao, Y.; Gong, C.; Yu, F.; Su, S.; Chen, J.; Liu, B.; Deng, H.; Wang, F.; Lin, L.; et al. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 2011, 19, 541–555. [Google Scholar] [CrossRef] [Green Version]
- Solinas, G.; Schiarea, S.; Liguori, M.; Fabbri, M.; Pesce, S.; Zammataro, L.; Pasqualini, F.; Nebuloni, M.; Chiabrando, C.; Mantovani, A.; et al. Tumor-conditioned macrophages secrete migration-stimulating factor: A new marker for M2-polarization, influencing tumor cell motility. J. Immunol. 2010, 185, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Ruffell, B.; Coussens, L.M. Macrophages and therapeutic resistance in cancer. Cancer Cell 2015, 27, 462–472. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, A.; Marchesi, F.; Jaillon, S.; Garlanda, C.; Allavena, P. Tumor-associated myeloid cells: Diversity and therapeutic targeting. Cell. Mol. Immunol. 2021, 18, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.W.; Liu, L.; Gong, C.Y.; Shi, H.S.; Zeng, Y.H.; Wang, X.Z.; Zhao, Y.W.; Wei, Y.Q. Prognostic significance of tumor-associated macrophages in solid tumor: A meta-analysis of the literature. PLoS ONE 2012, 7, e50946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franklin, R.A.; Liao, W.; Sarkar, A.; Kim, M.V.; Bivona, M.R.; Liu, K.; Pamer, E.G.; Li, M.O. The cellular and molecular origin of tumor-associated macrophages. Science 2014, 344, 921–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Pollard, J.W. Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer 2004, 4, 71–78. [Google Scholar] [CrossRef]
- Zhao, X.; Qu, J.; Sun, Y.; Wang, J.; Liu, X.; Wang, F.; Zhang, H.; Wang, W.; Ma, X.; Gao, X.; et al. Prognostic significance of tumor-associated macrophages in breast cancer: A meta-analysis of the literature. Oncotarget 2017, 8, 30576–30586. [Google Scholar] [CrossRef] [Green Version]
- Leek, R.D.; Landers, R.; Fox, S.B.; Ng, F.; Harris, A.L.; Lewis, C.E. Association of tumour necrosis factor alpha and its receptors with thymidine phosphorylase expression in invasive breast carcinoma. Br. J. Cancer 1998, 77, 2246–2251. [Google Scholar] [CrossRef] [Green Version]
- Campbell, M.J.; Tonlaar, N.Y.; Garwood, E.R.; Huo, D.; Moore, D.H.; Khramtsov, A.I.; Au, A.; Baehner, F.; Chen, Y.; Malaka, D.O.; et al. Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Res. Treat. 2011, 128, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Chen, J.; Yang, L.; Liu, J.; Zhang, X.; Zhang, Y.; Tu, Q.; Yin, D.; Lin, D.; Wong, P.P.; et al. Extracellular vesicle-packaged HIF-1alpha-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat. Cell Biol. 2019, 21, 498–510. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Frazee, A.C.; Pertea, G.; Jaffe, A.E.; Langmead, B.; Salzberg, S.L.; Leek, J.T. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat. Biotechnol. 2015, 33, 243–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020, 48, W509–W514. [Google Scholar] [CrossRef]
- Cassetta, L.; Pollard, J.W. Targeting macrophages: Therapeutic approaches in cancer. Nat. Rev. Drug. Discov. 2018, 17, 887–904. [Google Scholar] [CrossRef]
- DeNardo, D.G.; Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 2019, 19, 369–382. [Google Scholar] [CrossRef]
- Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017, 14, 399–416. [Google Scholar] [CrossRef]
- Engblom, C.; Pfirschke, C.; Pittet, M.J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 2016, 16, 447–462. [Google Scholar] [CrossRef]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef] [PubMed]
Ensemble. Gene | Gene. Symbol | Description | Coefficient |
---|---|---|---|
ENSG00000062485.19 | CS | citrate synthase | 0.0000856 |
ENSG00000073584.20 | SMARCE1 | SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily e, member 1 | −0.010460771 |
ENSG00000080854.16 | IGSF9B | immunoglobulin superfamily, member 9B | 0.019073486 |
ENSG00000102362.15 | SYTL4 | Synaptotagmin-Like Protein 4 | −0.002378905 |
ENSG00000103888.17 | CEMIP | cell migration inducing protein, hyaluronan binding | 0.002799886 |
ENSG00000104412.8 | EMC2 | ER membrane protein complex subunit 2 | 0.00416519 |
ENSG00000115641.19 | FHL2 | four and a half LIM domains 2 | 0.000287122 |
ENSG00000122679.8 | RAMP3 | receptor (G protein-coupled) activity modifying protein 3 | 0.00014395 |
ENSG00000122873.12 | CISD1 | CDGSH iron sulfur domain 1 | 0.002053503 |
ENSG00000128050.9 | PAICS | phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase | 0.000183216 |
ENSG00000129696.13 | TTI2 | TELO2 interacting protein 2 | 0.000427789 |
ENSG00000130720.13 | FIBCD1 | Fibrinogen C Domain Containing 1 | 0.002554592 |
ENSG00000131732.12 | ZCCHC9 | Zinc Finger CCHC-Type Containing 9 | 0.004186134 |
ENSG00000134215.16 | VAV3 | vav 3 guanine nucleotide exchange factor | −0.000553165 |
ENSG00000136490.9 | LIMD2 | LIM domain containing 2 | −0.002107864 |
ENSG00000136560.14 | TANK | TRAF family member-associated NFKB activator | −0.002189092 |
ENSG00000137843.12 | PAK6 | p21 protein (Cdc42/Rac)-activated kinase 6 | 0.011349395 |
ENSG00000140374.16 | ETFA | electron-transfer-flavoprotein, alpha polypeptide | 0.00491458 |
ENSG00000142611.17 | PRDM16 | PR domain containing 16 | 0.030762685 |
ENSG00000143537.14 | ADAM15 | ADAM metallopeptidase domain 15 | 0.001069884 |
ENSG00000144802.11 | NFKBIZ | NFKB Inhibitor Zeta | −0.001081268 |
ENSG00000153904.21 | DDAH1 | dimethylarginine dimethylaminohydrolase 1 | −0.000327634 |
ENSG00000154222.15 | CC2D1B | Coiled-Coil And C2 Domain Containing 1B | −0.007562522 |
ENSG00000160999.10 | SH2B2 | SH2B adaptor protein 2 | −0.009621469 |
ENSG00000170634.13 | ACYP2 | Acylphosphatase 2 | 0.018154284 |
ENSG00000173818.17 | ENDOV | Endonuclease V | −0.004457155 |
ENSG00000176595.4 | KBTBD11 | kelch repeat and BTB (POZ) domain containing 11 | −0.003601533 |
ENSG00000177788.6 | AL162595.1 | RAB4A antisense RNA 1 | 0.013350834 |
ENSG00000179715.13 | PCED1B | PC-Esterase Domain Containing 1B | 0.001272099 |
ENSG00000183060.15 | LYSMD4 | LysM Domain Containing 4 | −0.011804477 |
ENSG00000188917.15 | TRMT2B | tRNA methyltransferase 2 homolog B (S. cerevisiae) | 0.002438604 |
ENSG00000196517.13 | SLC6A9 | solute carrier family 6 (neurotransmitter transporter, glycine), member 9 | 0.00489141 |
ENSG00000198929.13 | NOS1AP | nitric oxide synthase 1 (neuronal) adaptor protein | −0.004733383 |
ENSG00000204792.2 | LINC01291 | Long Intergenic Non-Protein Coding RNA 1291 | −0.001537643 |
ENSG00000205220.12 | PSMB10 | proteasome (prosome, macropain) subunit, beta type, 10 | −0.001541529 |
ENSG00000213228.5 | RPL12P38 | Ribosomal Protein L12 Pseudogene 38 | 0.032718459 |
ENSG00000213793.5 | ZNF888 | Zinc Finger Protein 888 | 0.008411713 |
ENSG00000226969.1 | AL391845.1 | PRKCZ divergent transcript | −0.112396842 |
ENSG00000228350.1 | LINC02585 | Long Intergenic Non-Protein Coding RNA 2585 | 0.001112306 |
ENSG00000232645.5 | LINC01431 | Long Intergenic Non-Protein Coding RNA 1431 | 0.021424453 |
ENSG00000253776.1 | AC099520.2 | novel transcript | 0.22692143 |
ENSG00000258890.7 | CEP95 | Centrosomal Protein 95 | −0.000482813 |
ENSG00000259240.1 | MIR4713HG | MIR4713 Host Gene | 0.000916309 |
ENSG00000259956.2 | RBM15B | RNA binding motif protein 15B | −0.002009547 |
ENSG00000266970.1 | AC061992.2 | SOCS3 divergent transcript | −0.016480999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, M.; Wang, J.; Yang, M. Transcriptomic Profiling of Breast Cancer Cells Induced by Tumor-Associated Macrophages Generates a Robust Prognostic Gene Signature. Cancers 2022, 14, 5364. https://doi.org/10.3390/cancers14215364
Long M, Wang J, Yang M. Transcriptomic Profiling of Breast Cancer Cells Induced by Tumor-Associated Macrophages Generates a Robust Prognostic Gene Signature. Cancers. 2022; 14(21):5364. https://doi.org/10.3390/cancers14215364
Chicago/Turabian StyleLong, Meijun, Jiajie Wang, and Mei Yang. 2022. "Transcriptomic Profiling of Breast Cancer Cells Induced by Tumor-Associated Macrophages Generates a Robust Prognostic Gene Signature" Cancers 14, no. 21: 5364. https://doi.org/10.3390/cancers14215364
APA StyleLong, M., Wang, J., & Yang, M. (2022). Transcriptomic Profiling of Breast Cancer Cells Induced by Tumor-Associated Macrophages Generates a Robust Prognostic Gene Signature. Cancers, 14(21), 5364. https://doi.org/10.3390/cancers14215364