Body Mass Index and Overall Survival of Patients with Newly Diagnosed Multiple Myeloma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Cancer Institute Surveillance, Epidemiology, and End Results Program. Cancer Stat Facts: Myeloma. Available online: https://seer.cancer.gov/statfacts/html/mulmy.html (accessed on 26 April 2022).
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2020, 95, 548–567. [Google Scholar] [CrossRef] [Green Version]
- San Miguel, J.F.; García-Sanz, R. Prognostic features of multiple myeloma. Best Pract. Res. Clin. Haematol. 2005, 18, 569–583. [Google Scholar] [CrossRef]
- Petrelli, F.; Cortellini, A.; Indini, A.; Tomasello, G.; Ghidini, M.; Nigro, O.; Salati, M.; Dottorini, L.; Iaculli, A.; Varricchio, A.; et al. Association of Obesity with Survival Outcomes in Patients with Cancer. JAMA Netw. Open 2021, 4, e213520. [Google Scholar] [CrossRef] [PubMed]
- Parekh, N.; Chandran, U.; Bandera, E.V. Obesity in Cancer Survival. Annu. Rev. Nutr. 2012, 32, 311–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chihara, D.; Larson, M.C.; Robinson, D.P.; Thompson, C.A.; Maurer, M.J.; Casulo, C.; Pophali, P.; Link, B.K.; Habermann, T.M.; Feldman, A.L.; et al. Body mass index and survival of patients with lymphoma. Leuk. Lymphoma 2021, 62, 2671–2678. [Google Scholar] [CrossRef] [PubMed]
- Carson, K.R.; Bates, M.L.; Tomasson, M.H. The skinny on obesity and plasma cell myeloma: A review of the literature. Bone Marrow Transplant. 2014, 49, 1009–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beason, T.S.; Chang, S.-H.; Sanfilippo, K.M.; Luo, S.; Colditz, G.A.; Vij, R.; Tomasson, M.H.; Dipersio, J.F.; Stockerl-Goldstein, K.; Ganti, A.; et al. Influence of Body Mass Index on Survival in Veterans with Multiple Myeloma. Oncologist 2013, 18, 1074–1079. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-H.; Yang, D.-H.; Ahn, J.-S.; Lee, S.-S.; Ahn, S.-Y.; Kim, Y.-K.; Kim, H.; Lee, J.-J. Decreased body mass index is associated with poor prognosis in patients with multiple myeloma. Ann. Hematol. 2013, 93, 835–840. [Google Scholar] [CrossRef]
- Vogl, D.T.; Wang, T.; Pérez, W.S.; Stadtmauer, E.A.; Heitjan, D.F.; Lazarus, H.M.; Kyle, R.A.; Kamble, R.; Weisdorf, D.; Roy, V.; et al. Effect of Obesity on Outcomes after Autologous Hematopoietic Stem Cell Transplantation for Multiple Myeloma. Biol. Blood Marrow Transplant. 2011, 17, 1765–1774. [Google Scholar] [CrossRef]
- Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 2008, 371, 569–578. [Google Scholar] [CrossRef]
- Charvat, H.; Freisling, H.; Noh, H.; Gaudet, M.M.; Gunter, M.J.; Cross, A.J.; Tsilidis, K.K.; Tjønneland, A.; Katzke, V.; Bergmann, M.; et al. Excess Body Fatness during Early to Mid-Adulthood and Survival from Colorectal and Breast Cancer: A Pooled Analysis of Five International Cohort Studies. Cancer Epidemiol. Biomark. Prev. 2022, 31, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Charvat, H.; Freisling, H.; Noh, H.; Adami, H.O.; Soerjomataram, I.; Weiderpass, E. Adult Overweight and Survival from Breast and Colorectal Cancer in Swedish WomenAdulthood Overweight and Cancer Survival. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1518–1524. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.-V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A More Accurate Method to Estimate Glomerular Filtration Rate from Serum Creatinine: A New Prediction Equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Center for Disease Control and Prevention. Calculating BMI Using the English System. 2022. Available online: https://www.cdc.gov/nccdphp/dnpao/growthcharts/training/bmiage/page5_2.html#:~:text=Formula%3A%20weight%20(lb)%20%2F,in)%5D2%20x%20703&text=Then%2C%20calculate%20BMI%20by%20dividing,a%20conversion%20factor%20of%20703 (accessed on 15 July 2022).
- The World Health Organization. A Healthy Lifestyle—WHO Recommendations 2010. Available online: https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations (accessed on 15 July 2022).
- Paulzen, M.; Haen, E.; Stegmann, B.; Hiemke, C.; Gründer, G.; Lammertz, S.E.; Schoretsanitis, G. Body mass index (BMI) but not body weight is associated with changes in the metabolism of risperidone; A pharmacokinetics-based hypothesis. Psychoneuroendocrinology 2016, 73, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Derman, B.A.; Jasielec, J.; Langerman, S.S.; Zhang, W.; Jakubowiak, A.J.; Chiu, B.C.-H. Racial differences in treatment and outcomes in multiple myeloma: A multiple myeloma research foundation analysis. Blood Cancer J. 2020, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Derman, B.A.; Langerman, S.S.; Maric, M.; Jakubowiak, A.; Zhang, W.; Chiu, B.C. Sex differences in outcomes in multiple myeloma. Br. J. Haematol. 2020, 192, e66. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Garacci, Z.; Buradagunta, C.S.; D’Souza, A.; Mohan, M.; Cunningham, A.; Janz, S.; Dhakal, B.; Thrift, A.P.; Hari, P. Black patients with multiple myeloma have better survival than white patients when treated equally: A matched cohort study. Blood Cancer J. 2022, 12, 1–7. [Google Scholar] [CrossRef]
- Collett, D. Modelling Survival Data in Medical Research; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Ershler, R.; Fernandes, L.L.; Kanapuru, B.; Gwise, T.; Kluetz, P.G.; Theoret, M.R.; Gormley, N.; Pazdur, R. FDA analysis: Impact of BMI on efficacy outcomes in multiple myeloma trials. J. Clin. Oncol. 2020, 38, 8543. [Google Scholar] [CrossRef]
- Lennon, H.; Sperrin, M.; Badrick, E.; Renehan, A.G. The Obesity Paradox in Cancer: A Review. Curr. Oncol. Rep. 2016, 18, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karastergiou, K.; Smith, S.R.; Greenberg, A.S.; Fried, S.K. Sex differences in human adipose tissues—The biology of pear shape. Biol. Sex Differ. 2012, 3, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, A.S.; Martin, R.M.; Renehan, A.G.; Cade, J.; Copson, E.R.; Cross, A.J.; Grimmett, C.; Keaver, L.; King, A.; Riboli, E.; et al. Cancer survivorship, excess body fatness and weight-loss intervention—Where are we in 2020? Br. J. Cancer 2021, 124, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Sperrin, M.; Marshall, A.D.; Higgins, V.; Renehan, A.G.; Buchan, I.E. Body mass index relates weight to height differently in women and older adults: Serial cross-sectional surveys in England (1992–2011). J. Public Health 2016, 38, 607–613. [Google Scholar] [CrossRef] [Green Version]
- Fowler, J.A.; Lwin, S.T.; Drake, M.T.; Edwards, J.R.; Kyle, R.A.; Mundy, G.R.; Edwards, C. Host-derived adiponectin is tumor-suppressive and a novel therapeutic target for multiple myeloma and the associated bone disease. Blood 2011, 118, 5872–5882. [Google Scholar] [CrossRef] [Green Version]
- Dalamaga, M.; Diakopoulos, K.N.; Mantzoros, C.S. The Role of Adiponectin in Cancer: A Review of Current Evidence. Endocr. Rev. 2012, 33, 547–594. [Google Scholar] [CrossRef] [Green Version]
- Ohman-Hanson, R.A.; Cree-Green, M.; Kelsey, M.M.; Bessesen, D.H.; Sharp, T.A.; Pyle, L.; Pereira, R.I.; Nadeau, K.J. Ethnic and sex differences in adiponectin: From childhood to adulthood. J. Clin. Endocrinol. Metab. 2016, 101, 4808–4815. [Google Scholar] [CrossRef]
- Chan, J.C.N.; Cheung, J.C.K.; Stehouwer, C.D.A.; Emeis, J.J.; Tong, P.C.Y.; Ko, G.T.C.; Yudkin, J.S. The central roles of obesity-associated dyslipidaemia, endothelial activation and cytokines in the metabolic syndrome—An analysis by structural equation modelling. Int. J. Obes. 2002, 26, 994–1008. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.G.; Klein, B.; Bataille, R. Interleukin-6 is a potent myeloma-cell growth factor in patients with aggressive multiple myeloma. Blood 1989, 74, 11–13. [Google Scholar] [CrossRef] [Green Version]
- Eder, K.; Baffy, N.; Falus, A.; Fulop, A.K. The major inflammatory mediator interleukin-6 and obesity. Agents Actions 2009, 58, 727–736. [Google Scholar] [CrossRef]
- Sparreboom, A.; Wolff, A.C.; Mathijssen, R.H.; Chatelut, E.; Rowinsky, E.K.; Verweij, J.; Baker, S.D. Evaluation of Alternate Size Descriptors for Dose Calculation of Anticancer Drugs in the Obese. J. Clin. Oncol. 2007, 25, 4707–4713. [Google Scholar] [CrossRef] [PubMed]
- Nath, C.E.; Trotman, J.; Nivison-Smith, I.; Gurney, H.; Zeng, L.; Presgrave, P.; Tiley, C.; Joshua, D.; Kerridge, I.; McLachlan, A.J.; et al. Melphalan exposure and outcome in obese and non-obese adults with myeloma. A study of pharmacokinetics and pharmacodynamics. Bone Marrow Transplant. 2020, 55, 1862–1864. [Google Scholar] [CrossRef] [PubMed]
- GroΔ, J.P.; Nattenmüller, J.; Hemmer, S.; Tichy, D.; Krzykalla, J.; Goldschmidt, H.; Bertsch, U.; Delorme, S.; Kauczor, H.U.; Hillengass, J.; et al. Body fat composition as predictive factor for treatment response in patients with newly diagnosed multiple myeloma–subgroup analysis of the prospective GMMG MM5 trial. Oncotarget 2017, 8, 68460. [Google Scholar] [PubMed]
Characteristic | Total | By Vital Status | ||
---|---|---|---|---|
At Risk N (%) | Death N (%) | HRs (95% CI) | ||
372 (66.07) | 191 (33.93) | |||
Age at diagnosis (years) | ||||
Mean (SD) | 62.75 (10.11) | 61.89 (10.04) | 64.30 (10.19) | |
<60 | 209 (37.12) | 149 (40.05) | 60 (31.41) | 1.0 (Referent) |
60–69 | 227 (40.32) | 143 (38.44) | 84 (43.98) | 1.43 (1.02, 2.00) |
≥ 70 | 127 (22.56) | 80 (21.51) | 47 (24.61) | 1.83 (1.25, 2.69) |
Sex | ||||
Female | 253 (44.94) | 168 (45.16) | 85 (44.50) | 1.0 (Referent) |
Male | 310 (55.06) | 204 (54.84) | 106 (55.50) | 1.10 (0.82, 1.46) |
Race | ||||
White | 393 (72.78) | 271 (77.21) | 122 (64.55) | 1.0 (Referent) |
Black/African American | 147 (27.22) | 80 (22.79) | 67 (35.45) | 1.43 (1.06, 1.93) |
Education | ||||
Below college | 102 (27.27) | 60 (25.21) | 42 (30.88) | 1.0 (Referent) |
Some college or completed college | 175 (46.79) | 118 (49.58) | 57 (41.91) | 0.81 (0.54, 1.21) |
Graduate or professional degree | 97 (25.94) | 60 (25.21) | 37 (27.21) | 0.89 (0.57, 1.39) |
International staging system (ISS) | ||||
1 | 262 (64.06) | 201 (70.28) | 61 (49.59) | 1.0 (Referent) |
2 | 106 (25.92) | 65 (22.73) | 41 (33.33) | 2.08 (1.40, 3.10) |
3 | 41 (10.02) | 20 (6.99) | 21 (17.07) | 4.51 (2.72, 7.48) |
Estimated glomerular filtration rate (eGFR) (mL/min) | ||||
≥ 60 | 365 (67.72) | 255 (72.03) | 110 (59.46) | 1.0 (Referent) |
<60 | 174 (32.28) | 99 (27.97) | 75 (40.54) | 1.70 (1.26, 2.31) |
Serum free light chains | ||||
Low [<0.26] | 116 (21.72) | 68 (19.43) | 48 (26.09) | 1.82 (1.21, 2.75) |
Normal [0.26–1.65] | 144 (26.97) | 100 (28.57) | 44 (23.91) | 1.0 (Referent) |
High [>1.65] | 274 (51.31) | 183 (52.00) | 92 (50.00) | 1.35 (0.94, 1.95) |
Elevated lactate dehydrogenase (LDH) levels (U/L) | ||||
Normal (LDH < 240) | 333 (73.51) | 239 (77.35) | 94 (65.28) | 1.0 (Referent) |
Elevated (LDH ≥ 240) | 120 (26.49) | 70 (22.65) | 50 (34.72) | 1.72 (1.22, 2.42) |
Number of high-risk cytogenetic abnormalities b | ||||
0 | 116 (66.29) | 77 (67.54) | 39 (63.93) | 1.0 (Referent) |
1+ | 59 (33.71) | 37 (32.46) | 22 (36.07) | 1.40 (0.83, 2.37) |
At-Risk (N) | Deaths (N) | Model 1 a | Model 2 b | ||
---|---|---|---|---|---|
Hazard Ratio (95% confidence interval) | |||||
At diagnosis | |||||
N = 508 | N = 494 | ||||
Height (m) c | Q1 [1.35–1.63] | 103 | 57 | 1.0 (Referent) | 1.0 (Referent) |
Q2 [1.63–1.73] | 98 | 57 | 0.99 (0.64, 1.52) | 1.05 (0.67, 1.63) | |
Q3 [1.70–1.80] | 67 | 30 | 0.69 (0.37, 1.28) | 0.90 (0.46, 1.74) | |
Q4 [1.80–1.99] | 90 | 42 | 0.82 (0.48, 1.20) | 0.83 (0.43, 1.61) | |
p Trend d | 0.42 | 0.40 | |||
Weight (kg) c | Q1 [39.15–71.11] | 87 | 60 | 1.0 (Referent) | 1.0 (Referent) |
Q2 [71.11–81.91] | 93 | 35 | 0.56 (0.34, 0.88) | 0.59 (0.38, 0.93) | |
Q3 [81.91–93.16] | 88 | 39 | 0.60 (0.38, 0.94) | 0.58 (0.36, 0.91) | |
Q4 [93.16–194.85] | 90 | 51 | 0.74 (0.47, 1.17) | 0.83 (0.53, 1.32) | |
p Trend d | 0.09 | 0.23 | |||
BMI | Normal | 97 | 51 | 1.0 (Referent) | 1.0 (Referent) |
Overweight | 139 | 73 | 0.93 (0.64, 1.33) | 0.89 (0.62, 1.29) | |
Obese | 122 | 62 | 0.87 (0.60, 1.28) | 0.88 (0.60, 1.28) | |
p Trend d | 0.23 | 0.37 | |||
5 years before diagnosis | |||||
N = 288 | N = 280 | ||||
Weight (kg) c | Q1 [48.60–72.00] | 47 | 29 | 1.0 (Referent) | 1.0 (Referent) |
Q2 [72.00–84.15] | 54 | 26 | 0.68 (0.38, 1.22) | 0.62 (0.34, 1.13) | |
Q3 [84.15–96.75] | 49 | 18 | 0.56 (0.28, 1.10) | 0.55 (0.27, 1.12) | |
Q4 [96.75–171.00] | 53 | 31 | 0.85 (0.45, 1.61) | 0.86 (0.43, 1.70) | |
p Trend d | 0.56 | 0.30 | |||
BMI | Normal | 51 | 25 | 1.0 (Referent) | 1.0 (Referent) |
Overweight | 80 | 43 | 1.10 (0.67, 1.82) | 1.10 (0.65, 1.87) | |
Obese | 66 | 36 | 1.16 (0.69, 1.95) | 1.20 (0.69, 2.07) | |
p Trend d | 0.65 | 0.74 | |||
Age 20 | |||||
N = 280 | N = 271 | ||||
Weight (kg) c | Q1 [42.75–58.50] | 49 | 29 | 1.0 (Referent) | 1.0 (Referent) |
Q2 [58.50–71.55] | 50 | 26 | 0.75 (0.39, 1.50) | 0.85 (0.40, 1.78) | |
Q3 [71.55–81.90] | 49 | 22 | 0.48 (0.20, 1.17) | 0.51 (0.20, 1.34) | |
Q4 [81.90–112.50] | 50 | 24 | 0.68 (0.26, 1.76) | 0.98 (0.34, 2.85) | |
p Trend d | 0.38 | 0.23 | |||
BMI | Normal | 130 | 61 | 1.0 (Referent) | 1.0 (Referent) |
Overweight | 51 | 30 | 1.14 (0.73, 1.80) | 1.28 (0.80, 2.04) | |
Obese | 11 | 6 | 1.80 (0.75, 4.31) | 2.65 (1.07, 6.54) | |
p Trend d | 0.47 | 0.85 | |||
Adulthood maximum | |||||
N = 340 | N = 329 | ||||
Weight (kg) c | Q1 [49.50–76.50] | 54 | 35 | 1.0 (Referent) | 1.0 (Referent) |
Q2 [76.50–90.00] | 56 | 31 | 0.57 (0.33, 0.96) | 0.49 (0.28, 0.86) | |
Q3 [90.00–102.60] | 65 | 30 | 0.57 (0.32, 1.01) | 0.45 (0.25, 0.82) | |
Q4 [102.60–225.00] | 58 | 38 | 0.76 (0.43, 1.34) | 0.78 (0.43, 1.39) | |
p Trend d | 0.66 | 0.54 | |||
BMI | Normal | 29 | 17 | 1.0 (Referent) | 1.0 (Referent) |
Overweight | 77 | 48 | 1.06 (0.60, 1.86) | 0.93 (0.51, 1.68) | |
Obese | 118 | 69 | 0.88 (0.51, 1.51) | 0.80 (0.45, 1.40) | |
p Trend d | 0.28 | 0.24 |
Female | Male | p Homo-Geneity c | White | Black | p Homo-Geneity c | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
At-Risk (N) | Deaths (N) | HR 95% CI a | At-Risk (N) | Deaths (N) | HR 95% CI a | At-Risk (N) | Deaths (N) | HR 95% CI a | At-Risk (N) | Deaths (N) | HR 95% CI a | |||
At diagnosis | ||||||||||||||
N = 215 | N = 280 | N = 354 | N = 141 | |||||||||||
Normal | 47 | 31 | 1.0 (referent) | 47 | 20 | 1.0 (referent) | 74 | 34 | 1.0 (referent) | 16 | 17 | 1.0 (referent) | ||
Overweight | 44 | 26 | 0.64 (0.36, 1.12) | 89 | 47 | 1.15 (0.67, 1.97) | 97 | 49 | 0.99 (0.62, 1.57) | 26 | 23 | 0.64 (0.33, 1.25) | ||
Obese | 61 | 25 | 0.39 (0.22, 0.71) | 58 | 37 | 1.57 (0.90, 2.74) | 76 | 36 | 1.10 (0.68, 1.78) | 36 | 25 | 0.51 (0.26, 1.00) | ||
p Trend b | <0.001 | 0.06 | 0.01 | 0.89 | 0.05 | 0.36 | ||||||||
5 years before diagnosis | ||||||||||||||
N = 114 | N = 167 | N = 222 | N = 59 | |||||||||||
Normal | 23 | 16 | 1.0 (referent) | 28 | 9 | 1.0 (referent) | 45 | 21 | 1.0 (referent) | 6 | 4 | 1.0 (referent) | ||
Overweight | 30 | 10 | 0.52 (0.21, 1.30) | 44 | 33 | 2.01 (0.94, 4.32) | 60 | 33 | 1.11 (0.61, 2.04) | 14 | 9 | 0.59 (0.14, 2.54) | ||
Obese | 27 | 13 | 0.74 (0.31, 1.79) | 37 | 23 | 1.89 (0.85, 4.17) | 47 | 23 | 1.16 (0.61, 2.19) | 14 | 13 | 1.90 (0.54, 6.70) | ||
p Trend b | 0.16 | 0.54 | 0.06 | 0.94 | 0.32 | 0.97 | ||||||||
Age 20 | ||||||||||||||
N = 107 | N = 161 | N = 216 | N = 52 | |||||||||||
Normal | 61 | 29 | 1.0 (referent) | 65 | 32 | 1.0 (referent) | 104 | 48 | 1.0 (referent) | 21 | 13 | 1.0 (referent) | ||
Overweight | 14 | 5 | 0.92 (0.33, 2.58) | 33 | 25 | 1.50 (0.85, 2.65) | 37 | 24 | 1.17 (0.68, 1.99) | 9 | 5 | 1.62 (0.50, 5.26) | ||
Obese | 1 | 2 | 24.81 (4.41, 139.65) | 10 | 4 | 1.72 (0.57, 5.17) | 9 | 2 | 1.36 (0.32, 5.80) | 1 | 4 | 9.25 (1.86, 46.08) | ||
p Trend b | 0.70 | 0.96 | 0.04 | 0.90 | 0.80 | 0.31 | ||||||||
Adulthood maximum | ||||||||||||||
N = 140 | N = 190 | N = 252 | N = 78 | |||||||||||
Normal | 20 | 13 | 1.0 (referent) | 9 | 4 | 1.0 (referent) | 26 | 13 | 1.0 (referent) | 2 | 4 | 1.0 (referent) | ||
Overweight | 22 | 16 | 0.81 (0.36, 1.86) | 51 | 32 | 1.45 (0.50, 4.20) | 59 | 37 | 0.92 (0.46, 1.87) | 12 | 11 | 0.55 (0.15, 2.06) | ||
Obese | 52 | 25 | 0.45 (0.21, 0.97) | 61 | 44 | 1.68 (0.59, 4.82) | 83 | 43 | 0.83 (0.43, 1.63) | 26 | 25 | 0.55 (0.18, 1.70) | ||
p Trend b | 0.03 | 0.57 | 0.08 | 0.43 | 0.28 | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Derman, B.A.; Langerman, S.S.; Johnson, J.; Zhang, W.; Jakubowiak, A.; Chiu, B.C.-H. Body Mass Index and Overall Survival of Patients with Newly Diagnosed Multiple Myeloma. Cancers 2022, 14, 5331. https://doi.org/10.3390/cancers14215331
Wang B, Derman BA, Langerman SS, Johnson J, Zhang W, Jakubowiak A, Chiu BC-H. Body Mass Index and Overall Survival of Patients with Newly Diagnosed Multiple Myeloma. Cancers. 2022; 14(21):5331. https://doi.org/10.3390/cancers14215331
Chicago/Turabian StyleWang, Bei, Benjamin A. Derman, Spencer S. Langerman, Julie Johnson, Wei Zhang, Andrzej Jakubowiak, and Brian C.-H. Chiu. 2022. "Body Mass Index and Overall Survival of Patients with Newly Diagnosed Multiple Myeloma" Cancers 14, no. 21: 5331. https://doi.org/10.3390/cancers14215331
APA StyleWang, B., Derman, B. A., Langerman, S. S., Johnson, J., Zhang, W., Jakubowiak, A., & Chiu, B. C. -H. (2022). Body Mass Index and Overall Survival of Patients with Newly Diagnosed Multiple Myeloma. Cancers, 14(21), 5331. https://doi.org/10.3390/cancers14215331