Safety of Anti-Angiogenic Drugs in Pediatric Patients with Solid Tumors: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Literature Search
2.3. Eligibility Criteria
2.4. Study Selection
2.5. Data Extraction
- Study characteristics: study type (e.g., phase I, cohort study); as for observational studies, the nature of data collection (i.e., retrospective or prospective) and study design were also extracted (e.g., cohort and case–control studies). The selected studies were associated with an NCT identifier when available.
- Disease and patients’ characteristics: solid tumor type (e.g., glioma) with its respective stage, number of patients included in the safety analysis, number of females, median age (range), and median follow-up time (range) were extracted.
- Exposure: dose, treatment schedule, formulation, and combined regimens to anti-angiogenic drug.
- Adverse events (AEs): type (e.g., nausea, hypertension), severity (i.e., grades 1–2, ≥3), seriousness (serious, non-serious), and number of patients experiencing AEs retrieved from selected studies; AEs reported in the retrieved studies were also assigned to a system organ class (SOC) according to the common terminology criteria for adverse events (CTCAE) version 5.0. Dose limiting toxicities were excluded from extraction. If a study reported separately the number of patients experiencing grades 3 and 4 AEs (or grades 1 and 2), the higher number between those graded 3–4 (as well as 1–2) was extracted to avoid a patient having experienced more than one event. An adverse event (AE) was defined as an unfavorable outcome that occurs during or after the use of a drug but is not necessarily caused by it [13]. As for severity, we considered the CTCAE version 5.0 to identify AE grade [14]. On the other hand, as for seriousness, we followed the ICH E2A guidelines from European Medicine Agency [15].
2.6. Quality Assessment
2.7. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Safety
3.3.1. Anti-Angiogenic Drugs as Monotherapy
3.3.2. Anti-Angiogenic Drugs in Combination with Standard Chemotherapy
3.3.3. Anti-Angiogenic Drugs in Combination with Different Regimens
3.4. Quality of Included Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagl, L.; Horvath, L.; Pircher, A.; Wolf, D. Tumor Endothelial Cells (TECs) as Potential Immune Directors of the Tumor Microenvironment–New Findings and Future Perspectives. Front. Cell Dev. Biol. 2020, 8, 766. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Adjei, A.A. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Oncol. 2015, 20, 660–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmeliet, P. VEGF as a Key Mediator of Angiogenesis in Cancer. Oncology 2005, 69 (Suppl. 3), 4–10. [Google Scholar] [CrossRef] [PubMed]
- Filippelli, A.; Ciccone, V.; Donnini, S.; Ziche, M.; Morbidelli, L. Molecular Mechanisms of Resistance to Anti-Angiogenic Drugs. Crit. Rev. Oncog. 2021, 26, 39–66. [Google Scholar] [CrossRef] [PubMed]
- Donnini, S.; Filippelli, A.; Ciccone, V.; Spini, A.; Ristori, E.; Ziche, M.; Morbidelli, L. Chapter 2—Antiangiogenic Drugs: Chemosensitizers for Combination Cancer Therapy. In Antiangiogenic Drugs as Chemosensitizers in Cancer Therapy; Morbidelli, L., Ed.; Cancer Sensitizing Agents for Chemotherapy; Academic Press: Cambridge, MA, USA, 2022; Volume 18, pp. 29–66. [Google Scholar]
- Recent Progress in the Treatment of Cancer in Children-Butler-2021-CA: A Cancer Journal for Clinicians-Wiley Online Library. Available online: https://acsjournals.onlinelibrary.wiley.com/doi/full/10.3322/caac.21665 (accessed on 4 March 2022).
- Kline, N.E.; Sevier, N. Solid tumors in children. J. Pediatr. Nurs. 2003, 18, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Ollauri-Ibáñez, C.; Astigarraga, I. Use of Antiangiogenic Therapies in Pediatric Solid Tumors. Cancers 2021, 13, 253. [Google Scholar] [CrossRef] [PubMed]
- Fukumura, D.; Kloepper, J.; Amoozgar, Z.; Duda, D.G.; Jain, R.K. Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat. Rev. Clin. Oncol. 2018, 15, 325–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PRISMA. Available online: http://www.prisma-statement.org/ (accessed on 22 October 2019).
- Mathes, T.; Pieper, D. Clarifying the distinction between case series and cohort studies in systematic reviews of comparative studies: Potential impact on body of evidence and workload. BMC Med. Res. Methodol. 2017, 17, 107. [Google Scholar] [CrossRef] [Green Version]
- Hopewell, S.; Wolfenden, L.; Clarke, M. Reporting of adverse events in systematic reviews can be improved: Survey results. J. Clin. Epidemiol. 2008, 61, 597–602. [Google Scholar] [CrossRef]
- Zorzela, L.; Golder, S.; Liu, Y.; Pilkington, K.; Hartling, L.; Joffe, A.; Loke, Y.; Vohra, S. Quality of reporting in systematic reviews of adverse events: Systematic review. BMJ 2014, 348, f7668. [Google Scholar] [CrossRef]
- Common Terminology Criteria for Adverse Events (CTCAE) | Protocol Development | CTEP. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_60 (accessed on 19 April 2022).
- EMA ICH E2A Clinical Safety Data Management: Definitions and Standards for Expedited Reporting. Available online: https://www.ema.europa.eu/en/ich-e2a-clinical-safety-data-management-definitions-standards-expedited-reporting (accessed on 23 May 2022).
- Zeng, X.; Zhang, Y.; Kwong, J.S.; Zhang, C.; Li, S.; Sun, F.; Niu, Y.; Du, L. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: A systematic review. J. Evidence-Based Med. 2015, 8, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.-L.; Wang, X.; Yang, Z.-H.; Huang, D.; Weng, H.; Zeng, X.-T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: What are they and which is better? Mil. Med. Res. 2020, 7, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (MINORS): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef]
- Starch-Jensen, T.; Deluiz, D.; Tinoco, E.M.B. Horizontal Alveolar Ridge Augmentation with Allogeneic Bone Block Graft Compared with Autogenous Bone Block Graft: A Systematic Review. J. Oral Maxillofac. Res. 2020, 11, e1. [Google Scholar] [CrossRef]
- Pundir, J.; Achilli, C.; Bhide, P.; Sabatini, L.; Legro, R.S.; Rombauts, L.; Teede, H.; Coomarasamy, A.; Zamora, J.; Thangaratinam, S. Risk of foetal harm with letrozole use in fertility treatment: A systematic review and meta-analysis. Hum. Reprod. Updat. 2021, 27, 474–485. [Google Scholar] [CrossRef]
- Schwarzer, G.; Carpenter, J.R.; Rücker, G. Meta-Analysis with R.; Use R! Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-21415-3. [Google Scholar]
- Aguilera, D.; Mazewski, C.; Fangusaro, J.; Macdonald, T.J.; McNall-Knapp, R.Y.; Hayes, L.L.; Kim, S.; Castellino, R.C. Response to bevacizumab, irinotecan, and temozolomide in children with relapsed medulloblastoma: A multi-institutional experience. Child’s Nerv. Syst. 2013, 29, 589–596. [Google Scholar] [CrossRef]
- Broniscer, A.; Baker, J.N.; Tagen, M.; Onar-Thomas, A.; Gilbertson, R.J.; Davidoff, A.M.; Panandiker, A.P.; Leung, W.; Chin, T.K.; Stewart, C.F.; et al. Phase I Study of Vandetanib During and After Radiotherapy in Children With Diffuse Intrinsic Pontine Glioma. J. Clin. Oncol. 2010, 28, 4762–4768. [Google Scholar]
- Broniscer, A.; Baker, S.D.; Wetmore, C.; Panandiker, A.S.P.; Huang, J.; Davidoff, A.M.; Onar-Thomas, A.; Panetta, J.C.; Chin, T.K.; Merchant, T.E.; et al. Phase I Trial, Pharmacokinetics, and Pharmacodynamics of Vandetanib and Dasatinib in Children with Newly Diagnosed Diffuse Intrinsic Pontine Glioma. Clin. Cancer Res. 2013, 19, 3050–3058. [Google Scholar] [CrossRef] [Green Version]
- Chisholm, J.C.; Merks, J.H.; Casanova, M.; Bisogno, G.; Orbach, D.; Gentet, J.-C.; Defachelles, A.-S.; Chastagner, P.; Lowis, S.; Ronghe, M.; et al. Open-label, multicentre, randomised, phase II study of the EpSSG and the ITCC evaluating the addition of bevacizumab to chemotherapy in childhood and adolescent patients with metastatic soft tissue sarcoma (the BERNIE study). Eur. J. Cancer 2017, 83, 177–184. [Google Scholar] [CrossRef]
- Chuk, M.K.; Widemann, B.C.; Minard, C.G.; Liu, X.; Kim, A.; Bernhardt, M.B.; Kudgus, R.A.; Reid, J.M.; Voss, S.D.; Blaney, S.; et al. A phase 1 study of cabozantinib in children and adolescents with recurrent or refractory solid tumors, including CNS tumors: Trial ADVL1211, a report from the Children’s Oncology Group. Pediatr. Blood Cancer 2018, 65, e27077. [Google Scholar] [CrossRef] [PubMed]
- Couec, M.-L.; André, N.; Thebaud, E.; Minckes, O.; Rialland, X.; Corradini, N.; Aerts, I.; Bérard, P.M.; Bourdeaut, F.; Leblond, P.; et al. Bevacizumab and irinotecan in children with recurrent or refractory brain tumors: Toxicity and efficacy trends. Pediatr. Blood Cancer 2012, 59, 34–38. [Google Scholar] [CrossRef] [PubMed]
- de Marcellus, C.; Tauziède-Espariat, A.; Cuinet, A.; Pasqualini, C.; Robert, M.P.; Beccaria, K.; Puget, S.; Boddaert, N.; Figarella-Branger, D.; De Carli, E.; et al. The role of irinotecan-bevacizumab as rescue regimen in children with low-grade gliomas: A retrospective nationwide study in 72 patients. J. Neuro-Oncol. 2022, 157, 355–364. [Google Scholar] [CrossRef] [PubMed]
- DeWire, M.; Fouladi, M.; Turner, D.C.; Wetmore, C.; Hawkins, C.; Jacobs, C.; Yuan, Y.; Liu, D.; Goldman, S.; Fisher, P.; et al. An open-label, two-stage, phase II study of bevacizumab and lapatinib in children with recurrent or refractory ependymoma: A collaborative ependymoma research network study (CERN). J. Neuro-Oncol. 2015, 123, 85–91. [Google Scholar] [CrossRef] [PubMed]
- DuBois, S.G.; Shusterman, S.; Ingle, A.M.; Ahern, C.H.; Reid, J.M.; Wu, B.; Baruchel, S.; Glade-Bender, J.; Ivy, P.; Grier, H.E.; et al. Phase I and Pharmacokinetic Study of Sunitinib in Pediatric Patients with Refractory Solid Tumors: A Children’s Oncology Group Study. Clin. Cancer Res. 2011, 17, 5113–5122. [Google Scholar] [CrossRef] [Green Version]
- El-Khouly, F.E.; van Zanten, S.E.M.V.; Jansen, M.H.A.; Bakker, D.P.; Aliaga, E.S.; Hendrikse, N.H.; Vandertop, W.P.; van Vuurden, D.G.; Kaspers, G.J.L. A phase I/II study of bevacizumab, irinotecan and erlotinib in children with progressive diffuse intrinsic pontine glioma. J. Neuro-Oncol. 2021, 153, 263–271. [Google Scholar] [CrossRef]
- Fangusaro, J.; Gururangan, S.; Poussaint, T.Y.; McLendon, R.E.; Onar-Thomas, A.; Warren, K.E.; Wu, S.; Packer, R.J.; Banerjee, A.; Gilbertson, R.J.; et al. Bevacizumab (BVZ)-associated toxicities in children with recurrent central nervous system tumors treated with BVZ and irinotecan (CPT-11). Cancer 2013, 119, 4180–4187. [Google Scholar] [CrossRef] [Green Version]
- Federico, S.M.; Caldwell, K.J.; McCarville, M.B.; Daryani, V.M.; Stewart, C.F.; Mao, S.; Wu, J.; Davidoff, A.M.; Santana, V.M.; Furman, W.L.; et al. Phase I expansion cohort to evaluate the combination of bevacizumab, sorafenib and low-dose cyclophosphamide in children and young adults with refractory or recurrent solid tumours. Eur. J. Cancer 2020, 132, 35–42. [Google Scholar] [CrossRef]
- Gaspar, N.; Campbell-Hewson, Q.; Melcon, S.G.; Locatelli, F.; Venkatramani, R.; Hecker-Nolting, S.; Gambart, M.; Bautista, F.; Thebaud, E.; Aerts, I.; et al. Phase I/II study of single-agent lenvatinib in children and adolescents with refractory or relapsed solid malignancies and young adults with osteosarcoma (ITCC-050). ESMO Open 2021, 6, 100250. [Google Scholar] [CrossRef]
- Gaspar, N.; Venkatramani, R.; Hecker-Nolting, S.; Melcon, S.G.; Locatelli, F.; Bautista, F.; Longhi, A.; Lervat, C.; Entz-Werle, N.; Casanova, M.; et al. Lenvatinib with etoposide plus ifosfamide in patients with refractory or relapsed osteosarcoma (ITCC-050): A multicentre, open-label, multicohort, phase 1/2 study. Lancet Oncol. 2021, 22, 1312–1321. [Google Scholar] [CrossRef]
- Geller, J.I.; Fox, E.; Turpin, B.K.; Goldstein, S.L.; Liu, X.; Minard, C.G.; Kudgus, R.A.; Reid, J.M.; Berg, S.L.; Weigel, B.J. A study of axitinib, a VEGF receptor tyrosine kinase inhibitor, in children and adolescents with recurrent or refractory solid tumors: A Children’s Oncology Group phase 1 and pilot consortium trial (ADVL1315). Cancer 2018, 124, 4548–4555. [Google Scholar] [CrossRef] [PubMed]
- Geoerger, B.; Morland, B.; Jiménez, I.; Frappaz, D.; Pearson, A.D.; Vassal, G.; Maeda, P.; Kincaide, J.; Mueller, U.; Schlief, S.; et al. Phase 1 dose-escalation and pharmacokinetic study of regorafenib in paediatric patients with recurrent or refractory solid malignancies. Eur. J. Cancer 2021, 153, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Bender, J.G.; Blaney, S.M.; Borinstein, S.; Reid, J.M.; Baruchel, S.; Ahern, C.; Ingle, A.M.; Yamashiro, D.J.; Chen, A.; Weigel, B.; et al. A Phase I Trial and Pharmacokinetic Study of Aflibercept (VEGF Trap) in Children with Refractory Solid Tumors: A Children’s Oncology Group Phase I Consortium Report. Clin. Cancer Res. 2012, 18, 5081–5089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bender, J.L.G.; Adamson, P.C.; Reid, J.M.; Xu, L.; Baruchel, S.; Shaked, Y.; Kerbel, R.S.; Cooney-Qualter, E.M.; Stempak, D.; Chen, H.X.; et al. Phase I Trial and Pharmacokinetic Study of Bevacizumab in Pediatric Patients With Refractory Solid Tumors: A Children’s Oncology Group Study. J. Clin. Oncol. 2008, 26, 399–405. [Google Scholar] [CrossRef]
- Bender, J.L.G.; Lee, A.; Reid, J.M.; Baruchel, S.; Roberts, T.; Voss, S.D.; Wu, B.; Ahern, C.H.; Ingle, A.M.; Harris, P.; et al. Phase I Pharmacokinetic and Pharmacodynamic Study of Pazopanib in Children With Soft Tissue Sarcoma and Other Refractory Solid Tumors: A Children’s Oncology Group Phase I Consortium Report. J. Clin. Oncol. 2013, 31, 3034–3043. [Google Scholar] [CrossRef] [Green Version]
- Glod, J.; Arnaldez, F.I.; Wiener, L.; Spencer, M.; Killian, J.K.; Meltzer, P.S.; Dombi, E.; Derse-Anthony, C.; Derdak, J.; Srinivasan, R.; et al. A Phase II Trial of Vandetanib in Children and Adults with Succinate Dehydrogenase–Deficient Gastrointestinal Stromal Tumor. Clin. Cancer Res. 2019, 25, 6302–6308. [Google Scholar] [CrossRef] [Green Version]
- Gorsi, H.S.; Khanna, P.C.; Tumblin, M.; Yeh-Nayre, L.; Milburn, M.; Elster, J.D.; Crawford, J.R. Single-agent bevacizumab in the treatment of recurrent or refractory pediatric low-grade glioma: A single institutional experience. Pediatr. Blood Cancer 2018, 65, e27234. [Google Scholar] [CrossRef]
- Grill, J.; Massimino, M.; Bouffet, E.; Azizi, A.; McCowage, G.; Cañete, A.; Saran, F.; Le Deley, M.-C.; Varlet, P.; Morgan, P.; et al. Phase II, Open-Label, Randomized, Multicenter Trial (HERBY) of Bevacizumab in Pediatric Patients With Newly Diagnosed High-Grade Glioma. J. Clin. Oncol. 2018, 36, 951–958. [Google Scholar] [CrossRef]
- Hummel, T.R.; Salloum, R.; Drissi, R.; Kumar, S.; Sobo, M.; Goldman, S.; Pai, A.; Leach, J.; Lane, A.; Pruitt, D.; et al. A pilot study of bevacizumab-based therapy in patients with newly diagnosed high-grade gliomas and diffuse intrinsic pontine gliomas. J. Neuro-Oncology 2015, 127, 53–61. [Google Scholar] [CrossRef]
- Kalra, M.; Heath, J.A.; Kellie, S.J.; Pozza, L.D.; Stevens, M.M.; Swamy, S.; McCowage, G.B. Confirmation of Bevacizumab Activity, and Maintenance of Efficacy in Retreatment After Subsequent Relapse, in Pediatric Low-grade Glioma. J. Pediatr. Hematol. 2016, 37, e341–e346. [Google Scholar] [CrossRef]
- Karajannis, M.A.; Legault, G.; Fisher, M.J.; Milla, S.S.; Cohen, K.J.; Wisoff, J.; Harter, D.H.; Goldberg, J.D.; Hochman, T.; Merkelson, A.; et al. Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro-Oncology 2014, 16, 1408–1416. [Google Scholar] [CrossRef] [Green Version]
- Keino, D.; Yokosuka, T.; Hirose, A.; Sakurai, Y.; Nakamura, W.; Fujita, S.; Hayashi, A.; Miyagawa, N.; Iwasaki, F.; Hamanoue, S.; et al. Pilot Study of the Combination of Sorafenib and Fractionated Irinotecan in Pediatric Re-lapse/Refractory Hepatic Cancer (FINEX Pilot Study). Pediatr. Blood Cancer 2020, 67, e28655. [Google Scholar] [CrossRef]
- Kraft, I.L.; Akshintala, S.; Zhu, Y.; Lei, H.; Derse-Anthony, C.; Dombi, E.; Steinberg, S.M.; Lodish, M.; Waguespack, S.G.; Kapustina, O.; et al. Outcomes of Children and Adolescents with Advanced Hereditary Medullary Thyroid Carcinoma Treated with Vandetanib. Clin. Cancer Res. 2018, 24, 753–765. [Google Scholar] [CrossRef] [Green Version]
- Leary, S.E.; Park, J.R.; Reid, J.M.; Ralya, A.T.; Baruchel, S.; Wu, B.; Roberts, T.P.; Liu, X.; Minard, C.G.; Fox, E.; et al. Pediatric Phase I Trial and Pharmacokinetic Study of Trebananib in Relapsed Solid Tumors, Including Primary Tumors of the Central Nervous System ADVL1115: A Children’s Oncology Group Phase I Consortium Report. Clin. Cancer Res. 2017, 23, 6062–6069. [Google Scholar] [CrossRef] [Green Version]
- Levy, A.S.; Krailo, M.; Chi, S.; Villaluna, D.; Springer, L.; Williams-Hughes, C.; Fouladi, M.; Gajjar, A. Temozolomide with irinotecan versus temozolomide, irinotecan plus bevacizumab for recurrent medulloblastoma of childhood: Report of a COG randomized Phase II screening trial. Pediatr. Blood Cancer 2021, 68, e29031. [Google Scholar] [CrossRef]
- Mascarenhas, L.; Chi, Y.-Y.; Hingorani, P.; Anderson, J.R.; Lyden, E.R.; Rodeberg, D.A.; Indelicato, D.J.; Kao, S.; Dasgupta, R.; Spunt, S.L.; et al. Randomized Phase II Trial of Bevacizumab or Temsirolimus in Combination With Chemotherapy for First Relapse Rhabdomyosarcoma: A Report From the Children’s Oncology Group. J. Clin. Oncol. 2019, 37, 2866–2874. [Google Scholar] [CrossRef]
- Meany, H.J.; Widemann, B.C.; Hinds, P.S.; Bagatell, R.; Shusterman, S.; Stern, E.; Jayaprakash, N.; Peer, C.J.; Figg, W.D.; Hall, O.M.; et al. Phase 1 study of sorafenib and irinotecan in pediatric patients with relapsed or refractory solid tumors. Pediatr. Blood Cancer 2021, 68, e29282. [Google Scholar] [CrossRef]
- Metts, J.; Harrington, B.; Salman, E.; Bradfield, S.M.; Flanary, J.; Mosha, M.; Amankwah, E.; Stapleton, S. A phase I study of irinotecan and temozolomide with bevacizumab in children with recurrent/refractory central nervous system tumors. Child’s Nerv. Syst. 2022, 38, 919–928. [Google Scholar] [CrossRef]
- Millan, N.C.; Poveda, M.J.; Cruz, O.; Mora, J. Safety of bevacizumab in patients younger than 4 years of age. Clin. Transl. Oncol. 2016, 18, 464–468. [Google Scholar] [CrossRef]
- Modak, S.; Kushner, B.H.; Basu, E.; Roberts, S.S.; Cheung, N.-K.V. Combination of bevacizumab, irinotecan, and temozolomide for refractory or relapsed neuroblastoma: Results of a phase II study. Pediatr. Blood Cancer 2017, 64, e26448. [Google Scholar] [CrossRef]
- Navid, F.; Santana, V.M.; Neel, M.; McCarville, M.B.; Shulkin, B.L.; Wu, J.; Billups, C.A.; Mao, S.; Daryani, V.M.; Stewart, C.F.; et al. A phase II trial evaluating the feasibility of adding bevacizumab to standard osteosarcoma therapy. Int. J. Cancer 2017, 141, 1469–1477. [Google Scholar] [CrossRef]
- Okada, K.; Yamasaki, K.; Tanaka, C.; Fujisaki, H.; Osugi, Y.; Hara, J. Phase I Study of Bevacizumab Plus Irinotecan in Pediatric Patients with Recurrent/Refractory Solid Tumors. Jpn. J. Clin. Oncol. 2013, 43, 1073–1079. [Google Scholar] [CrossRef] [Green Version]
- Piha-Paul, S.A.; Shin, S.J.; Vats, T.; Guha-Thakurta, N.; Aaron, J.; Rytting, M.; Kleinerman, E.; Kurzrock, R. Pediatric Pa-tients with Refractory Central Nervous System Tumors: Experiences of a Clinical Trial Combining Bevacizumab and Temsirolimus. Anticancer Research 2014, 34, 1939–1945. [Google Scholar]
- Reed, D.R.; Mascarenhas, L.; Manning, K.; Hale, G.A.; Goldberg, J.; Gill, J.; Sandler, E.; Isakoff, M.S.; Smith, T.; Caracciolo, J.; et al. Pediatric phase I trial of oral sorafenib and topotecan in refractory or recurrent pediatric solid malignancies. Cancer Med. 2016, 5, 294–303. [Google Scholar] [CrossRef]
- Reismüller, B.; Azizi, A.A.; Peyrl, A.; Heinrich, M.; Gruber-Olipitz, M.; Luckner, D.; Rothschild, K.V.; Slavc, I. Feasibility and tolerability of bevacizumab in children with primary CNS tumors. Pediatr. Blood Cancer 2010, 54, 681–686. [Google Scholar] [CrossRef]
- Russo, I.; Di Paolo, V.; Crocoli, A.; Mastronuzzi, A.; Serra, A.; Di Paolo, P.L.; Di Giannatale, A.; Miele, E.; Milano, G.M. A Chart Review on the Feasibility and Safety of the Vincristine Irinotecan Pazopanib (VIPaz) Association in Children and Adolescents With Resistant or Relapsed Sarcomas. Front. Oncol. 2020, 10, 1228. [Google Scholar] [CrossRef]
- Santana, V.M.; Sahr, N.; Tatevossian, R.G.; Jia, S.; Campagne, O.; Sykes, A.; Stewart, C.F.; Furman, W.L.; McGregor, L.M. A phase 1 trial of everolimus and bevacizumab in children with recurrent solid tumors. Cancer 2020, 126, 1749–1757. [Google Scholar] [CrossRef]
- Schiavetti, A.; Varrasso, G.; Mollace, M.G.; Dominici, C.; Ferrara, E.; Papoff, P.; Di Biasi, C. Bevacizumab-containing regimen in relapsed/progressed brain tumors: A single-institution experience. Child’s Nerv. Syst. 2019, 35, 1007–1012. [Google Scholar] [CrossRef]
- Su, J.M.; Murray, J.C.; McNall-Knapp, R.Y.; Bowers, D.C.; Shah, S.; Adesina, A.M.; Paulino, A.C.; Jo, E.; Mo, Q.; Baxter, P.A.; et al. A phase 2 study of valproic acid and radiation, followed by maintenance valproic acid and bevacizumab in children with newly diagnosed diffuse intrinsic pontine glioma or high-grade glioma. Pediatr. Blood Cancer 2020, 67, e28283. [Google Scholar] [CrossRef]
- Venkatramani, R.; Malogolowkin, M.; Davidson, T.B.; May, W.; Sposto, R.; Mascarenhas, L. A Phase I Study of Vincristine, Irinotecan, Temozolomide and Bevacizumab (Vitb) in Pediatric Patients with Relapsed Solid Tumors. PLoS ONE 2013, 8, e68416. [Google Scholar] [CrossRef]
- Verschuur, A.C.; Bajčiová, V.; Mascarenhas, L.; Khosravan, R.; Lin, X.; Ingrosso, A.; Janeway, K.A. Sunitinib in pediatric patients with advanced gastrointestinal stromal tumor: Results from a phase I/II trial. Cancer Chemother. Pharmacol. 2019, 84, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Wagner, L.; Turpin, B.; Nagarajan, R.; Weiss, B.; Cripe, T.; Geller, J. Pilot study of vincristine, oral irinotecan, and temozolomide (VOIT regimen) combined with bevacizumab in pediatric patients with recurrent solid tumors or brain tumors. Pediatr. Blood Cancer 2013, 60, 1447–1451. [Google Scholar] [CrossRef]
- Weiss, A.R.; Chen, Y.-L.; Scharschmidt, T.J.; Chi, Y.-Y.; Tian, J.; Black, J.O.; Davis, J.L.; Fanburg-Smith, J.C.; Zambrano, E.; Anderson, J.; et al. Pathological response in children and adults with large unresected intermediate-grade or high-grade soft tissue sarcoma receiving preoperative chemoradiotherapy with or without pazopanib (ARST1321): A multicentre, randomised, open-label, phase 2 trial. Lancet Oncol. 2020, 21, 1110–1122. [Google Scholar] [CrossRef]
- Wetmore, C.; Daryani, V.M.; Billups, C.A.; Boyett, J.M.; Leary, S.; Tanos, R.; Goldsmith, K.C.; Stewart, C.F.; Blaney, S.M.; Gajjar, A. Phase II evaluation of sunitinib in the treatment of recurrent or refractory high-grade glioma or ependymoma in children: A children’s Oncology Group Study ACNS1021. Cancer Med. 2016, 5, 1416–1424. [Google Scholar] [CrossRef] [Green Version]
- Widemann, B.C.; Kim, A.; Fox, E.; Baruchel, S.; Adamson, P.C.; Ingle, A.M.; Bender, J.G.; Burke, M.; Weigel, B.; Stempak, D.; et al. A Phase I Trial and Pharmacokinetic Study of Sorafenib in Children with Refractory Solid Tumors or Leukemias: A Children’s Oncology Group Phase I Consortium Report. Clin. Cancer Res. 2012, 18, 6011–6022. [Google Scholar] [CrossRef] [Green Version]
- University of Colorado, Denver The Role of Bevacizumab in the Treatment of Radiation Necrosis in Children With Central Nervous System Tumors; clinicaltrials.gov: Bethesda, MD, USA, 2021.
- Novartis Pharmaceuticals A Phase II Study of Pazopanib GW786034, NSC# 737754 in Children, Adolescents and Young Adults With Refractory Solid Tumors; clinicaltrials.gov: Bethesda, MD, USA, 2020.
- Eli Lilly and Company A Phase 1 Study Of Ramucirumab, a Human Monoclonal Antibody Against the Vascular Endothelial Growth Factor-2 (VEGFR-2) Receptor in Children With Refractory Solid Tumors, Including CNS Tumors; clinicaltrials.gov: Bethesda, MD, USA, 2021.
- Gururangan, S.; Chi, S.N.; Poussaint, T.Y.; Onar-Thomas, A.; Gilbertson, R.J.; Vajapeyam, S.; Friedman, H.S.; Packer, R.J.; Rood, B.N.; Boyett, J.M.; et al. Lack of Efficacy of Bevacizumab Plus Irinotecan in Children With Recurrent Malignant Glioma and Diffuse Brainstem Glioma: A Pediatric Brain Tumor Consortium Study. J. Clin. Oncol. 2010, 28, 3069–3075. [Google Scholar] [CrossRef] [Green Version]
- Vorinostat, Temozolomide, or Bevacizumab in Combination With Radiation Therapy Followed by Bevacizumab and Te-mozolomide in Young Patients With Newly Diagnosed High-Grade Glioma-Tabular View-ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/record/NCT01236560 (accessed on 28 April 2022).
- Vincristine Sulfate, Topotecan Hydrochloride, and Cyclophosphamide With or Without Bevacizumab in Treating Young Patients With Refractory or First Recurrent Extracranial Ewing Sarcoma-Study Results-ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/results/NCT00516295 (accessed on 28 April 2022).
- Cyclophosphamide, Topotecan, and Bevacizumab (CTB) in Patients With Relapsed/Refractory Ewing’s Sarcoma and Neuroblastoma-Study Results-ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/results/NCT01492673 (accessed on 28 April 2022).
- Gururangan, S.; Fangusaro, J.; Poussaint, T.Y.; Onar-Thomas, A.; Gilbertson, R.J.; Vajapeyam, S.; Gajjar, A.; Goldman, S.; Friedman, H.S.; Packer, R.J.; et al. Lack of efficacy of bevacizumab + irinotecan in cases of pediatric recurrent ependymoma--a Pediatric Brain Tumor Consortium study. Neuro-Oncology 2012, 14, 1404–1412. [Google Scholar] [CrossRef] [Green Version]
- Gururangan, S.; Fangusaro, J.; Poussaint, T.Y.; McLendon, R.E.; Onar-Thomas, A.; Wu, S.; Packer, R.J.; Banerjee, A.; Gilbertson, R.J.; Fahey, F.; et al. Efficacy of bevacizumab plus irinotecan in children with recurrent low-grade gliomas—A Pediatric Brain Tumor Consortium study. Neuro-Oncology 2014, 16, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Packer, R.J.; Jakacki, R.; Horn, M.; Rood, B.; Vezina, G.; MacDonald, T.; Fisher, M.J.; Cohen, B. Objective response of multiply recurrent low-grade gliomas to bevacizumab and irinotecan. Pediatr. Blood Cancer 2009, 52, 791–795. [Google Scholar] [CrossRef]
- Crotty, E.E.; Leary, S.E.S.; Geyer, J.R.; Olson, J.M.; Millard, N.E.; Sato, A.A.; Ermoian, R.P.; Cole, B.L.; Lockwood, C.M.; Paulson, V.A.; et al. Children with DIPG and high-grade glioma treated with temozolomide, irinotecan, and bevacizumab: The Seattle Children’s Hospital experience. J. Neuro-Oncol. 2020, 148, 607–617. [Google Scholar] [CrossRef]
- Zhukova, N.; Rajagopal, R.; Lam, A.; Coleman, L.; Shipman, P.; Walwyn, T.; Williams, M.; Sullivan, M.; Campbell, M.; Bhatia, K.; et al. Use of bevacizumab as a single agent or in adjunct with traditional chemotherapy regimens in children with unresectable or progressive low-grade glioma. Cancer Med. 2019, 8, 40–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parekh, C.; Jubran, R.; Erdreich-Epstein, A.; Panigrahy, A.; Blüml, S.; Finlay, J.; Dhall, G. Treatment of children with recurrent high grade gliomas with a bevacizumab containing regimen. J. Neuro-Oncol. 2011, 103, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Navid, F. Phase I and Clinical Pharmacology Study of Bevacizumab, Sorafenib, and Low-Dose Cyclophosphamide in Children and Young Adults with Refractory/Recurrent Solid Tumors (Vol 19, Pg 236, 2013). Clin. Cancer Res. 2013, 19, 1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inaba, H.; Panetta, J.C.; Pounds, S.B.; Wang, L.; Li, L.; Navid, F.; Federico, S.M.; Eisenmann, E.D.; Vasilyeva, A.; Wang, Y.-D.; et al. Sorafenib Population Pharmacokinetics and Skin Toxicities in Children and Adolescents with Refractory/Relapsed Leukemia or Solid Tumor Malignancies. Clin. Cancer Res. 2019, 25, 7320–7330. [Google Scholar] [CrossRef] [Green Version]
- Interiano, R.B.; McCarville, M.B.; Wu, J.; Davidoff, A.M.; Sandoval, J.; Navid, F. Pneumothorax as a complication of combination antiangiogenic therapy in children and young adults with refractory/recurrent solid tumors. J. Pediatr. Surg. 2015, 50, 1484–1489. [Google Scholar] [CrossRef] [Green Version]
- Peyrl, A.; Chocholous, M.; Kieran, M.W.; Azizi, A.A.; Prucker, C.; Czech, T.; Dieckmann, K.; Schmook, M.-T.; Haberler, C.; Leiss, U.; et al. Antiangiogenic metronomic therapy for children with recurrent embryonal brain tumors: Antiangio-genic Therapy for Embryonal Tumors. Pediatr. Blood Cancer 2012, 59, 511–517. [Google Scholar] [CrossRef]
- Benesch, M.; Windelberg, M.; Sauseng, W.; Witt, V.; Fleischhack, G.; Lackner, H.; Gadner, H.; Bode, U.; Urban, C. Compassionate use of bevacizumab (Avastin®) in children and young adults with refractory or recurrent solid tumors. Ann. Oncol. 2008, 19, 807–813. [Google Scholar] [CrossRef]
- Kim, A.; Widemann, B.C.; Krailo, M.; Ms, N.J.; Fox, E.; Weigel, B.; Blaney, S.M. Phase 2 trial of sorafenib in children and young adults with refractory solid tumors: A report from the Children’s Oncology Group. Pediatr. Blood Cancer 2015, 62, 1562–1566. [Google Scholar] [CrossRef] [Green Version]
- Raciborska, A.; Bilska, K. Sorafenib in patients with progressed and refractory bone tumors. Med. Oncol. 2018, 35, 126. [Google Scholar] [CrossRef]
- Schmid, I.; Häberle, B.; Albert, M.H.; Corbacioglu, S.; Fröhlich, B.; Graf, N.; Kammer, B.; Kontny, U.; Leuschner, I.; Scheel-Walter, H.-G.; et al. Sorafenib and cisplatin/doxorubicin (PLADO) in pediatric hepatocellular carcinoma. Pediatr. Blood Cancer 2012, 58, 539–544. [Google Scholar] [CrossRef]
- Fox, E.; Widemann, B.C.; Chuk, M.K.; Marcus, L.; Aikin, A.; Whitcomb, P.O.; Merino, M.J.; Lodish, M.; Dombi, E.; Steinberg, S.M.; et al. Vandetanib in Children and Adolescents with Multiple Endocrine Neoplasia Type 2B Associated Medullary Thyroid Carcinoma. Clin. Cancer Res. 2013, 19, 4239–4248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spini, A.; Roberto, G.; Gini, R.; Bartolini, C.; Bazzani, L.; Donnini, S.; Crispino, S.; Ziche, M. Evidence of β-blockers drug repurposing for the treatment of triple negative breast cancer: A systematic review. Neoplasma 2019, 66, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Spini, A.; Donnini, S.; Pantziarka, P.; Crispino, S.; Ziche, M. Repurposing of drugs for triple negative breast cancer: An overview. ecancermedicalscience 2020, 14, 1071. [Google Scholar] [CrossRef] [PubMed]
- Barber, N.A.; Afzal, W.; Akhtari, M. Hematologic toxicities of small molecule tyrosine kinase inhibitors. Target. Oncol. 2011, 6, 203–215. [Google Scholar] [CrossRef]
- Santoni, M.; Rizzo, M.; Burattini, L.; Farfariello, V.; Berardi, R.; Santoni, G.; Carteni, G.; Cascinu, S. Present and future of tyrosine kinase inhibitors in renal cell carcinoma: Analysis of hematologic toxicity. Recent Patents Anti-Infective Drug Discov. 2012, 7, 104–110. [Google Scholar] [CrossRef]
- Bekeschus, S. Acquired cancer tyrosine kinase inhibitor resistance: ROS as critical determinants. Signal Transduct. Target. Ther. 2021, 6, 437. [Google Scholar] [CrossRef]
- Ciccone, V.; Genah, S.; Morbidelli, L. Endothelium as a Source and Target of H2S to Improve Its Trophism and Function. Antioxidants 2021, 10, 486. [Google Scholar] [CrossRef]
- Ciccone, V.; Morbidelli, L.; Ziche, M.; Donnini, S. How to conjugate the stemness marker ALDH1A1 with tumor angiogenesis, progression, and drug resistance. Cancer Drug Resist 2020, 3, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, K.; Kudo, M.; Kawazoe, S.; Osaki, Y.; Ikeda, M.; Okusaka, T.; Tamai, T.; Suzuki, T.; Hisai, T.; Hayato, S.; et al. Phase 2 study of lenvatinib in patients with advanced hepatocellular carcinoma. J. Gastroenterol. 2017, 52, 512–519. [Google Scholar] [CrossRef] [Green Version]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.-H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.-W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Illouz, F.; Braun, D.; Briet, C.; Schweizer, U.; Rodien, P. ENDOCRINE SIDE-EFFECTS OF ANTI-CANCER DRUGS: Thyroid effects of tyrosine kinase inhibitors. Eur. J. Endocrinol. 2014, 171, R91–R99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadieh, H.; Salti, I. Tyrosine Kinase Inhibitors Induced Thyroid Dysfunction: A Review of Its Incidence, Pathophysiology, Clinical Relevance, and Treatment. BioMed Res. Int. 2013, 2013, e725410. [Google Scholar] [CrossRef] [PubMed]
- Vashty, M. A Phase II Study of Pazopanib (GW786034, NSC# 737754) in Children, Adolescents and Young Adults with Refractory Solid Tumors—The Study Protocol. 183. Available online: https://clinicaltrials.gov/ProvidedDocs/69/NCT01956669/Prot_000.pdf (accessed on 1 September 2022).
- Cirmi, S.; El Abd, A.; Letinier, L.; Navarra, M.; Salvo, F. Cardiovascular Toxicity of Tyrosine Kinase Inhibitors Used in Chronic Myeloid Leukemia: An Analysis of the FDA Adverse Event Reporting System Database (FAERS). Cancers 2020, 12, 826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Votri-ent-Epar-Product-Information_en.Pdf. Available online: https://www.ema.europa.eu/en/documents/product-information/votrient-epar-product-information_en.pdf (accessed on 1 September 2022).
- Lee, J.-M.; Annunziata, C.M.; Hays, J.L.; Cao, L.; Choyke, P.; Yu, M.; An, D.; Turkbey, I.B.; Minasian, L.M.; Steinberg, S.M.; et al. Phase II trial of bevacizumab and sorafenib in recurrent ovarian cancer patients with or without prior-bevacizumab treatment. Gynecol. Oncol. 2020, 159, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, J.M.; Mahoney, M.R.; Loui, W.S.; Roberts, L.R.; Smyrk, T.C.; Gatalica, Z.; Borad, M.; Kumar, S.; Alberts, S.R. Phase I/II Randomized Trial of Sorafenib and Bevacizumab as First-Line Therapy in Patients with Locally Advanced or Metastatic Hepatocellular Carcinoma: North Central Cancer Treatment Group Trial N0745 (Alliance). Target. Oncol. 2017, 12, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Tyrosine Kinase Inhibitors of Vascular Endothelial Growth Factor Receptors in Clinical Trials: Current Status and Future Directions | The Oncologist | Oxford Academic. Available online: https://academic.oup.com/oncolo/article/11/7/753/6397106 (accessed on 8 March 2022).
- Spini, A.; Gini, R.; Rosellini, P.; Singier, A.; Bellan, C.; Pascucci, A.; Leoncini, L.; Mathieu, C.; Martellucci, I.; Furiesi, F.; et al. First-Line Pharmacotherapies and Survival among Patients Diagnosed with Non-Resectable NSCLC: A Real-Life Setting Study with Gender Prospective. Cancers 2021, 13, 6129. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, G.; He, J.; Ren, S.; Wu, F.; Zhang, J.; Wang, F. Gender differences in colorectal cancer survival: A meta-analysis. Int. J. Cancer 2017, 141, 1942–1949. [Google Scholar] [CrossRef]
Drug and Approval Year in Europe | Class | Target | Approved Clinical Use |
---|---|---|---|
Aflibercep (2012) | Soluble recombinant fusion protein | VEGF A-D, PlGF | Metastatic CRC (with FOLFIRI) |
Axitinib (2012) | Multi-TKI | VEGFR-1/2/3 | RCC, plus avelumab or pembrolizumab as the first treatment in advanced RCC |
Bevacizumab (2005) | Humanized monoclonal antibody | VEGF-A | Metastatic CC, recurrent glioblastoma, HCC, advanced non squamous NSCLC, OEC, fallopian tube/primary peritoneal cancer, RCC |
Cabozantinib (2014) | Multi-TKI | VEGFR-2, c-Met, ROS1, TYRO3, MER, Ret, Kit, TRKB Flt-3, AXL, Tie-2 | Advanced RCC, HCC |
Lenvatinib (2015) | Multi-TKI | VEGFR1/2/3, FGFRs, PDGFR-α, c-Kit receptor, RET | Metastatic RCC, RAI-DTC, HCC. |
Nintedanib (2014) | Multi-TKI | VEGFR-1/2/3, PDGFR-α/β, FGFR-1/2 | NSCLC (with Docetaxel therapy) |
Pazopanib (2010) | Multi-TKI | VEGF-R-1/2/3, PDGF-R-α/β, c-Kit | Advanced RCC, advanced STS |
Ponatinib (2013) | Multi-TKI | VEGF-R, SRC, ABL, FGF-R, PDGF-R.ABL-T135I mutation | CML, Ph+ ALL |
Ramucirumab (2014) | Humanized monoclonal antibody | VEGFR-2 | CRC, NSCLC, HCC, GC or GEJ adenocarcinoma |
Regorafenib (2013) | Multi-TKI | VEGFR-1/2/3, PDGFR-α/β, FGFR-1/2, Tie2, RAF-1, BRAF, BRAFV600E c-Kit receptor | mCRC, advanced GIST, HCC |
Sorafenib (2006) | Multi-TKI | VEGFR-1/2/3, PDGFR-β, Raf serine/threonine kinases, c-Kit receptor | HCC, RCC, RAI-DTC |
Sunitinib (2006) | Multi-TKI | VEGFR-1/2/3, PDGFR-α/β, c-Kit receptor, RET, FLT3, CSF-1R | Imatinib-resistant GIST, RCC, pNET |
Tivozanib (2017) | TKI | VEGFR-1/2/3 | Relapsed or refractory RCC |
Trebananib (2013) * | Peptide-Fc fusion protein | Angiopoietins-1/2 | Ovarian cancer |
Vandetanib (2012) | Multi-TKI | VEGFR-2, EGFR, RET signaling | MTC |
Reference | NCT Identifier | Study Type | Randomization | Pathology Characteristics | Anti-Angiogenic Drug | Dose | Concomitant Therapy |
---|---|---|---|---|---|---|---|
Glade Bender et al., 2008 [40] | - | Phase I | No | Solid tumors | Bevacizumab | 5–15 mg/kg | No |
Gorsi et al., 2018 [43] | - | Clinical trial ns | No | Glioma | Bevacizumab | 10 mg/kg | No |
- | NCT01201850 | Clinical trial ns | No | CNS tumors | Bevacizumab | 10 mg/kg | No |
Okada et al., 2013 [58] | - | Phase I | No | Solid tumors | Bevacizumab | 10 mg/kg | Irinotecan |
Fangusaro et al., 2013 [33] | NCT00381797 | Phase II | No | CNS tumors | Bevacizumab | 10 mg/kg | Irinotecan |
Gururangan et al., 2010 [75] | NCT00381797 | Phase II | No | Glioma | Bevacizumab | 10 mg/kg | Irinotecan |
Gururangan et al., 2012 [79] | NCT00381797 | Phase II | No | Ependymoma | Bevacizumab | 10 mg/kg | Irinotecan |
Gururangan et al., 2014 [80] | NCT00381797 | Phase II | No | Glioma | Bevacizumab | 10 mg/kg | Irinotecan |
Couec et al., 2012 [28] | - | Observational study | - | Brain tumors | Bevacizumab | 10 mg/kg | Irinotecan |
Kalra et al., 2015 [46] | - | Observational study | - | Glioma | Bevacizumab | 10 mg/kg | Irinotecan |
De Marcellus et al., 2022 [29] | - | Observational study | - | Glioma | Bevacizumab | 10 mg/kg | Irinotecan |
Packer et al., 2009 [81] | - | Observational study | - | Glioma | Bevacizumab | 10 mg/kg | Irinotecan |
Modak et al., 2017 [56] | NCT01114555 | Phase II | No | Neuroblastoma | Bevacizumab | 15 mg/kg | Irinotecan + Temozolomide |
Levy et al., 2020 [51] | NCT01217437 | Phase II | Yes | Medulloblastoma | Bevacizumab | 10 mg/kg | Irinotecan + Temozolomide |
Hummel et al., 2016 [45] | NCT00890786 | Phase I | No | Glioma | Bevacizumab | 10 mg/kg | Irinotecan + Temozolomide |
Metts et al., 2022 [54] | NCT00876993 | Phase I | No | CNS tumors | Bevacizumab | 10 mg/kg | Irinotecan + Temozolomide |
Schiavetti et al., 2019 [64] | - | Clinical trial ns | No | Brain tumors | Bevacizumab | 10 mg/kg | Irinotecan + Temozolomide |
Aguilera et al., 2013 [23] | - | Observational study | - | Medulloblastoma | Bevacizumab | 10 mg/kg | Irinotecan + Temozolomide |
Crotty et al., 2020 [82] | - | Observational study | - | Glioma | Bevacizumab | 10 mg/kg | Irinotecan + Temozolomide |
Wagner et al., 2013 [68] | NCT00786669 | Phase I | No | Solid tumors | Bevacizumab | 15 mg/kg | Irinotecan + Temozolomide + Vincristine |
Venkatramani et al., 2013 [66] | NCT00993044 | Phase I | No | Solid tumors | Bevacizumab | 15 mg/kg | Irinotecan + Temozolomide + Vincristine |
El-Khouly et al., 2021 [32] | - | Phase I/II | No | Glioma | Bevacizumab | 10 mg/kg | Irinotecan + Erlotinib |
Grill et al., 2018 [44] | NCT01390948 | Phase II | Yes | Glioma | Bevacizumab | 10 mg/kg | Temozolomide + radiotherapy |
- | NCT01236560 | Phase II/III | Yes | Glioma | Bevacizumab | 10 mg/kg | Temozolomide + radiotherapy |
- | NCT01492673 | Phase II | No | Ewing Sarcoma and Neuroblastoma | Bevacizumab | 15 mg/kg | Cyclophosphamide + Topotecan |
- | NCT00516295 | Phase II | Yes | Ewing Sarcoma | Bevacizumab | ns | Cyclophosphamide + Topotecan + Vincristine |
Mascarenhas et al., 2019 [52] | NCT01222715 | Phase II | Yes | Rhabdomyosarcoma | Bevacizumab | 15 mg/kg | Vinorelbine + Cyclophosphamide |
Navid et al., 2017 [57] | NCT00667342 | Phase II | No | Osteosarcoma | Bevacizumab | 15 mg/kg | Methotrexate + doxorubicin + cisplatin |
Chisholm et al., 2017 [26] | NCT00643565 | Phase II | Yes | Sarcoma (soft tissue) | Bevacizumab | 7.5 mg/kg | Vincristine, ifosfamide, actinomycin-D and doxorubicin |
Zhukova et al., 2018 [83] | - | Observational study | - | Glioma | Bevacizumab | 10 mg/kg | Chemotherapy |
Parekh et al., 2011 [84] | - | Observational study | - | Glioma | Bevacizumab | 10 mg/kg | Chemotherapy |
Millan et al., 2016 [55] | - | Observational study | - | Solid tumors and vascular anomalies | Bevacizumab | Median dose: 9.25 mg/kg | +/− Chemotherapy |
Piha-Paul et al., 2014 [59] | NCT00610493 | Phase I | No | CNS tumors | Bevacizumab | 5–10–15 mg/kg | Temsirolimus |
Federico et al., 2020 [34] | NCT00665990 | Phase I | No | Solid tumors | Bevacizumab | 15 mg/kg | Sorafenib + Cyclophosphamide |
Navid et al., 2012 [85] | NCT00665990 | Phase I | No | Solid tumors | Bevacizumab | 5 mg/kg | Sorafenib + Cyclophosphamide |
Inaba et al., 2019 [86] | NCT00665990 | Phase I | No | Solid tumors | Bevacizumab | 15 mg/kg | Sorafenib + Cyclophosphamide |
Interiano et al., 2015 [87] | - | Observational study | - | Solid tumors | Bevacizumab | 15 mg/kg | Sorafenib + Cyclophosphamide |
Su et al., 2020 [65] | NCT00879437 | Phase II | No | Glioma | Bevacizumab | 10 mg/kg | Valproic acid + radiotherapy |
Santana et al., 2020 [63] | NCT00756340 | Phase I | No | Solid tumors | Bevacizumab | 8–10 mg/kg | Everolimus |
De Wire et al., 2015 [30] | NCT00883688 | Phase II | No | Ependymoma | Bevacizumab | 10 mg/kg | Lapatinib |
Peyrl et al., 2012 [88] | NCT01356290 | Phase II | - | Brain tumors | Bevacizumab | 10 mg/kg | Various |
Reismuller et al., 2010 [61] | - | Observational study | - | CNS tumors | Bevacizumab | 10 mg/kg | Various |
Benesch et al., 2007 [89] | - | Observational study | - | Solid tumors | Bevacizumab | 5–10 mg/kg | Various |
Widemann et al., 2012 [71] | NCT01445080 | Phase I | No | Solid tumors | Sorafenib | 150–325 mg/m2/dose | No |
Karajannis et al., 2014 [47] | NCT01338857 | Phase II | No | Astrocytoma | Sorafenib | 200 to 400 mg/m2/dose | No |
Kim et al., 2015 [90] | NCT01502410 | Phase II | No | Rhabdomyosarcoma and Wilms tumors | Sorafenib | 200 mg/m2/dose | No |
Raciborska et al., 2018 [91] | - | Observational study | - | Bone tumors | Sorafenib | 100–400 mg/m2/dose | No |
Meany et al., 2021 [53] | NCT01518413 | Phase I | No | Solid tumors | Sorafenib | 105–200 mg/m2 | Irinotecan |
Keino et al., 2020 [48] | - | Clinical trial ns | No | Hepatic cancer | Sorafenib | 200–400 mg/m2/dose | Irinotecan |
Reed et al., 2016 [60] | NCT01683149 | Phase I | No | Solid tumors | Sorafenib | 150 mg/200 mg | Topotecan |
Schmid et al., 2012 [92] | - | Observational study | - | Hepatocellular carcinoma | Sorafenib | 244–602 mg/m2/day | Cisplatin + doxorubicin |
DuBois et al., 2011 [31] | NCT00387920 | Phase I | No | Solid tumors | Sunitinib | 15-20 mg/m2 | No |
Wetmore et al., 2016 [70] | NCT01462695 | Phase II | No | Ependymoma | Sunitinib | 15 mg/m2 | No |
Verschuur et al., 2019 [67] | NCT01396148 | Phase I/II | No | Gastrointestinal tumor | Sunitinib | 7.5–30 mg/m2 | No |
Glade Bender et al., 2013 [41] | NCT00929903 | Phase I | No | Solid tumors | Pazopanib | 275 to 600 mg/m2 (tablet); 50 mg/mL (suspension) | No |
- | NCT01956669 | Phase II | No | Solid tumors | Pazopanib | 225–450 m2/m2/dose | No |
Weiss et al., 2020 [69] | NCT02180867 | Phase II | Yes | Sarcoma (soft tissue) | Pazopanib | 7–5 g/m2 | Doxorubicin, Ifosfamide |
Russo et al., 2020 [62] | - | Observational study | - | Sarcoma | Pazopanib | 450 mg/m2 | Vincristine + irinotecan |
Broniscer et al., 2010 [24] | NCT00472017 | Phase I | No | Glioma | Vandetanib | 50–145 mg/m2 | Radiotherapy |
Broniscer et al., 2013 [25] | NCT00996723 | Phase I | No | Glioma | Vandetanib | 65–85 mg/m2 | Dasatinib + radiotherapy |
Kraft et al., 2018 [49] | NCT00514046 | Phase I/II | No | Thyroid Carcinoma | Vandetanib | 100–300 mg/m2/dose | No |
Fox et al., 2013 [93] | NCT00514046 | Phase I/II | No | Thyroid Carcinoma | Vandetanib | 100–300 mg/m2/dose | No |
Glod et al., 2019 [42] | NCT02015065 | Phase II | No | Gastrointestinal tumor | Vandetanib | 100 mg/m2 | No |
Geoerger et al., 2021 [38] | NCT02085148 | Phase I | No | Solid tumors | Regorafenib | 60–93 mg/m2 | No |
- | NCT02564198 | Phase I | No | Solid tumors | Ramucirumab | 8–12 mg/kg | No |
Leary et al., 2017 [50] | NCT01538095 | Phase I | No | Solid tumors/tumors of the central nervous system | Trebananib | 10/15/30 mg/kg | No |
Chuk et al., 2018 [27] | NCT01709435 | Phase I | No | Solid tumors | Cabozantinib | 30–55 mg/m2/day | No |
Geller et al., 2018 [37] | NCT02164838 | Phase I | No | Solid tumors | Axitinib | 2.4 and 3.2 mg/m2/dose | No |
Glade Bender et al., 2012 [39] | NCT00622414 | Phase I | No | Solid tumors | Aflibercept | 2.0, 2.5 or 3.0 mg/kg | No |
Gaspar 2021 et al. (I) [35] | NCT02432274 | Phase I/II | No | Solid tumors (phase I), osteosarcoma (phase II) | Lenvatinib | 11–17 mg/m2 | No |
Gaspar 2021 et al. (II) [36] | NCT02432274 | Phase I/II | No | Osteosarcoma | Lenvatinib | 11–14 mg/m2 | Ifosfamide + etoposide |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spini, A.; Ciccone, V.; Rosellini, P.; Ziche, M.; Lucenteforte, E.; Salvo, F.; Donnini, S. Safety of Anti-Angiogenic Drugs in Pediatric Patients with Solid Tumors: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 5315. https://doi.org/10.3390/cancers14215315
Spini A, Ciccone V, Rosellini P, Ziche M, Lucenteforte E, Salvo F, Donnini S. Safety of Anti-Angiogenic Drugs in Pediatric Patients with Solid Tumors: A Systematic Review and Meta-Analysis. Cancers. 2022; 14(21):5315. https://doi.org/10.3390/cancers14215315
Chicago/Turabian StyleSpini, Andrea, Valerio Ciccone, Pietro Rosellini, Marina Ziche, Ersilia Lucenteforte, Francesco Salvo, and Sandra Donnini. 2022. "Safety of Anti-Angiogenic Drugs in Pediatric Patients with Solid Tumors: A Systematic Review and Meta-Analysis" Cancers 14, no. 21: 5315. https://doi.org/10.3390/cancers14215315
APA StyleSpini, A., Ciccone, V., Rosellini, P., Ziche, M., Lucenteforte, E., Salvo, F., & Donnini, S. (2022). Safety of Anti-Angiogenic Drugs in Pediatric Patients with Solid Tumors: A Systematic Review and Meta-Analysis. Cancers, 14(21), 5315. https://doi.org/10.3390/cancers14215315