Systemic Therapy Development in Von Hippel–Lindau Disease: An Outsized Contribution from an Orphan Disease
Abstract
:Simple Summary
Abstract
1. Introduction
2. VHL Biology and Inappropriate Angiogenesis
3. Anti-Angiogenic Systemic Therapies in VHL Disease
4. Development of HIF2α Inhibition as Cancer Therapy
5. HIF2α Inhibition in VHL Disease
6. Future Directions for Systemic Therapy in VHL Disease
6.1. Remaining Clinical Questions
6.2. Mechanisms of Resistance
6.3. Application of HIF2α Inhibition beyond VHL Disease
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kaelin, W.G. The VHL tumor suppressor gene: Insights into oxygen sensing and cancer. Trans. Am. Clin. Climatol. Assoc. 2017, 128, 298–307. [Google Scholar] [PubMed]
- Hasanov, E.; Jonasch, E. MK-6482 as a potential treatment for Von Hippel-Lindau disease-associated clear cell renal cell carcinoma. Expert Opin. Investig. Drugs 2021, 30, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Latif, F. Identification of the Von Hippel-Lindau disease tumor suppressor gene. Science 1993, 260, 1317. [Google Scholar] [CrossRef]
- Ho, T.H.; Jonasch, E. Genetic kidney cancer syndromes. J. Natl. Compr. Cancer Netw. 2014, 12, 1347–1355. [Google Scholar] [CrossRef]
- Melmon, K.L.; Rosen, S.W. Lindau’s disease: Review of the literature and study of a large kindred. Am. J. Med. 1964, 36, 595–617. [Google Scholar] [CrossRef]
- Neumann, H.P.H.; Wiestler, O.D. Clustering of features of Von Hippel-Lindau syndrome: Evidence for a complex genetic locus. Lancet 1991, 337, 1052–1054. [Google Scholar] [CrossRef]
- Gossage, L.; Eisen, T.; Maher, E.R. VHL, the story of a tumour suppressor gene. Nat. Rev. Cancer 2014, 15, 55–64. [Google Scholar] [CrossRef]
- Chen, F.; Kishida, T.; Yao, M.; Hustad, T.; Glavac, D.; Dean, M.; Gnarra, J.R.; Orcutt, M.L.; Duh, F.M.; Glenn, G.; et al. Germline mutations in the Von Hippel-Lindau disease tumor suppressor gene: Correlations with phenotype. Hum. Mutat. 1995, 5, 66–75. [Google Scholar] [CrossRef]
- Maher, E.R.; Neumann, H.P.; Richard, S. Von hippel-lindau disease: A clinical and scientific review. Eur. J. Hum. Genet. 2011, 19, 617–623. [Google Scholar] [CrossRef] [Green Version]
- Chahoud, J.; McGettigan, M.; Parikh, N.; Boris, R.S.; Iliopoulos, O.; Rathmell, W.K.; Daniels, A.B.; Jonasch, E.; Spiess, P.E. Evaluation, diagnosis and surveillance of renal masses in the setting of VHL disease. World J. Urol. 2021, 39, 2409–2415. [Google Scholar] [CrossRef]
- Walther, M.M.; Choyke, P.L.; Glenn, G.; Lyne, J.C.; Rayford, W.; Venzon, D.; Linehan, W.M. Renal cancer in families with hereditary renal cancer: Prospective analysis of a tumor size threshold for renal parenchymal sparing surgery. J. Urol. 1999, 161, 1475–1479. [Google Scholar] [CrossRef]
- Chauveau, D.; Duvic, C.; Chrétien, Y.; Paraf, F.; Droz, D.; Melki, P.; Hélénon, O.; Richard, S.; Grünfeld, J.P. Renal involvement in von hippel-lindau disease. Kidney Int. 1996, 50, 944–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, S.; Gillessen, S.; Binet, I.; Brändle, M.; Engeler, D.; Greiner, J.; Hader, C.; Heinimann, K.; Kloos, P.; Krek, W.; et al. Management of von hippel-lindau disease: An interdisciplinary review. Oncol. Res. Treat. 2014, 37, 761. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Zschiedrich, S. Renal cell carcinoma in von hippel-lindau disease-from tumor genetics to novel therapeutic strategies. Front. Pediatrics 2018, 6, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huntoon, K.; Wu, T.; Elder, J.B.; Butman, J.A.; Chew, E.Y.; Linehan, W.M.; Oldfield, E.H.; Lonser, R.R. Biological and clinical impact of hemangioblastoma-associated peritumoral cysts in von hippel-lindau disease. J. Neurosurg. 2016, 124, 971–976. [Google Scholar] [CrossRef] [Green Version]
- Prescribing Information for Belzutifan. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/215383s000lbl.pdf (accessed on 8 October 2022).
- Kibel, A.; Iliopoulos, O.; Decaprio, J.A.; Kaelin, W.G., Jr. Binding of the Von Hippel-Lindau tumor suppressor protein to elongin B and C. Science 1995, 269, 1444–1446. [Google Scholar] [CrossRef]
- Duan, D.R.; Pause, A.; Burgess, W.H.; Aso, T.; Chen, D.Y.; Garrett, K.P.; Conaway, R.C.; Conaway, J.W.; Linehan, W.M.; Klausner, R.D. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 1995, 269, 1402–1406. [Google Scholar] [CrossRef] [Green Version]
- Schoenfeld, A.R.; Davidowitz, E.J.; Burk, R.D. Elongin BC complex prevents degradation of von hippel-lindau tumor suppressor gene products. Proc. Natl. Acad. Sci. USA 2000, 97, 8507–8512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishida, T.; Stachkhouse, T.M.; Chen, F.; Lerman, M.I.; Zbar, B. Cellular proteins that bind the von hippel-lindau disease gene product: Mapping of binding domains and the effect of missense mutations. Cancer Res. 1995, 55, 4544–4548. [Google Scholar]
- Lonergan, K.M.; Iliopoulos, O.; Ohh, M.; Kamura, T.; Conaway, R.C.; Conaway, J.W.; Kaelin, W.G., Jr. Regulation of hypoxia-inducible mRNAs by the von hippel-lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol. Cell. Biol. 1998, 18, 732–741. [Google Scholar] [CrossRef] [Green Version]
- Simon, M.C. The hypoxia response pathways—Hats off. N. Engl. J. Med. 2016, 375, 1687–1689. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, P.H.; Wiesener, M.S.; Chang, G.W.; Clifford, S.C.; Vaux, E.C.; Cockman, M.E.; Wykoff, C.C.; Pugh, C.W.; Maher, E.R.; Ratcliffe, P.J. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999, 399, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Semenza, G.L. Hypoxia-inducible factors: Mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 2012, 33, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semenza, G.L. Oxygen sensing, homeostasis, and disease. N. Engl. J. Med. 2011, 365, 537–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iliopoulos, O.; Levy, A.P.; Jiang, C.; Kaelin, W.G., Jr.; Goldberg, M.A. Negative regulation of hypoxia-inducible genes by the von hippel—Lindau protein. Proc. Natl. Acad. Sci. USA 1996, 93, 10595–10599. [Google Scholar] [CrossRef] [Green Version]
- Gnarra, J.R.; Zhou, S.; Merrill, M.J.; Wagner, J.R.; Krumm, A.; Papavassiliou, E.; Oldfield, E.H.; Klausner, R.D.; Linehan, W.M. Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proc. Natl. Acad. Sci. USA 1996, 93, 10589–10594. [Google Scholar] [CrossRef] [Green Version]
- Wizigmann-Voos, S.; Breier, G.; Risau, W.; Plate, K.H. Up-regulation of vascular endothelial growth factor and its receptors in von hippel-lindau disease-associated and sporadic hemangioblastomas. Cancer Res. 1995, 55, 1358–1364. [Google Scholar]
- Sato, K.; Terada, K.; Sugiyama, T.; Takahashi, S.; Saito, M.; Moriyama, M.; Kakinuma, H.; Suzuki, Y.; Kato, M.; Kato, T. Frequent overexpression of vascular endothelial growth factor gene in human renal cell carcinoma. Tohoku J. Exp. Med. 1994, 173, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Foster, K.; Prowse, A.; van den Berg, A.; Fleming, S.; Hulsbeek, M.M.; Crossey, P.A.; Richards, F.M.; Cairns, P.; Affara, N.A.; Ferguson-Smith, M.A.; et al. Somatic mutations of the von hippel—Lindau disease tumour suppressor gene in non-familial clear cell renal carcinoma. Hum. Mol. Genet. 1994, 3, 2169–2173. [Google Scholar] [CrossRef]
- Gossage, L.; Eisen, T. Alterations in VHL as potential biomarkers in renal-cell carcinoma. Nat. Rev. Clin. Oncol. 2010, 7, 277–288. [Google Scholar] [CrossRef]
- Peña-Llopis, S.; Vega-Rubín-de-Celis, S.; Liao, A.; Leng, N.; Pavía-Jiménez, A.; Wang, S.; Yamasaki, T.; Zhrebker, L.; Sivanand, S.; Spence, P.; et al. BAP1 loss defines a new class of renal cell carcinoma. Nat. Genet. 2012, 44, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Jonasch, E.; McCutcheon, I.E.; Waguespack, S.G.; Wen, S.; Davis, D.W.; Smith, L.A.; Tannir, N.M.; Gombos, D.S.; Fuller, G.N.; Matin, S.F. Pilot trial of sunitinib therapy in patients with von Hippel–Lindau disease. Ann. Oncol. 2011, 22, 2661–2666. [Google Scholar] [CrossRef] [PubMed]
- Oudard, S.; Elaidi, R.; Brizard, M.; Le Rest, C.; Caillet, V.; Deveaux, S.; Benoit, G.; Corréas, J.M.; Benoudiba, F.; David, P.; et al. Sunitinib for the treatment of benign and malignant neoplasms from von hippel-lindau disease: A single-arm, prospective phase II clinical study from the PREDIR group. Oncotarget 2016, 7, 85306–85317. [Google Scholar] [CrossRef] [Green Version]
- Pilié, P.; Hasanov, E.; Matin, S.F.; Woodson, A.H.H.; Marcott, V.D.; Bird, S.; Slack, R.S.; Fuller, G.N.; McCutcheon, I.E.; Jonasch, E. Pilot study of dovitinib in patients with von hippel-lindau disease. Oncotarget 2018, 9, 23390–23395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonasch, E.; McCutcheon, I.E.; Gombos, D.S.; Ahrar, K.; Perrier, N.D.; Liu, D.; Robichaux, C.C.; Villarreal, M.F.; Weldon, J.A.; Woodson, A.H.; et al. Pazopanib in patients with von hippel-lindau disease: A single-arm, single-centre, phase 2 trial. Lancet Oncol. 2018, 19, 1351–1359. [Google Scholar] [CrossRef]
- Min, J.; Yang, H.; Ivan, M.; Gertler, F.; Kaelin, W.G., Jr.; Pavletich, N.P. Structure of an HIF-1α-pVHL complex: Hydroxyproline recognition in signaling. Science 2002, 296, 1886–1889. [Google Scholar] [CrossRef] [PubMed]
- Hon, W.; Wilson, M.I.; Harlos, K.; Claridge, T.D.; Schofield, C.J.; Pugh, C.W.; Maxwell, P.H.; Ratcliffe, P.J.; Stuart, D.I.; Jones, E.Y. Structural basis for the recognition of hydroxyproline in HIF-1alpha by pVHL. Nature 2002, 417, 975–978. [Google Scholar] [CrossRef]
- Clifford, S.C.; Cockman, M.E.; Smallwood, A.C.; Mole, D.R.; Woodward, E.R.; Maxwell, P.H.; Ratcliffe, P.J.; Maher, E.R. Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von hippel-lindau disease. Hum. Mol. Genet. 2001, 10, 1029–1038. [Google Scholar] [CrossRef] [Green Version]
- Gordan, J.D.; Bertout, J.A.; Hu, C.; Diehl, J.A.; Simon, M.C. HIF-2α promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 2007, 11, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Kaelin, W.G. The VHL/HIF axis in clear cell renal carcinoma. Semin. Cancer Biol. 2013, 23, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Koehler, A.N. A complex task? Direct modulation of transcription factors with small molecules. Curr. Opin. Chem. Biol. 2010, 14, 331–340. [Google Scholar]
- Scheuermann, T.H.; Li, Q.; Ma, H.; Key, J.; Zhang, L.; Chen, R.; Garcia, J.A.; Naidoo, J.; Longgood, J.; Frantz, D.E.; et al. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat. Chem. Biol. 2013, 9, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Wallace, E.M.; Rizzi, J.P.; Han, G.; Wehn, P.M.; Cao, Z.; Du, X.; Cheng, T.; Czerwinski, R.M.; Dixon, D.D.; Goggin, B.S.; et al. A small-molecule antagonist of HIF2α is efficacious in preclinical models of renal cell carcinoma. Cancer Res. 2016, 76, 5491–5500. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Hill, H.; Christie, A.; Kim, M.S.; Holloman, E.; Pavia-Jimenez, A.; Homayoun, F.; Ma, Y.; Patel, N.; Yell, P.; et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 2016, 539, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.H.; Du, X.X.; Rizzi, J.P.; Liberzon, E.; Chakraborty, A.A.; Gao, W.; Carvo, I.; Signoretti, S.; Bruick, R.K.; Josey, J.A.; et al. On-target efficacy of a HIF2α antagonist in preclinical kidney cancer models. Nature 2016, 539, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Courtney, K.D.; Infante, J.R.; Lam, E.T.; Figlin, R.A.; Rini, B.I.; Brugarolas, J.; Zojwalla, N.J.; Lowe, A.M.; Wang, K.; Wallace, E.M.; et al. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J. Clin. Oncol. 2017, 36, 867–874. [Google Scholar] [CrossRef]
- Courtney, K.D.; Ma, Y.; de Leon, A.D.; Christie, A.; Xie, Z.; Woolford, L.; Singla, N.; Joyce, A.; Hill, H.; Madhuranthakam, A.J.; et al. HIF-2 complex dissociation, target inhibition, and acquired resistance with PT2385, a first-in-class HIF-2 inhibitor in clear cell renal cell carcinoma patients. Clin. Cancer Res. 2019, 26, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Wang, K.; Rizzi, J.P.; Huang, H.; Grina, J.A.; Schlachter, S.T.; Wang, B.; Wehn, P.M.; Yang, H.; Dixon, D.D.; et al. 3-[(1S,2S,3R)-2,3-difluoro-1-hydroxy-7-methylsulfonyl indan-4-yl]oxy-5-fluorobenzonitrile (PT2977), a hypoxia-inducible factor 2α (HIF-2α) inhibitor for the treatment of clear cell renal cell carcinoma. J. Med. Chem. 2019, 62, 6876–6893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choueiri, T.K.; Bauer, T.M.; Papadopoulos, K.P.; Plimack, E.R.; Merchan, J.R.; McDermott, D.F.; Michaelson, M.D.; Appleman, L.J.; Thamake, S.; Perini, R.F.; et al. Inhibition of hypoxia-inducible factor-2α in renal cell carcinoma with belzutifan: A phase 1 trial and biomarker analysis. Nat. Med. 2021, 27, 802–805. [Google Scholar] [CrossRef]
- Jonasch, E.; Donskov, F.; Iliopoulos, O.; Rathmell, W.K.; Narayan, V.K.; Maughan, B.L.; Oudard, S.; Else, T.; Maranchie, J.; Welsh, S.J.; et al. Belzutifan for renal cell carcinoma in von Hippel–Lindau disease. N. Engl. J. Med. 2021, 385, 2036–2046. [Google Scholar] [CrossRef]
- Jonasch, E.; Iliopoulos, O.; Rathmell, W.K.; Narayan, V.K.; Maughan, B.L.; Oudard, S.; Else, T.; Maranchie, J.K.; Welsh, S.J.; Thamake, S.; et al. LITESPARK-004 (MK-6482-004) phase 2 study of belzutifan, an oral hypoxia-inducible factor 2α inhibitor (HIF-2α), for von hippel-lindau (VHL) disease: Update with more than two years of follow-up data. J. Clin. Oncol. 2022, 40, 4546. [Google Scholar] [CrossRef]
- Kamihara, J.; Hamilton, K.V.; Pollard, J.A.; Clinton, C.M.; Madden, J.A.; Lin, J.; Imamovic, A.; Wall, C.B.; Wassner, A.J.; Weil, B.R.; et al. Belzutifan, a potent HIF2α inhibitor, in the Pacak–Zhuang syndrome. N. Engl. J. Med. 2021, 385, 2059–2065. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, E.H. Cancer interception. Cancer Prev. Res. 2011, 4, 787–792. [Google Scholar] [CrossRef]
- Elias, R.; Zhang, Q.; Brugarolas, J. The von hippel-lindau tumor suppressor gene: Implications and therapeutic opportunities. Cancer J. 2020, 26, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, H.E.; Tariq, Z.; Housden, B.E.; Jennings, R.B.; Stransky, L.A.; Perrimon, N.; Signoretti, S.; Kaelin, W.G., Jr. HIF-independent synthetic lethality between CDK4/6 inhibition and VHL loss across species. Sci. Signal. 2019, 12, eaay0482. [Google Scholar] [CrossRef] [PubMed]
Drug | # of Patients | Planned Treatment Duration | VHL Lesions | Best Radiographic Response | Grade ≥ 3 AE (%) | Reference | |||
---|---|---|---|---|---|---|---|---|---|
CR | PR | SD | PD | ||||||
Sunitinib | 15 | 6 months | RCC (N = 21) | 33% | 56% | 11% | Fatigue 5% HFS 13% Nausea 13% Hypertension 7% | 33 | |
CNS Hb (N = 18) | 91% | 9% | |||||||
Pancreatic NET (N = 5) | 100% | ||||||||
Retinal angioma (N = 7) | 100% with stable findings | ||||||||
Sunitinib | 5 | Indefinite | RCC (N = 5) | 100% | 34 | ||||
Dovitinib | 6 | Indefinite | CNS Hb | 100% | Rash (17%) | 35 | |||
Pazopanib | 31 | 6 months | RCC (N = 59) | 3% | 49% | 47% | AST increase (10%) ALT increase (13%) Proteinuria (3%) | 36 | |
CNS Hb (N = 49) | 4% | 96% | |||||||
Pancreatic Lesions (N = 17) | 53% | 47% | |||||||
Belzutifan | 61 | Indefinite | RCC (N = 61) | 3% | 56% | 39% | Anemia 10% Fatigue 5% | 51, 52 | |
CNS Hb (N = 50) | 6% | 32% | 52% | 6% | |||||
Pancreatic Lesions (N = 61) | 15% | 66% | 18% | ||||||
Pancreatic NETs (N = 20) | 15% | 75% | 10% | ||||||
Retinal angioma (N = 16) | 100% with improvement |
Trial Name | Trial Phase | Planned Accrual (N) | Eligible Tumor Type(s) | Trial Identifier |
---|---|---|---|---|
Belzutifan for the treatment of advanced pheochromocytoma/paraganglioma (PPGL), pancreatic neuroendocrine tumor (pNET), or von Hippel–Lindau (VHL) disease-associated tumors (MK-6482-015) | 2 | 232 | Pheochromocytoma/Paraganglioma pNET VHL disease-associated tumors (at least 1 measurable PPGL or pNET) | NCT04924075 |
A study of belzutifan plus versus placebo plus pembrolizumab in participants with clear cell renal cell carcinoma post nephrectomy (MK-6482-022) | 3 | 1600 | Clear cell RCC (post-nephrectomy) | NCT05239728 |
A study of belzutifan in combination with palbociclib versus belzutifan monotherapy in participants with advanced renal cell carcinoma (MK-6482-024) | 1/2 | 180 | Advanced Clear Cell RCC | NCT05468697 |
A study of belzutifan versus everolimus in participants with advanced renal cell carcinoma (MK-6482-005) | 3 | 736 | Advanced Clear Cell RCC | NCT04195750 |
A study of pembrolizumab in combination with belzutifan and lenvatinib, or pembrolizumab/quavonlimab in combination with lenvatinib, versus pembrolizumab and lenvatinib, for treatment of advanced clear cell renal cell carcinoma (MK-6482-012) | 2 | 1431 | Advanced Clear Cell RCC | NCT04736706 |
Pembrolizumab plus lenvatinib in combination with belzutifan in solid tumors (MK-6482-016) | 2 | 730 | Hepatocellular carcinoma Colorectal cancer Pancreatic ductal adenocarcinoma Biliary tract cancer Endometrial cancer Esophageal squamous cell carcinoma | NCT04976634 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narayan, V.; Jonasch, E. Systemic Therapy Development in Von Hippel–Lindau Disease: An Outsized Contribution from an Orphan Disease. Cancers 2022, 14, 5313. https://doi.org/10.3390/cancers14215313
Narayan V, Jonasch E. Systemic Therapy Development in Von Hippel–Lindau Disease: An Outsized Contribution from an Orphan Disease. Cancers. 2022; 14(21):5313. https://doi.org/10.3390/cancers14215313
Chicago/Turabian StyleNarayan, Vivek, and Eric Jonasch. 2022. "Systemic Therapy Development in Von Hippel–Lindau Disease: An Outsized Contribution from an Orphan Disease" Cancers 14, no. 21: 5313. https://doi.org/10.3390/cancers14215313
APA StyleNarayan, V., & Jonasch, E. (2022). Systemic Therapy Development in Von Hippel–Lindau Disease: An Outsized Contribution from an Orphan Disease. Cancers, 14(21), 5313. https://doi.org/10.3390/cancers14215313