Clinical Trends in Management of Locally Advanced ESCC: Real-World Evidence from a Large Single-Center Cohort Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Study Setting
2.2. Eligibility Process
2.3. Treatment
2.4. Data Analysis
3. Results
3.1. Study Population
3.2. Baseline Characteristics
3.3. Survival Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allum, W.H.; Stenning, S.P.; Bancewicz, J.; Clark, P.I.; Langley, R.E. Long-term results of a randomized trial of surgery with or without preoperative chemotherapy in esophageal cancer. J. Clin. Oncol. 2009, 27, 5062–5067. [Google Scholar] [CrossRef] [PubMed]
- Medical Research Council Oesophageal Cancer Working Group. Surgical resection with or without preoperative chemotherapy in oesophageal cancer: A randomised controlled trial. Lancet 2002, 359, 1727–1733. [Google Scholar] [CrossRef]
- van Hagen, P.; Hulshof, M.C.; van Lanschot, J.J.; Steyerberg, E.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.; Richel, D.J.; Nieuwenhuijzen, G.A.; Hospers, G.A.; Bonenkamp, J.J.; et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N. Engl. J. Med. 2012, 366, 2074–2084. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Liu, H.; Chen, Y.; Zhu, C.; Fang, W.; Yu, Z.; Mao, W.; Xiang, J.; Han, Y.; Chen, Z.; et al. Neoadjuvant Chemoradiotherapy Followed by Surgery Versus Surgery Alone for Locally Advanced Squamous Cell Carcinoma of the Esophagus (NEOCRTEC5010): A Phase III Multicenter, Randomized, Open-Label Clinical Trial. J. Clin. Oncol. 2018, 36, 2796–2803. [Google Scholar] [CrossRef]
- Eisenhauer, E.A. Real-world evidence in the treatment of ovarian cancer. Ann. Oncol. 2017, 28, viii61–viii65. [Google Scholar] [CrossRef] [PubMed]
- Shim, Y.M.; Yun, J.; Im, Y.H.; Lee, G.; Kang, D.; Cho, J.; Kim, K.; Park, S.I.; Na, K.J.; Kim, S.B.; et al. The efficacy of adjuvant chemotherapy with capecitabine and cisplatin after surgery in locally advanced esophageal squamous cell carcinoma: A multicenter randomized phase III trial. Dis. Esophagus 2022, 35, doab040. [Google Scholar] [CrossRef]
- Lim, S.H.; Shim, Y.M.; Park, S.H.; Kim, H.K.; Choi, Y.S.; Ahn, M.J.; Park, K.; Zo, J.I.; Sun, J.M. A Randomized Phase II Study of Leucovorin/5-Fluorouracil with or without Oxaliplatin (LV5FU2 vs. FOLFOX) for Curatively-Resected, Node-Positive Esophageal Squamous Cell Carcinoma. Cancer Res. Treat. 2017, 49, 816–823. [Google Scholar] [CrossRef] [Green Version]
- Bosset, J.F.; Gignoux, M.; Triboulet, J.P.; Tiret, E.; Mantion, G.; Elias, D.; Lozach, P.; Ollier, J.C.; Pavy, J.J.; Mercier, M.; et al. Chemoradiotherapy followed by surgery compared with surgery alone in squamous-cell cancer of the esophagus. N. Engl. J. Med. 1997, 337, 161–167. [Google Scholar] [CrossRef]
- Burmeister, B.H.; Smithers, B.M.; Gebski, V.; Fitzgerald, L.; Simes, R.J.; Devitt, P.; Ackland, S.; Gotley, D.C.; Joseph, D.; Millar, J.; et al. Surgery alone versus chemoradiotherapy followed by surgery for resectable cancer of the oesophagus: A randomised controlled phase III trial. Lancet Oncol. 2005, 6, 659–668. [Google Scholar] [CrossRef]
- Lee, J.L.; Park, S.I.; Kim, S.B.; Jung, H.Y.; Lee, G.H.; Kim, J.H.; Song, H.Y.; Cho, K.J.; Kim, W.K.; Lee, J.S.; et al. A single institutional phase III trial of preoperative chemotherapy with hyperfractionation radiotherapy plus surgery versus surgery alone for resectable esophageal squamous cell carcinoma. Ann. Oncol. 2004, 15, 947–954. [Google Scholar] [CrossRef]
- Ajani, J.A.; D’Amico, T.A.; Bentrem, D.J.; Chao, J.; Corvera, C.; Das, P.; Denlinger, C.S.; Enzinger, P.C.; Fanta, P.; Farjah, F.; et al. Esophageal and Esophagogastric Junction Cancers, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2019, 17, 855–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitagawa, Y.; Uno, T.; Oyama, T.; Kato, K.; Kato, H.; Kawakubo, H.; Kawamura, O.; Kusano, M.; Kuwano, H.; Takeuchi, H.; et al. Esophageal cancer practice guidelines 2017 edited by the Japan Esophageal Society: Part 1. Esophagus 2019, 16, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brescia, A.A.; Broderick, S.R.; Crabtree, T.D.; Puri, V.; Musick, J.F.; Bell, J.M.; Kreisel, D.; Krupnick, A.S.; Patterson, G.A.; Meyers, B.F. Adjuvant Therapy for Positive Nodes After Induction Therapy and Resection of Esophageal Cancer. Ann. Thorac. Surg. 2016, 101, 200–208; discussion 208–210. [Google Scholar] [CrossRef] [Green Version]
- Heroor, A.; Fujita, H.; Sueyoshi, S.; Tanaka, T.; Toh, U.; Mine, T.; Sasahara, H.; Sudo, T.; Matono, S.; Yamana, H.; et al. Adjuvant chemotherapy after radical resection of squamous cell carcinoma in the thoracic esophagus: Who benefits? A retrospective study. Dig. Surg. 2003, 20, 229–235; discussion 236–237. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, K.E.; Im, Y.H.; Kang, W.K.; Park, K.; Kim, K.; Shim, Y.M. Adjuvant chemotherapy with 5-fluorouracil and cisplatin in lymph node-positive thoracic esophageal squamous cell carcinoma. Ann. Thorac. Surg. 2005, 80, 1170–1175. [Google Scholar] [CrossRef] [PubMed]
- Nevala-Plagemann, C.; Francis, S.; Cavalieri, C.; Tao, R.; Whisenant, J.; Glasgow, R.; Scaife, C.; Lloyd, S.; Garrido-Laguna, I. Benefit of adjuvant chemotherapy based on lymph node involvement for oesophageal cancer following trimodality therapy. ESMO Open 2018, 3, e000386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, R.Q.; Wen, Y.S.; Wang, W.P.; Xi, K.X.; Yu, X.Y.; Zhang, L.J. The role of postoperative adjuvant chemotherapy for lymph node-positive esophageal squamous cell carcinoma: A propensity score matching analysis. Med. Oncol. 2016, 33, 31. [Google Scholar] [CrossRef]
- Saeed, N.A.; Mellon, E.A.; Meredith, K.L.; Hoffe, S.E.; Shridhar, R.; Frakes, J.; Fontaine, J.P.; Pimiento, J.M.; Kothari, N.; Almhanna, K. Adjuvant chemotherapy and outcomes in esophageal carcinoma. J. Gastrointest. Oncol. 2017, 8, 816–824. [Google Scholar] [CrossRef] [Green Version]
- Shiozaki, A.; Yamagishi, H.; Itoi, H.; Fujiwara, H.; Kikuchi, S.; Okamoto, K.; Ichikawa, D.; Fuji, N.; Ochiai, T.; Sonoyama, T.; et al. Long-term administration of low-dose cisplatin plus 5-fluorouracil prolongs the postoperative survival of patients with esophageal cancer. Oncol. Rep. 2005, 13, 667–672. [Google Scholar] [CrossRef]
- Speicher, P.J.; Englum, B.R.; Ganapathi, A.M.; Mulvihill, M.S.; Hartwig, M.G.; Onaitis, M.W.; D’Amico, T.A.; Berry, M.F. Adjuvant chemotherapy is associated with improved survival after esophagectomy without induction therapy for node-positive adenocarcinoma. J. Thorac. Oncol. 2015, 10, 181–188. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.W.; Chen, Z.W.; Zhou, X.Y.; Lu, S.; Luo, Q.Q.; Hu, H.; Miao, L.S.; Ma, L.F.; Xiang, J.Q. Adjuvant chemotherapy of cisplatin, 5-fluorouracil and leucovorin for complete resectable esophageal cancer: A case-matched cohort study in east China. Dis. Esophagus 2008, 21, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Yan, W.; Fu, H.; Lin, Y.; Chen, K.N. Efficacy of postoperative adjuvant chemotherapy for esophageal squamous cell carcinoma: A meta-analysis. Thorac. Cancer 2018, 9, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lievre, A.; et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef]
- Shah, M.A.; Bennouna, J.; Doi, T.; Shen, L.; Kato, K.; Adenis, A.; Mamon, H.J.; Moehler, M.; Fu, X.; Cho, B.C.; et al. KEYNOTE-975 study design: A Phase III study of definitive chemoradiotherapy plus pembrolizumab in patients with esophageal carcinoma. Future Oncol. 2021, 17, 1143–11531. [Google Scholar] [CrossRef] [PubMed]
Total (n = 2151) | Surgery (n = 1299) | NCRT + Surgery (n = 419) | Definitive CCRT (n = 162) | Palliative CT (n = 110) | Miscellaneous (n = 161) | p-Value | |
---|---|---|---|---|---|---|---|
Age, (mean ± sd) | 63.1 ± 8.5 | 63.3 ± 8.4 | 62.7 ± 8.3 | 61.8 ± 9.2 | 62.7 ± 8.4 | 64.0 ± 9.4 | 0.095 |
Sex, n (%) | 0.074 | ||||||
Female | 129 (6.0%) | 67 (5.2%) | 30 (7.2%) | 17 (10.5%) | 6 (5.5%) | 9 (5.6%) | |
Male | 2022 (94.0%) | 1232 (94.8%) | 389 (92.8%) | 145 (89.5%) | 104 (94.5%) | 152 (94.4%) | |
ECOG PS, n (%) | <0.001 | ||||||
0 | 1637 (76.1%) | 976 (75.1%) | 382 (91.2%) | 104 (64.2%) | 71 (64.5%) | 104 (64.6%) | |
1 | 180 (8.4%) | 77 (5.9%) | 29 (6.9%) | 28 (17.3%) | 25 (22.7%) | 21 (13.0%) | |
≥2 | 57 (2.6%) | 26 (2.0%) | 8 (1.9%) | 9 (5.6%) | 7 (6.4%) | 7 (4.3%) | |
Unknown | 277 (12.9%) | 220 (16.9%) | 0 (0.0%) | 21 (13.0%) | 7 (6.4%) | 29 (18.0%) | |
Smoking, n (%) | <0.001 | ||||||
Never smoker | 1075 (50.0%) | 742 (57.1%) | 103 (24.6%) | 87 (53.7%) | 60 (54.5%) | 83 (51.6%) | |
Ex-smoker | 998 (46.4%) | 515 (39.6%) | 305 (72.8%) | 68 (42.0%) | 45 (40.9%) | 65 (40.4%) | |
Current smoker | 78 (3.6%) | 42 (3.2%) | 11 (2.6%) | 7 (4.3%) | 5 (4.5%) | 13 (8.1%) | |
Comorbidity, n (%) | |||||||
Hypertension | 611 (28.4%) | 352 (27.1%) | 147 (35.1%) | 39 (24.1%) | 35 (31.8%) | 38 (23.6%) | 0.007 |
Diabetes mellitus | 252 (11.7%) | 154 (11.9%) | 57 (13.6%) | 18 (11.1%) | 13 (11.8%) | 10 (6.2%) | 0.182 |
Tuberculosis | 123 (5.7%) | 81 (6.2%) | 19 (4.5%) | 9 (5.6%) | 5 (4.5%) | 9 (5.6%) | 0.731 |
Hepatitis | 54 (2.5%) | 33 (2.5%) | 10 (2.4%) | 6 (3.7%) | 0 (0.0%) | 5 (3.1%) | 0.401 |
Stage, n (%) | |||||||
T | <0.001 | ||||||
0 | 30 (1.4%) | 2 (0.2%) | 23 (5.5%) | 1 (0.6%) | 1 (0.9%) | 3 (1.9%) | |
1 | 371 (17.2%) | 275 (21.2%) | 46 (11.0%) | 14 (8.6%) | 12 (10.9%) | 24 (14.9%) | |
2 | 311 (14.5%) | 178 (13.7%) | 69 (16.5%) | 19 (11.7%) | 16 (14.5%) | 29 (18.0%) | |
3 | 1286 (59.8%) | 761 (58.6%) | 266 (63.5%) | 95 (58.6%) | 68 (61.8%) | 96 (59.6%) | |
4 | 153 (7.1%) | 83 (6.4%) | 15 (3.6%) | 33 (20.4%) | 13 (11.8%) | 9 (5.6%) | |
N | |||||||
0 | 377 (17.5%) | 226 (17.4%) | 78 (18.6%) | 36 (22.2%) | 15 (13.6%) | 22 (13.7%) | <0.001 |
1 | 1266 (58.9%) | 843 (64.9%) | 217 (51.8%) | 76 (46.9%) | 49 (44.5%) | 81 (50.3%) | |
2 | 386 (17.9%) | 170 (13.1%) | 105 (25.1%) | 39 (24.1%) | 24 (21.8%) | 48 (29.8%) | |
3 | 122 (5.7%) | 60 (4.6%) | 19 (4.5%) | 11 (6.8%) | 22 (20.0%) | 10 (6.2%) | |
Location of tumor, n (%) | <0.001 | ||||||
Cervical | 51 (2.4%) | 9 (0.7%) | 2 (0.5%) | 29 (17.9%) | 4 (3.6%) | 7 (4.3%) | |
Thoracic | 1939 (90.1%) | 1198 (92.2%) | 403 (96.2%) | 115 (71.0%) | 89 (80.9%) | 134 (83.2%) | |
Abdominal | 16 (0.7%) | 11 (0.8%) | 0 (0.0%) | 0 (0.0%) | 2 (1.8%) | 3 (1.9%) | |
NOS | 106 (4.9%) | 66 (5.1%) | 9 (2.1%) | 9 (5.6%) | 12 (10.9%) | 10 (6.2%) | |
Overlapping lesion | 39 (1.8%) | 15 (1.2%) | 5 (1.2%) | 9 (5.6%) | 3 (2.7%) | 7 (4.3%) |
Initial Treatment | Subsequent Treatment | Five-Year Survival Rate (95% Confidence Intervals) | ||
---|---|---|---|---|
RFS | PFS | OS | ||
Surgery | Overall (n = 1299) | 0.409 (0.382–0.437) | 0.486 (0.459–0.515) | |
None (n = 921) | 0.393 (0.361–0.427) | 0.473 (0.441–0.507) | ||
Adjuvant CT (n = 283) | 0.500 (0.443–0.565) | 0.584 (0.527–0.647) | ||
Adjuvant RT (n = 90) | 0.296 (0.214–0.410) | 0.330 (0.245–0.444) | ||
Adjuvant CCRT (n = 5) | 0.400 (0.137–1.000) | 0.533 (0.214–1.000) | ||
Neoadjuvant CCRT | Overall (n = 524) | 0.341 (0.299–0.389) | 0.532 (0.487–0.582) | |
Surgery (n = 419) | 0.365 (0.318–0.419) | 0.581 (0.530–0.637) | ||
None (n = 380) | 0.343 (0.293–0.400) | 0.572 (0.518–0.633) | ||
Adjuvant RT (n = 1) | 1.000 (1.000–1.000) | 1.000 (1.000–1.000) | ||
Adjuvant CT (n = 38) | 0.549 (0.411–0.734) | 0.624 (0.485–0.802) | ||
None (n = 103) | 0.241 (0.161–0.359) | 0.332 (0.247–0.445) | ||
Definitive RT (n = 2) | 1.000 (1.000–1.000) | 1.000 (1.000–1.000) | ||
Definitive RT | Overall (n = 12) | 0.643 (0.412–1.000) | 0.643 (0.412–1.000) | |
Neoadjuvant CT | Overall (n = 25) | 0.200 (0.080–0.502) | 0.223 (0.088–0.229) | |
None (n = 4) | 1.000 (1.000–1.000) | 1.000 (1.000–1.000) | ||
Surgery (n = 21) | 0.244 (0.100–0.596) | 0.279 (0.144–0.680) | ||
Definitive CCRT | Overall (n = 181) | 0.427 (0.357–0.512) | 0.517 (0.444–0.601) | |
None (n = 162) | 0.436 (0.361–0.527) | 0.515 (0.438–0.606) | ||
Surgery (n = 19) | 0.361 (0.197–0.663) | 0.526 (0.344–0.806) | ||
Palliative CT | Overall (n = 110) | 0.121 (0.064–0.229) |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
Variables | Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value |
Treatment | ||||
Surgery only | Ref | Ref | ||
Neoadjuvant CCRT with surgery | 0.737 (0.615–0.882) | <0.001 | 0.770 (0.636–0.931) | 0.007 |
Surgery with adjuvant chemotherapy | 0.690 (0.561–0.848) | <0.001 | 0.751 (0.605–0.931) | 0.009 |
Definitive CCRT | 1.048 (0.820–1.339) | 0.7076 | 0.852 (0.661–1.099) | 0.217 |
Palliative CT | 3.384 (2.700–4.241) | <0.001 | 1.889 (1.454–2.454) | <0.001 |
Miscellaneous | 1.481 (1.237–1.774) | <0.001 | 1.267 (1.053–1.524) | 0.012 |
Age | 1.009 (1.001–1.017) | 0.033 | 1.010 (1.003–1.017) | 0.009 |
Sex | ||||
Female | Ref | Ref | ||
Male | 1.712 (1.232–2.379) | 0.001 | 1.628 (1.194–2.222) | 0.0021 |
ECOG PS | ||||
0 | Ref | Ref | ||
1 | 1.658 (1.336–2.057) | <0.001 | 1.236 (1.006–1.518) | 0.044 |
≥2 | 2.279 (1.628–3.188) | <0.001 | 1.638 (1.190–2.256) | 0.003 |
Unknown | 1.723 (1.433–2.072) | <0.001 | 1.462 (1.227–1.741) | <0.001 |
Smoking | Not significant | |||
Current smoker | Ref | |||
Ex-smoker | 0.848 (0.585–1.229) | 0.383 | ||
Never smoker | 1.109 (0.767–1.603) | 0.583 | ||
Hypertension | Not significant | |||
No | Ref | |||
Yes | 0.970 (0.839–1.121) | 0.681 | ||
Diabetes mellitus | Not significant | |||
No | Ref | |||
Yes | 1.145 (0.945–1.387) | 0.167 | ||
Tuberculosis | Not significant | |||
No | Ref | |||
Yes | 1.035 (0.790–1.357) | 0.801 | ||
Hepatitis | ||||
No | Ref | Ref | ||
Yes | 1.548 (1.076–2.227) | 0.019 | 1.819 (1.292–2.561) | <0.001 |
Cancer Stage | ||||
T stage | ||||
T0 | Ref | Ref | ||
T1 | 1.286 (0.6–2.756) | 0.518 | 0.867 (0.398–1.891) | 0.720 |
T2 | 1.846 (0.863–3.949) | 0.114 | 1.119 (0.516–2.427) | 0.776 |
T3 | 2.768 (1.315–5.827) | 0.007 | 1.709 (0.802–3.644) | 0.165 |
T4 | 4.63 (2.155–9.948) | <0.001 | 2.552 (1.169–5.574) | 0.019 |
N stage | ||||
N0 | Ref | Ref | ||
N1 | 1.612 (1.34–1.938) | <0.001 | 1.716 (1.420–2.075) | <0.001 |
N2 | 1.743 (1.403–2.166) | <0.001 | 1.889 (1.507–2.368) | <0.001 |
N3 | 3.079 (2.349–4.035) | <0.001 | 2.570 (1.931–3.421) | <0.001 |
M stage | ||||
M0 | Ref | Ref | ||
M1 | 2.754 (2.348–3.231) | <0.001 | 1.937 (1.617–2.320) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, Y.J.; Yoo, J.; Cho, J.H.; Shim, Y.M. Clinical Trends in Management of Locally Advanced ESCC: Real-World Evidence from a Large Single-Center Cohort Study. Cancers 2022, 14, 4953. https://doi.org/10.3390/cancers14194953
Jeon YJ, Yoo J, Cho JH, Shim YM. Clinical Trends in Management of Locally Advanced ESCC: Real-World Evidence from a Large Single-Center Cohort Study. Cancers. 2022; 14(19):4953. https://doi.org/10.3390/cancers14194953
Chicago/Turabian StyleJeon, Yeong Jeong, Junsang Yoo, Jong Ho Cho, and Young Mog Shim. 2022. "Clinical Trends in Management of Locally Advanced ESCC: Real-World Evidence from a Large Single-Center Cohort Study" Cancers 14, no. 19: 4953. https://doi.org/10.3390/cancers14194953
APA StyleJeon, Y. J., Yoo, J., Cho, J. H., & Shim, Y. M. (2022). Clinical Trends in Management of Locally Advanced ESCC: Real-World Evidence from a Large Single-Center Cohort Study. Cancers, 14(19), 4953. https://doi.org/10.3390/cancers14194953