Dietary Inflammatory Index and Mortality from All Causes, Cardiovascular Disease, and Cancer: A Prospective Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Cohort Selection and Criteria for Exclusion
2.3. Data Collection
2.4. Energy-Adjusted DII (E-DII) Score Calculation
2.5. Outcome Assessment
2.6. Statistical Analysis
3. Results
3.1. Study Characteristics
3.2. E-DII and All-Cause Mortality
3.3. E-DII and Cause-Specific Mortality
3.4. Additional Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khansari, N.; Shakiba, Y.; Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov. 2009, 3, 73–80. [Google Scholar] [CrossRef]
- Hunter, P. The inflammation theory of disease. The growing realization that chronic inflammation is crucial in many diseases opens new avenues for treatment. EMBO Rep. 2012, 13, 968–970. [Google Scholar] [CrossRef]
- Ricordi, C.; Garcia-Contreras, M.; Farnetti, S. Diet and Inflammation: Possible Effects on Immunity, Chronic Diseases, and Life Span. J. Am. Coll. Nutr. 2015, 34 (Suppl. S1), 10–13. [Google Scholar] [CrossRef]
- Kiecolt-Glaser, J.K. Stress, food, and inflammation: Psychoneuroimmunology and nutrition at the cutting edge. Psychosom. Med. 2010, 72, 365–369. [Google Scholar] [CrossRef]
- Jacobs, D.R., Jr.; Gross, M.D.; Tapsell, L.C. Food synergy: An operational concept for understanding nutrition. Am. J. Clin. Nutr. 2009, 89, 1543S–1548S. [Google Scholar] [CrossRef]
- Giugliano, D.; Ceriello, A.; Esposito, K. The effects of diet on inflammation: Emphasis on the metabolic syndrome. J. Am. Coll. Cardiol. 2006, 48, 677–685. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hebert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef]
- Hébert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)-Lessons Learned, Improvements Made, and Future Directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef]
- Veronese, N.; Cisternino, A.M.; Shivappa, N.; Hebert, J.R.; Notarnicola, M.; Reddavide, R.; Inguaggiato, R.; Guerra, V.; Logroscino, A.; Rotolo, O.; et al. Dietary inflammatory index and mortality: A cohort longitudinal study in a Mediterranean area. J. Hum. Nutr. Diet. 2020, 33, 138–146. [Google Scholar] [CrossRef]
- Okada, E.; Shirakawa, T.; Shivappa, N.; Wakai, K.; Suzuki, K.; Date, C.; Iso, H.; Hébert, J.R.; Tamakoshi, A. Dietary Inflammatory Index Is Associated with Risk of All-Cause and Cardiovascular Disease Mortality but Not with Cancer Mortality in Middle-Aged and Older Japanese Adults. J. Nutr. 2019, 149, 1451–1459. [Google Scholar] [CrossRef]
- Garcia-Arellano, A.; Martínez-González, M.A.; Ramallal, R.; Salas-Salvadó, J.; Hébert, J.R.; Corella, D.; Shivappa, N.; Forga, L.; Schröder, H.; Muñoz-Bravo, C.; et al. Dietary inflammatory index and all-cause mortality in large cohorts: The SUN and PREDIMED studies. Clin. Nutr. 2019, 38, 1221–1231. [Google Scholar] [CrossRef]
- Prorok, P.C.; Andriole, G.L.; Bresalier, R.S.; Buys, S.S.; Chia, D.; Crawford, E.D.; Fogel, R.; Gelmann, E.P.; Gilbert, F.; Hasson, M.A.; et al. Design of the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Control. Clin. Trials 2000, 21, 273S–309S. [Google Scholar] [CrossRef]
- Yao, X.; Xu, X.; Wang, S.; Xia, D. Associations of Dietary Fat Intake With Mortality From All Causes, Cardiovascular Disease, and Cancer: A Prospective Study. Front. Nutr. 2021, 8, 701430. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, J.; Zhang, Y.; Qi, H.; Wang, P. Associations between dietary fiber intake and mortality from all causes, cardiovascular disease and cancer: A prospective study. J. Transl. Med. 2022, 20, 344. [Google Scholar] [CrossRef] [PubMed]
- Subar, A.F.; Thompson, F.E.; Kipnis, V.; Midthune, D.; Hurwitz, P.; McNutt, S.; McIntosh, A.; Rosenfeld, S. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: The Eating at America’s Table Study. Am. J. Epidemiol. 2001, 154, 1089–1099. [Google Scholar] [CrossRef]
- Subar, A.F.; Midthune, D.; Kulldorff, M.; Brown, C.C.; Thompson, F.E.; Kipnis, V.; Schatzkin, A. Evaluation of alternative approaches to assign nutrient values to food groups in food frequency questionnaires. Am. J. Epidemiol. 2000, 152, 279–286. [Google Scholar] [CrossRef]
- Tabung, F.K.; Steck, S.E.; Zhang, J.; Ma, Y.; Liese, A.D.; Agalliu, I.; Hingle, M.; Hou, L.; Hurley, T.G.; Jiao, L.; et al. Construct validation of the dietary inflammatory index among postmenopausal women. Ann. Epidemiol. 2015, 25, 398–405. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Tabung, F.; Hébert, J.R. A population-based dietary inflammatory index predicts levels of C-reactive protein in the Seasonal Variation of Blood Cholesterol Study (SEASONS). Public Health Nutr. 2014, 17, 1825–1833. [Google Scholar] [CrossRef]
- Park, S.Y.; Kang, M.; Wilkens, L.R.; Shvetsov, Y.B.; Harmon, B.E.; Shivappa, N.; Wirth, M.D.; Hébert, J.R.; Haiman, C.A.; Le Marchand, L.; et al. The Dietary Inflammatory Index and All-Cause, Cardiovascular Disease, and Cancer Mortality in the Multiethnic Cohort Study. Nutrients 2018, 10, 1844. [Google Scholar] [CrossRef]
- Shivappa, N.; Blair, C.K.; Prizment, A.E.; Jacobs, D.R., Jr.; Steck, S.E.; Hébert, J.R. Association between inflammatory potential of diet and mortality in the Iowa Women’s Health study. Eur. J. Nutr. 2016, 55, 1491–1502. [Google Scholar] [CrossRef] [Green Version]
- Shivappa, N.; Schneider, A.; Hébert, J.R.; Koenig, W.; Peters, A.; Thorand, B. Association between dietary inflammatory index, and cause-specific mortality in the MONICA/KORA Augsburg Cohort Study. Eur. J. Public Health 2018, 28, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, H.; Djalalinia, S.; Asayesh, H.; Mansourian, M.; Esmaeili Abdar, Z.; Mahdavi Gorabi, A.; Ansari, H.; Noroozi, M.; Qorbani, M. A Higher Dietary Inflammatory Index Score is Associated with a Higher Risk of Incidence and Mortality of Cancer: A Comprehensive Systematic Review and Meta-Analysis. Int. J. Prev. Med. 2020, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Godos, J.; Hébert, J.R.; Wirth, M.D.; Piuri, G.; Speciani, A.F.; Grosso, G. Dietary Inflammatory Index and Cardiovascular Risk and Mortality-A Meta-Analysis. Nutrients 2018, 10, 200. [Google Scholar] [CrossRef] [PubMed]
- Namazi, N.; Larijani, B.; Azadbakht, L. Dietary Inflammatory Index and its Association with the Risk of Cardiovascular Diseases, Metabolic Syndrome, and Mortality: A Systematic Review and Meta-Analysis. Horm. Metab. Res. 2018, 50, 345–358. [Google Scholar] [CrossRef]
- Fowler, M.E.; Akinyemiju, T.F. Meta-analysis of the association between dietary inflammatory index (DII) and cancer outcomes. Int. J. Cancer 2017, 141, 2215–2227. [Google Scholar] [CrossRef]
- Ruiz-Canela, M.; Bes-Rastrollo, M.; Martínez-González, M.A. The Role of Dietary Inflammatory Index in Cardiovascular Disease, Metabolic Syndrome and Mortality. Int. J. Mol. Sci. 2016, 17, 1265. [Google Scholar] [CrossRef]
- Shivappa, N.; Hebert, J.R.; Kivimaki, M.; Akbaraly, T. Alternative Healthy Eating Index 2010, Dietary Inflammatory Index and risk of mortality: Results from the Whitehall II cohort study and meta-analysis of previous Dietary Inflammatory Index and mortality studies. Br. J. Nutr. 2017, 118, 210–221. [Google Scholar] [CrossRef]
- Zhong, X.; Guo, L.; Zhang, L.; Li, Y.; He, R.; Cheng, G. Inflammatory potential of diet and risk of cardiovascular disease or mortality: A meta-analysis. Sci. Rep. 2017, 7, 6367. [Google Scholar] [CrossRef]
- Ji, M.; Hong, X.; Chen, M.; Chen, T.; Wang, J.; Zhang, N. Dietary inflammatory index and cardiovascular risk and mortality: A meta-analysis of cohort studies. Medicine 2020, 99, e20303. [Google Scholar] [CrossRef]
- Miller, V.; Webb, P.; Micha, R.; Mozaffarian, D. Defining diet quality: A synthesis of dietary quality metrics and their validity for the double burden of malnutrition. Lancet Planet Health 2020, 4, e352–e370. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hussey, J.R.; Ma, Y.; Hebert, J.R. Inflammatory potential of diet and all-cause, cardiovascular, and cancer mortality in National Health and Nutrition Examination Survey III Study. Eur. J. Nutr. 2017, 56, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Orsini, N. Red meat and processed meat consumption and all-cause mortality: A meta-analysis. Am. J. Epidemiol. 2014, 179, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhao, Q.; Guo, W.; Bao, W.; Wang, X. Association of whole grain intake with all-cause, cardiovascular, and cancer mortality: A systematic review and dose-response meta-analysis from prospective cohort studies. Eur. J. Clin. Nutr. 2018, 72, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef]
- Wirth, M.D.; Burch, J.; Shivappa, N.; Violanti, J.M.; Burchfiel, C.M.; Fekedulegn, D.; Andrew, M.E.; Hartley, T.A.; Miller, D.B.; Mnatsakanova, A.; et al. Association of a dietary inflammatory index with inflammatory indices and metabolic syndrome among police officers. J. Occup. Environ. Med. 2014, 56, 986–989. [Google Scholar] [CrossRef]
- Shivappa, N.; Wirth, M.D.; Hurley, T.G.; Hébert, J.R. Association between the dietary inflammatory index (DII) and telomere length and C-reactive protein from the National Health and Nutrition Examination Survey-1999–2002. Mol. Nutr. Food Res. 2017, 61, 1600630. [Google Scholar] [CrossRef]
- Esmaillzadeh, A.; Kimiagar, M.; Mehrabi, Y.; Azadbakht, L.; Hu, F.B.; Willett, W.C. Dietary patterns and markers of systemic inflammation among Iranian women. J. Nutr. 2007, 137, 992–998. [Google Scholar] [CrossRef]
- Festa, A.; D’Agostino, R., Jr.; Howard, G.; Mykkänen, L.; Tracy, R.P.; Haffner, S.M. Chronic subclinical inflammation as part of the insulin resistance syndrome: The Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000, 102, 42–47. [Google Scholar] [CrossRef]
- Djiogue, S.; Nwabo Kamdje, A.H.; Vecchio, L.; Kipanyula, M.J.; Farahna, M.; Aldebasi, Y.; Seke Etet, P.F. Insulin resistance and cancer: The role of insulin and IGFs. Endocr. Relat. Cancer 2013, 20, R1–R17. [Google Scholar] [CrossRef]
- Pihlajamäki, J.; Gylling, H.; Miettinen, T.A.; Laakso, M. Insulin resistance is associated with increased cholesterol synthesis and decreased cholesterol absorption in normoglycemic men. J. Lipid Res. 2004, 45, 507–512. [Google Scholar] [CrossRef] [Green Version]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Crusz, S.M.; Balkwill, F.R. Inflammation and cancer: Advances and new agents. Nat. Rev. Clin. Oncol. 2015, 12, 584–596. [Google Scholar] [CrossRef] [PubMed]
- Kipnis, V.; Subar, A.F.; Midthune, D.; Freedman, L.S.; Ballard-Barbash, R.; Troiano, R.P.; Bingham, S.; Schoeller, D.A.; Schatzkin, A.; Carroll, R.J. Structure of dietary measurement error: Results of the OPEN biomarker study. Am. J. Epidemiol. 2003, 158, 14–21; discussion 22–26. [Google Scholar] [CrossRef] [PubMed]
- Hebert, J.R.; Clemow, L.; Pbert, L.; Ockene, I.S.; Ockene, J.K. Social desirability bias in dietary self-report may compromise the validity of dietary intake measures. Int. J. Epidemiol. 1995, 24, 389–398. [Google Scholar] [CrossRef]
- Heitmann, B.L. Social desirability bias in dietary self-report may compromise the validity of dietary intake measures. Implications for diet disease relationships. Int. J. Epidemiol. 1996, 25, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Blond, K.; Brinkløv, C.F.; Ried-Larsen, M.; Crippa, A.; Grøntved, A. Association of high amounts of physical activity with mortality risk: A systematic review and meta-analysis. Br. J. Sports Med. 2020, 54, 1195–1201. [Google Scholar] [CrossRef]
- Bertheke Post, G.; de Vente, W.; Kemper, H.C.; Twisk, J.W. Longitudinal trends in and tracking of energy and nutrient intake over 20 years in a Dutch cohort of men and women between 13 and 33 years of age: The Amsterdam growth and health longitudinal study. Br. J. Nutr. 2001, 85, 375–385. [Google Scholar] [CrossRef]
- Mikkilä, V.; Räsänen, L.; Raitakari, O.T.; Marniemi, J.; Pietinen, P.; Rönnemaa, T.; Viikari, J. Major dietary patterns and cardiovascular risk factors from childhood to adulthood. The Cardiovascular Risk in Young Finns Study. Br. J. Nutr. 2007, 98, 218–225. [Google Scholar] [CrossRef] [Green Version]
Variables | Q1 (n = 20,368) | Q2 (n = 20,367) | Q3 (n = 20,368) | Q4 (n = 20,367) | Q5 (n = 20,367) | p-Value |
---|---|---|---|---|---|---|
Age (y), mean (SD) | 62.8 (5.3) | 62.7 (5.3) | 62.4 (5.3) | 62.3 (5.3) | 61.8 (5.2) | <0.001 |
Sex (n, %) | ||||||
Female | 6332 (31.1%) | 7705 (37.8%) | 9503 (46.7%) | 11,642 (57.2%) | 14,351 (70.5%) | <0.001 |
Male | 14,036 (68.9%) | 12,660 (62.2%) | 10,864 (53.3%) | 8724 (42.8%) | 6015 (29.5%) | |
Arm (n, %) | ||||||
Screen | 10,406 (51.1%) | 10,212 (50.1%) | 10,419 (51.2%) | 10,451 (51.3%) | 10,355 (50.8%) | 0.140 |
Control | 9962 (48.9%) | 10,153 (49.9%) | 9948 (48.8%) | 9915 (48.7%) | 10,011 (49.2%) | |
Smoking status (n, %) | ||||||
Never | 10,590 (52.0%) | 10,534 (51.7%) | 10,105 (49.6%) | 9303 (45.7%) | 8064 (39.6%) | <0.001 |
Current | 930 (4.6%) | 1254 (6.2%) | 1670 (8.2%) | 2116 (10.4%) | 3442 (16.9%) | |
Former | 8847 (43.4%) | 8574 (42.1%) | 8585 (42.2%) | 8944 (43.9%) | 8854 (43.5%) | |
Education (n, %) | ||||||
≤High school | 6744 (33.1%) | 7871 (38.6%) | 8463 (41.6%) | 9205 (45.2%) | 10,684 (52.5%) | <0.001 |
≥Some college | 13,583 (66.7%) | 12,443 (61.1%) | 11,872 (58.3%) | 11,132 (54.7%) | 9631 (47.3%) | |
BMI (n, %) | ||||||
<25.0 kg/m2 | 8800 (43.2%) | 7619 (37.4%) | 6844 (33.6%) | 6046 (29.7%) | 5170 (25.4%) | <0.001 |
≥25.0 kg/m2 | 11,289 (55.4%) | 12,494 (61.3%) | 13,274 (65.2%) | 14,052 (69.0%) | 14,895 (73.1%) | |
Race (n, %) | ||||||
White, Non-Hispanic | 18,123 (89.0%) | 18,526 (91.0%) | 18,691 (91.8%) | 18,746 (92.0%) | 18,511 (90.9%) | <0.001 |
Other | 2241 (11.0%) | 1828 (9.0%) | 1670 (8.2%) | 1613 (7.9%) | 1846 (9.1%) | |
Marital status (n, %) | ||||||
Married | 15,382 (75.5%) | 15,706 (77.1%) | 15,903 (78.1%) | 16,320 (80.1%) | 16,367 (80.4%) | <0.001 |
Not married | 4950 (24.3%) | 4611 (22.6%) | 4430 (21.7%) | 4015 (19.7%) | 3955 (19.4%) |
Variables | Median | Cohort (n) | Cases (n) | Crude HR (95% CI), p-Value | Adjusted HR (95% CI) *, p-Value |
---|---|---|---|---|---|
All-cause | |||||
Q1 (<−5.6) | −6.2 | 20,368 | 4091 | Reference | Reference |
Q2 (≥−5.6 to <−4.6) | −5.1 | 20,367 | 4512 | 1.14 (1.09–1.19), p < 0.001 | 1.08 (1.03–1.13), p = 0.001 |
Q3 (≥−4.6 to <−3.4) | −4.0 | 20,368 | 4750 | 1.23 (1.18–1.28), p < 0.001 | 1.12 (1.08–1.17), p < 0.001 |
Q4 (≥−3.4 to <−1.6) | −2.6 | 20,367 | 5185 | 1.37 (1.31–1.42), p < 0.001 | 1.17 (1.12–1.22), p < 0.001 |
Q5 (≥−1.6) | −0.1 | 20,367 | 5603 | 1.54 (1.48–1.60), p < 0.001 | 1.23 (1.18–1.29), p < 0.001 |
p for trend < 0.001 | p for trend < 0.001 | ||||
CVD | |||||
Q1 (<−5.6) | −6.2 | 20,368 | 1228 | Reference | Reference |
Q2 (≥−5.6 to <−4.6) | −5.1 | 20,367 | 1446 | 1.22 (1.13–1.31), p < 0.001 | 1.15 (1.06–1.24), p = 0.001 |
Q3 (≥−4.6 to <−3.4) | −4.0 | 20,368 | 1472 | 1.27 (1.18–1.37), p < 0.001 | 1.15 (1.07–1.25), p < 0.001 |
Q4 (≥−3.4 to <−1.6) | −2.6 | 20,367 | 1628 | 1.43 (1.33–1.54), p < 0.001 | 1.22 (1.13–1.32), p < 0.001 |
Q5 (≥−1.6) | −0.1 | 20,367 | 1760 | 1.61 (1.50–1.73), p < 0.001 | 1.30 (1.20–1.41), p < 0.001 |
p for trend < 0.001 | p for trend < 0.001 | ||||
Cancer | |||||
Q1 (<−5.6) | −6.2 | 20,368 | 1242 | Reference | Reference |
Q2 (≥−5.6 to <−4.6) | −5.1 | 20,367 | 1321 | 1.09 (1.01–1.18), p = 0.026 | 1.04 (0.96–1.13), p = 0.316 |
Q3 (≥−4.6 to <−3.4) | −4.0 | 20,368 | 1379 | 1.16 (1.08–1.26), p < 0.001 | 1.05 (0.97–1.13), p = 0.240 |
Q4 (≥−3.4 to <−1.6) | −2.6 | 20,367 | 1462 | 1.26 (1.16–1.35), p < 0.001 | 1.04 (0.96–1.12), p = 0.355 |
Q5 (≥−1.6) | −0.1 | 20,367 | 1757 | 1.56 (1.45–1.68), p < 0.001 | 1.14 (1.06–1.24), p = 0.001 |
p for trend < 0.001 | p for trend = 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Feng, Y.; Shivappa, N.; Hebert, J.R.; Xu, X. Dietary Inflammatory Index and Mortality from All Causes, Cardiovascular Disease, and Cancer: A Prospective Study. Cancers 2022, 14, 4609. https://doi.org/10.3390/cancers14194609
Liang Z, Feng Y, Shivappa N, Hebert JR, Xu X. Dietary Inflammatory Index and Mortality from All Causes, Cardiovascular Disease, and Cancer: A Prospective Study. Cancers. 2022; 14(19):4609. https://doi.org/10.3390/cancers14194609
Chicago/Turabian StyleLiang, Zhen, Yanfei Feng, Nitin Shivappa, James R. Hebert, and Xin Xu. 2022. "Dietary Inflammatory Index and Mortality from All Causes, Cardiovascular Disease, and Cancer: A Prospective Study" Cancers 14, no. 19: 4609. https://doi.org/10.3390/cancers14194609
APA StyleLiang, Z., Feng, Y., Shivappa, N., Hebert, J. R., & Xu, X. (2022). Dietary Inflammatory Index and Mortality from All Causes, Cardiovascular Disease, and Cancer: A Prospective Study. Cancers, 14(19), 4609. https://doi.org/10.3390/cancers14194609