Genetics and Epigenetics in Neoplasms with Plasmacytoid Dendritic Cells
Abstract
:Simple Summary
Abstract
1. Introduction
2. Genetics of Blastic Plasmacytoid Dendritic Cell Neoplasms
2.1. Deletions Involving Immune Genes
2.2. Inactivation of Genes Encoding Cell-Cycle Inhibitors and Tumor Suppressor Genes
2.3. Recurrent Deletions in 5q31
2.4. Deletions of Transcription Factors
2.5. Recurrent MYC Rearrangements
2.6. Recurrent MYB Rearrangements
2.7. Mutation Landscape
2.7.1. A Myeloid-like Profile
2.7.2. Some Lymphoid-like Features
2.8. Prognostic Factors
3. Dysregulated Pathways in Blastic Plasmacytoid Dendritic Cell Neoplasms
3.1. Epigenetic Pathway
3.2. pDC Program with Oncogenic Deregulation
3.3. Emerging Concepts of Immune Response
4. Genetics of pDC Proliferation Associated with a Myeloid Disorder
4.1. Genetics of pDC-CMML
4.2. Genetics of pDC-AML
4.2.1. Cytogenetics of pDC-AML
4.2.2. Molecular Defects in pDC-AML
5. Conclusions
Genetic Defects | BPDCN | pDC-AML | ||
---|---|---|---|---|
Cytogenetic with minimal deleted region (and postulated target genes) | Normal karyotype | 25 to 43% | 38% | |
Abnormal karyotype | 57 to 75% | 62% | ||
Simple karyotype (a) | 9% | 52% | ||
Complex karyotype (b) | 55 to 57% | 10% | ||
5q deletion Including 5q31-q35 deletion (HINT1, NR3C1) | 30 to 72% (non-isolated) 21 to 48% | 5% (isolated) | ||
Monosomy 7 Including 7p12 deletion (IKZF1) Including 7q deletion | 19% | 12% 7% | ||
Trisomy 8 | 5 to 25% | |||
Monosomy 9 Including 9p21 deletion (CDKN2A/CDKN2B) | 23 to 28% 50 to 66% | |||
12p13 deletion (CDKN1B, ETV6) | 64 to 67% | |||
Monosomy 13 Including 13q11-q14 deletion (LATS2, RB1) | 42 to 57% 43 to 78% | |||
Trisomy 13 | 7% | |||
Monosomy 15 | 23 to 36% | |||
17p13 (TP53) | 33% | |||
Trisomy 20 | 3 to 25% | |||
References | [8,9,10,11,12,17,18] | [64,96,100,101,102,103,106,107] | ||
Oncogenic rearrangements | Partner genes | MYC::XXX 20–30% MYB::XXX 5–20% MYBL1::XXX 1% | CBFB::MYH11 < 5% KMT2A::XXX < 5% | |
References | [21,37,39,76] | [64,104,107] | ||
Somatic mutations | TET2, ASXL1 KMT2D, SYNE1 ZRSF2, SRSF2, U2AF1 FLT3, KRAS, NRAS, KIT | TET2, ASXL1, DNMT3A, IDH1, BCOR SRSF2, U2AF1, SF3B1 FLT3, KRAS, NRAS, KIT | ||
CBL, NF1, PHF6, WT1 | ||||
IKZF1, ETV6, RB1, TP53, ATM | RUNX1 (70%) TP53 | |||
References | [13,16,18,19,21,32,50,51,56,57,58,59,62] | [100,101,102,103,104,105,113] |
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J.; Arber, D.A.; Hasserjian, R.; Le Beau, M.M.; et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th ed.; International Agency for Research on Cancer: Lyon, France, 2017; Volume 2, ISBN 978-92-832-449-3. [Google Scholar]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef]
- Petrella, T.; Facchetti, F. Tumoral Aspects of Plasmacytoid Dendritic Cells: What Do We Know in 2009? Autoimmunity 2010, 43, 210–214. [Google Scholar] [CrossRef]
- Garnache-Ottou, F.; Feuillard, J.; Ferrand, C.; Biichle, S.; Trimoreau, F.; Seilles, E.; Salaun, V.; Garand, R.; Lepelley, P.; Maynadié, M.; et al. Extended Diagnostic Criteria for Plasmacytoid Dendritic Cell Leukaemia. Br. J. Haematol. 2009, 145, 624–636. [Google Scholar] [CrossRef]
- Facchetti, F.; Cigognetti, M.; Fisogni, S.; Rossi, G.; Lonardi, S.; Vermi, W. Neoplasms Derived from Plasmacytoid Dendritic Cells. Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc. 2016, 29, 98–111. [Google Scholar] [CrossRef]
- Petrella, T.; Comeau, M.R.; Maynadié, M.; Couillault, G.; De Muret, A.; Maliszewski, C.R.; Dalac, S.; Durlach, A.; Galibert, L. “Agranular CD4+ CD56+ Hematodermic Neoplasm” (Blastic NK-Cell Lymphoma) Originates from a Population of CD56+ Precursor Cells Related to Plasmacytoid Monocytes. Am. J. Surg. Pathol. 2002, 26, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Chaperot, L.; Bendriss, N.; Manches, O.; Gressin, R.; Maynadie, M.; Trimoreau, F.; Orfeuvre, H.; Corront, B.; Feuillard, J.; Sotto, J.J.; et al. Identification of a Leukemic Counterpart of the Plasmacytoid Dendritic Cells. Blood 2001, 97, 3210–3217. [Google Scholar] [CrossRef] [PubMed]
- Leroux, D.; Mugneret, F.; Callanan, M.; Radford-Weiss, I.; Dastugue, N.; Feuillard, J.; Le Mée, F.; Plessis, G.; Talmant, P.; Gachard, N.; et al. CD4(+), CD56(+) DC2 Acute Leukemia Is Characterized by Recurrent Clonal Chromosomal Changes Affecting 6 Major Targets: A Study of 21 Cases by the Groupe Français de Cytogénétique Hématologique. Blood 2002, 99, 4154–4159. [Google Scholar] [CrossRef] [PubMed]
- Lucioni, M.; Novara, F.; Fiandrino, G.; Riboni, R.; Fanoni, D.; Arra, M.; Venegoni, L.; Nicola, M.; Dallera, E.; Arcaini, L.; et al. Twenty-One Cases of Blastic Plasmacytoid Dendritic Cell Neoplasm: Focus on Biallelic Locus 9p21.3 Deletion. Blood 2011, 118, 4591–4594. [Google Scholar] [CrossRef]
- Emadali, A.; Hoghoughi, N.; Duley, S.; Hajmirza, A.; Verhoeyen, E.; Cosset, F.-L.; Bertrand, P.; Roumier, C.; Roggy, A.; Suchaud-Martin, C.; et al. Haploinsufficiency for NR3C1, the Gene Encoding the Glucocorticoid Receptor, in Blastic Plasmacytoid Dendritic Cell Neoplasms. Blood 2016, 127, 3040–3053. [Google Scholar] [CrossRef]
- Tang, Z.; Li, Y.; Wang, W.; Yin, C.C.; Tang, G.; Aung, P.P.; Hu, S.; Lu, X.; Toruner, G.A.; Medeiros, L.J.; et al. Genomic Aberrations Involving 12p/ETV6 Are Highly Prevalent in Blastic Plasmacytoid Dendritic Cell Neoplasms and Might Represent Early Clonal Events. Leuk. Res. 2018, 73, 86–94. [Google Scholar] [CrossRef]
- Wiesner, T.; Obenauf, A.C.; Cota, C.; Fried, I.; Speicher, M.R.; Cerroni, L. Alterations of the Cell-Cycle Inhibitors P27(KIP1) and P16(INK4a) Are Frequent in Blastic Plasmacytoid Dendritic Cell Neoplasms. J. Investig. Dermatol. 2010, 130, 1152–1157. [Google Scholar] [CrossRef]
- Bastidas Torres, A.N.; Cats, D.; Mei, H.; Fanoni, D.; Gliozzo, J.; Corti, L.; Paulli, M.; Vermeer, M.H.; Willemze, R.; Berti, E.; et al. Whole-Genome Analysis Uncovers Recurrent IKZF1 Inactivation and Aberrant Cell Adhesion in Blastic Plasmacytoid Dendritic Cell Neoplasm. Genes Chromosomes Cancer 2020, 59, 295–308. [Google Scholar] [CrossRef]
- Patnaik, M.M.; Lasho, T.; Howard, M.; Finke, C.; Ketterling, R.L.; Al-Kali, A.; Pardanani, A.; Droin, N.; Gangat, N.; Tefferi, A.; et al. Biallelic Inactivation of the Retinoblastoma Gene Results in Transformation of Chronic Myelomonocytic Leukemia to a Blastic Plasmacytoid Dendritic Cell Neoplasm: Shared Clonal Origins of Two Aggressive Neoplasms. Blood Cancer J. 2018, 8, 82. [Google Scholar] [CrossRef]
- Renosi, F.; Roggy, A.; Giguelay, A.; Soret, L.; Viailly, P.-J.; Cheok, M.; Biichle, S.; Angelot-Delettre, F.; Asnafi, V.; Macintyre, E.; et al. Transcriptomic and Genomic Heterogeneity in Blastic Plasmacytoid Dendritic Cell Neoplasms: From Ontogeny to Oncogenesis. Blood Adv. 2021, 5, 1540–1551. [Google Scholar] [CrossRef]
- Menezes, J.; Acquadro, F.; Wiseman, M.; Gómez-López, G.; Salgado, R.N.; Talavera-Casañas, J.G.; Buño, I.; Cervera, J.V.; Montes-Moreno, S.; Hernández-Rivas, J.M.; et al. Exome Sequencing Reveals Novel and Recurrent Mutations with Clinical Impact in Blastic Plasmacytoid Dendritic Cell Neoplasm. Leukemia 2014, 28, 823–829. [Google Scholar] [CrossRef]
- Jardin, F.; Callanan, M.; Penther, D.; Ruminy, P.; Troussard, X.; Kerckaert, J.P.; Figeac, M.; Parmentier, F.; Rainville, V.; Vaida, I.; et al. Recurrent Genomic Aberrations Combined with Deletions of Various Tumour Suppressor Genes May Deregulate the G1/S Transition in CD4+CD56+ Haematodermic Neoplasms and Contribute to the Aggressiveness of the Disease. Leukemia 2009, 23, 698–707. [Google Scholar] [CrossRef]
- Jardin, F.; Ruminy, P.; Parmentier, F.; Troussard, X.; Vaida, I.; Stamatoullas, A.; Leprêtre, S.; Penther, D.; Duval, A.B.; Picquenot, J.-M.; et al. TET2 and TP53 Mutations Are Frequently Observed in Blastic Plasmacytoid Dendritic Cell Neoplasm. Br. J. Haematol. 2011, 153, 413–416. [Google Scholar] [CrossRef]
- Stenzinger, A.; Endris, V.; Pfarr, N.; Andrulis, M.; Jöhrens, K.; Klauschen, F.; Siebolts, U.; Wolf, T.; Koch, P.-S.; Schulz, M.; et al. Targeted Ultra-Deep Sequencing Reveals Recurrent and Mutually Exclusive Mutations of Cancer Genes in Blastic Plasmacytoid Dendritic Cell Neoplasm. Oncotarget 2014, 5, 6404–6413. [Google Scholar] [CrossRef]
- Gumy-Pause, F.; Wacker, P.; Sappino, A.-P. ATM Gene and Lymphoid Malignancies. Leukemia 2004, 18, 238–242. [Google Scholar] [CrossRef]
- Suzuki, K.; Suzuki, Y.; Hama, A.; Muramatsu, H.; Nakatochi, M.; Gunji, M.; Ichikawa, D.; Hamada, M.; Taniguchi, R.; Kataoka, S.; et al. Recurrent MYB Rearrangement in Blastic Plasmacytoid Dendritic Cell Neoplasm. Leukemia 2017, 31, 1629–1633. [Google Scholar] [CrossRef]
- Dyson, N.J. RB1: A Prototype Tumor Suppressor and an Enigma. Genes Dev. 2016, 30, 1492–1502. [Google Scholar] [CrossRef] [PubMed]
- Mullighan, C.G. The Genomic Landscape of Acute Lymphoblastic Leukemia in Children and Young Adults. Hematol. Am. Soc. Hematol. Educ. Program 2014, 2014, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Tang, G.; Wang, S.A.; Lu, X.; Young, K.H.; Bueso-Ramos, C.E.; Alvarado, Y.; Medeiros, L.J.; Khoury, J.D. Simultaneous Deletion of 3’ETV6 and 5’EWSR1 Genes in Blastic Plasmacytoid Dendritic Cell Neoplasm: Case Report and Literature Review. Mol. Cytogenet. 2016, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Jardin, F.; Jais, J.-P.; Molina, T.-J.; Parmentier, F.; Picquenot, J.-M.; Ruminy, P.; Tilly, H.; Bastard, C.; Salles, G.-A.; Feugier, P.; et al. Diffuse Large B-Cell Lymphomas with CDKN2A Deletion Have a Distinct Gene Expression Signature and a Poor Prognosis under R-CHOP Treatment: A GELA Study. Blood 2010, 116, 1092–1104. [Google Scholar] [CrossRef]
- Fu, Y.; Fesler, M.; Mahmud, G.; Bernreuter, K.; Jia, D.; Batanian, J.R. Narrowing down the Common Deleted Region of 5q to 6.0 Mb in Blastic Plasmacytoid Dendritic Cell Neoplasms. Cancer Genet. 2013, 206, 293–298. [Google Scholar] [CrossRef]
- Montaño, A.; Ordoñez, J.L.; Alonso-Pérez, V.; Hernández-Sánchez, J.; Santos, S.; González, T.; Benito, R.; García-Tuñón, I.; Hernández-Rivas, J.M. ETV6/RUNX1 Fusion Gene Abrogation Decreases the Oncogenicity of Tumour Cells in a Preclinical Model of Acute Lymphoblastic Leukaemia. Cells 2020, 9, 215. [Google Scholar] [CrossRef]
- Qinrong, W.; Shasha, D.; Hong, Y.; Lijun, W.; Huiying, Q.; Llili, Q.; Liang, M.; Suning, C. ETV6 Mutation in a Cohort of 970 Patients with Hematologic Malignancies. Haematologica 2014, 99, e176. [Google Scholar]
- Tzankov, A.; Hebeda, K.; Kremer, M.; Leguit, R.; Orazi, A.; van der Walt, J.; Gianelli, U. Plasmacytoid Dendritic Cell Proliferations and Neoplasms Involving the Bone Marrow: Summary of the Workshop Cases Submitted to the 18th Meeting of the European Association for Haematopathology (EAHP) Organized by the European Bone Marrow Working Group, Basel 2016. Ann. Hematol. 2017, 96, 765–777. [Google Scholar] [CrossRef]
- Dhanyamraju, P.K.; Iyer, S.; Smink, G.; Bamme, Y.; Bhadauria, P.; Payne, J.L.; Dovat, E.; Klink, M.; Ding, Y. Transcriptional Regulation of Genes by Ikaros Tumor Suppressor in Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2020, 21, 1377. [Google Scholar] [CrossRef]
- Chen, Q.; Shi, Y.; Chen, Y.; Ji, T.; Li, Y.; Yu, L. Multiple Functions of Ikaros in Hematological Malignancies, Solid Tumor and Autoimmune Diseases. Gene 2019, 684, 47–52. [Google Scholar] [CrossRef]
- Ladikou, E.; Ottolini, B.; Nawaz, N.; Allchin, R.L.; Payne, D.; Ali, H.; Marafioti, T.; Shaw, J.; Ahearne, M.J.; Wagner, S.D. Clonal Evolution in the Transition from Cutaneous Disease to Acute Leukemia Suggested by Liquid Biopsy in Blastic Plasmacytoid Dendritic Cell Neoplasm. Haematologica 2018, 103, e196–e199. [Google Scholar] [CrossRef] [Green Version]
- Soen, B.; Vandamme, N.; Berx, G.; Schwaller, J.; Van Vlierberghe, P.; Goossens, S. ZEB Proteins in Leukemia: Friends, Foes, or Friendly Foes? HemaSphere 2018, 2, e43. [Google Scholar] [CrossRef]
- Toya, T.; Nishimoto, N.; Koya, J.; Nakagawa, M.; Nakamura, F.; Kandabashi, K.; Yamamoto, G.; Nannya, Y.; Ichikawa, M.; Kurokawa, M. The First Case of Blastic Plasmacytoid Dendritic Cell Neoplasm with MLL-ENL Rearrangement. Leuk. Res. 2012, 36, 117–118. [Google Scholar] [CrossRef]
- Yang, N.; Huh, J.; Chung, W.S.; Cho, M.-S.; Ryu, K.-H.; Chung, H.-S. KMT2A (MLL)-MLLT1 Rearrangement in Blastic Plasmacytoid Dendritic Cell Neoplasm. Cancer Genet. 2015, 208, 464–467. [Google Scholar] [CrossRef]
- Lee, J.M.; Kim, I.S.; Lee, J.N.; Park, S.H.; Kim, H.H.; Chang, C.L.; Lee, E.Y.; Kim, H.R.; Oh, S.H.; Song, S.A. Acute Myeloid Leukemia with MLL Rearrangement and CD4+/CD56+ Expression Can Be Misdiagnosed as Blastic Plasmacytoid Dendritic Cell Neoplasm: Two Case Reports. Ann. Lab. Med. 2016, 36, 494–497. [Google Scholar] [CrossRef]
- Sakamoto, K.; Katayama, R.; Asaka, R.; Sakata, S.; Baba, S.; Nakasone, H.; Koike, S.; Tsuyama, N.; Dobashi, A.; Sasaki, M.; et al. Recurrent 8q24 Rearrangement in Blastic Plasmacytoid Dendritic Cell Neoplasm: Association with Immunoblastoid Cytomorphology, MYC Expression, and Drug Response. Leukemia 2018, 32, 2590–2603. [Google Scholar] [CrossRef]
- Kurt, H.; Khoury, J.D.; Medeiros, L.J.; Huh, Y.O. Blastic Plasmacytoid Dendritic Cell Neoplasm with Unusual Morphology, MYC Rearrangement and TET2 and DNMT3A Mutations. Br. J. Haematol. 2018, 181, 305. [Google Scholar] [CrossRef]
- Boddu, P.C.; Wang, S.A.; Pemmaraju, N.; Tang, Z.; Hu, S.; Li, S.; Xu, J.; Medeiros, L.J.; Tang, G. 8q24/MYC Rearrangement Is a Recurrent Cytogenetic Abnormality in Blastic Plasmacytoid Dendritic Cell Neoplasms. Leuk. Res. 2018, 66, 73–78. [Google Scholar] [CrossRef]
- Chang, K.-C.; Yu-Yun Lee, J.; Sakamoto, K.; Baba, S.; Takeuchi, K. Blastic Plasmacytoid Dendritic Cell Neoplasm with Immunoblastoid Morphology and MYC Rearrangement and Overexpression. Pathology 2019, 51, 100–102. [Google Scholar] [CrossRef]
- Zachariadis, V.; Schoumans, J.; Barbany, G.; Heyman, M.; Forestier, E.; Johansson, B.; Nordenskjöld, M.; Nordgren, A. Homozygous Deletions of CDKN2A Are Present in All Dic(9;20)(P13·2;Q11·2)-Positive B-Cell Precursor Acute Lymphoblastic Leukaemias and May Be Important for Leukaemic Transformation. Br. J. Haematol. 2012, 159, 488–491. [Google Scholar] [CrossRef]
- Kubota, S.; Tokunaga, K.; Umezu, T.; Yokomizo-Nakano, T.; Sun, Y.; Oshima, M.; Tan, K.T.; Yang, H.; Kanai, A.; Iwanaga, E.; et al. Lineage-Specific RUNX2 Super-Enhancer Activates MYC and Promotes the Development of Blastic Plasmacytoid Dendritic Cell Neoplasm. Nat. Commun. 2019, 10, 1653. [Google Scholar] [CrossRef] [Green Version]
- Hammond, D.W.; Goepel, J.R.; Aitken, M.; Hancock, B.W.; Potter, A.M.; Goyns, M.H. Cytogenetic Analysis of a United Kingdom Series of Non-Hodgkins Lymphomas. Cancer Genet. Cytogenet. 1992, 61, 31–38. [Google Scholar] [CrossRef]
- Jegalian, A.G.; Buxbaum, N.P.; Facchetti, F.; Raffeld, M.; Pittaluga, S.; Wayne, A.S.; Jaffe, E.S. Blastic Plasmacytoid Dendritic Cell Neoplasm in Children: Diagnostic Features and Clinical Implications. Haematologica 2010, 95, 1873–1879. [Google Scholar] [CrossRef] [PubMed]
- Quelen, C.; Lippert, E.; Struski, S.; Demur, C.; Soler, G.; Prade, N.; Delabesse, E.; Broccardo, C.; Dastugue, N.; Mahon, F.-X.; et al. Identification of a Transforming MYB-GATA1 Fusion Gene in Acute Basophilic Leukemia: A New Entity in Male Infants. Blood 2011, 117, 5719–5722. [Google Scholar] [CrossRef] [PubMed]
- Clappier, E.; Cuccuini, W.; Kalota, A.; Crinquette, A.; Cayuela, J.-M.; Dik, W.A.; Langerak, A.W.; Montpellier, B.; Nadel, B.; Walrafen, P.; et al. The C-MYB Locus Is Involved in Chromosomal Translocation and Genomic Duplications in Human T-Cell Acute Leukemia (T-ALL), the Translocation Defining a New T-ALL Subtype in Very Young Children. Blood 2007, 110, 1251–1261. [Google Scholar] [CrossRef]
- Persson, M.; Andrén, Y.; Mark, J.; Horlings, H.M.; Persson, F.; Stenman, G. Recurrent Fusion of MYB and NFIB Transcription Factor Genes in Carcinomas of the Breast and Head and Neck. Proc. Natl. Acad. Sci. USA 2009, 106, 18740–18744. [Google Scholar] [CrossRef]
- Brayer, K.J.; Frerich, C.A.; Kang, H.; Ness, S.A. Recurrent Fusions in MYB and MYBL1 Define a Common, Transcription Factor-Driven Oncogenic Pathway in Salivary Gland Adenoid Cystic Carcinoma. Cancer Discov. 2016, 6, 176–187. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, G.; Miller, C.P.; Tatevossian, R.G.; Dalton, J.D.; Tang, B.; Orisme, W.; Punchihewa, C.; Parker, M.; Qaddoumi, I.; et al. Whole-Genome Sequencing Identifies Genetic Alterations in Pediatric Low-Grade Gliomas. Nat. Genet. 2013, 45, 602–612. [Google Scholar] [CrossRef]
- Sapienza, M.R.; Abate, F.; Melle, F.; Orecchioni, S.; Fuligni, F.; Etebari, M.; Tabanelli, V.; Laginestra, M.A.; Pileri, A.; Motta, G.; et al. Blastic Plasmacytoid Dendritic Cell Neoplasm: Genomics Mark Epigenetic Dysregulation as a Primary Therapeutic Target. Haematologica 2019, 104, 729–737. [Google Scholar] [CrossRef]
- Brunetti, L.; Di Battista, V.; Venanzi, A.; Schiavoni, G.; Martelli, M.P.; Ascani, S.; Mecucci, C.; Tiacci, E.; Falini, B. Blastic Plasmacytoid Dendritic Cell Neoplasm and Chronic Myelomonocytic Leukemia: A Shared Clonal Origin. Leukemia 2017, 31, 1238–1240. [Google Scholar] [CrossRef]
- Graubert, T.A.; Shen, D.; Ding, L.; Okeyo-Owuor, T.; Lunn, C.L.; Shao, J.; Krysiak, K.; Harris, C.C.; Koboldt, D.C.; Larson, D.E.; et al. Recurrent Mutations in the U2AF1 Splicing Factor in Myelodysplastic Syndromes. Nat. Genet. 2011, 44, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Ilagan, J.O.; Ramakrishnan, A.; Hayes, B.; Murphy, M.E.; Zebari, A.S.; Bradley, P.; Bradley, R.K. U2AF1 Mutations Alter Splice Site Recognition in Hematological Malignancies. Genome Res. 2015, 25, 14–26. [Google Scholar] [CrossRef]
- Itzykson, R.; Kosmider, O.; Renneville, A.; Morabito, M.; Preudhomme, C.; Berthon, C.; Adès, L.; Fenaux, P.; Platzbecker, U.; Gagey, O.; et al. Clonal Architecture of Chronic Myelomonocytic Leukemias. Blood 2013, 121, 2186–2198. [Google Scholar] [CrossRef]
- Pellagatti, A.; Boultwood, J. Splicing Factor Mutant Myelodysplastic Syndromes: Recent Advances. Adv. Biol. Regul. 2020, 75, 100655. [Google Scholar] [CrossRef]
- Suma, S.; Sakata-Yanagimoto, M.; Nguyen, T.B.; Hattori, K.; Sato, T.; Noguchi, M.; Nannya, Y.; Ogawa, S.; Watanabe, R.; Fujimoto, M.; et al. Blastic Plasmacytoid Dendritic Cell Neoplasm Arising from Clonal Hematopoiesis. Int. J. Hematol. 2018, 108, 447–451. [Google Scholar] [CrossRef]
- Alayed, K.; Patel, K.P.; Konoplev, S.; Singh, R.R.; Routbort, M.J.; Reddy, N.; Pemmaraju, N.; Zhang, L.; Shaikh, A.A.; Aladily, T.N.; et al. TET2 Mutations, Myelodysplastic Features, and a Distinct Immunoprofile Characterize Blastic Plasmacytoid Dendritic Cell Neoplasm in the Bone Marrow. Am. J. Hematol. 2013, 88, 1055–1061. [Google Scholar] [CrossRef]
- Togami, K.; Chung, S.S.; Madan, V.; Booth, C.A.G.; Kenyon, C.M.; Cabal-Hierro, L.; Taylor, J.; Kim, S.S.; Griffin, G.K.; Ghandi, M.; et al. Sex-Biased ZRSR2 Mutations in Myeloid Malignancies Impair Plasmacytoid Dendritic Cell Activation and Apoptosis. Cancer Discov. 2022, 12, 522–541. [Google Scholar] [CrossRef]
- Stengel, A.; Baer, C.; Walter, W.; Meggendorfer, M.; Kern, W.; Haferlach, T.; Haferlach, C. Mutational Patterns and Their Correlation to CHIP-Related Mutations and Age in Hematological Malignancies. Blood Adv. 2021, 5, 4426–4434. [Google Scholar] [CrossRef]
- Döhner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute Myeloid Leukemia. N. Engl. J. Med. 2015, 373, 1136–1152. [Google Scholar] [CrossRef]
- Steensma, D.P.; Bejar, R.; Jaiswal, S.; Lindsley, R.C.; Sekeres, M.A.; Hasserjian, R.P.; Ebert, B.L. Clonal Hematopoiesis of Indeterminate Potential and Its Distinction from Myelodysplastic Syndromes. Blood 2015, 126, 9–16. [Google Scholar] [CrossRef]
- Pagano, L.; Valentini, C.G.; Pulsoni, A.; Fisogni, S.; Carluccio, P.; Mannelli, F.; Lunghi, M.; Pica, G.; Onida, F.; Cattaneo, C.; et al. Blastic Plasmacytoid Dendritic Cell Neoplasm with Leukemic Presentation: An Italian Multicenter Study. Haematologica 2013, 98, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Laribi, K.; Baugier de Materre, A.; Sobh, M.; Cerroni, L.; Valentini, C.G.; Aoki, T.; Suzuki, R.; Takeuchi, K.; Frankel, A.E.; Cota, C.; et al. Blastic Plasmacytoid Dendritic Cell Neoplasms: Results of an International Survey on 398 Adult Patients. Blood Adv. 2020, 4, 4838–4848. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Feng, Y.; Deng, X.; Liu, S.; Qiang, X.; Gou, Y.; Li, J.; Yang, W.; Peng, X.; Zhang, X. Tumor-Forming Plasmacytoid Dendritic Cells in Acute Myelocytic Leukemia: A Report of Three Cases and Literature Review. Int. J. Clin. Exp. Pathol. 2017, 10, 7285–7291. [Google Scholar] [PubMed]
- Patnaik, M.M.; Lasho, T.L.; Vijayvargiya, P.; Finke, C.M.; Hanson, C.A.; Ketterling, R.P.; Gangat, N.; Tefferi, A. Prognostic Interaction between ASXL1 and TET2 Mutations in Chronic Myelomonocytic Leukemia. Blood Cancer J. 2016, 6, e385. [Google Scholar] [CrossRef]
- Shih, A.H.; Abdel-Wahab, O.; Patel, J.P.; Levine, R.L. The Role of Mutations in Epigenetic Regulators in Myeloid Malignancies. Nat. Rev. Cancer 2012, 12, 599–612. [Google Scholar] [CrossRef]
- Abdel-Wahab, O.; Levine, R.L. Mutations in Epigenetic Modifiers in the Pathogenesis and Therapy of Acute Myeloid Leukemia. Blood 2013, 121, 3563–3572. [Google Scholar] [CrossRef]
- Tefferi, A. Novel Mutations and Their Functional and Clinical Relevance in Myeloproliferative Neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 2010, 24, 1128–1138. [Google Scholar] [CrossRef]
- Im, A.P.; Sehgal, A.R.; Carroll, M.P.; Smith, B.D.; Tefferi, A.; Johnson, D.E.; Boyiadzis, M. DNMT3A and IDH Mutations in Acute Myeloid Leukemia and Other Myeloid Malignancies: Associations with Prognosis and Potential Treatment Strategies. Leukemia 2014, 28, 1774–1783. [Google Scholar] [CrossRef]
- Summerer, I.; Walter, W.; Meggendorfer, M.; Kern, W.; Haferlach, T.; Haferlach, C.; Stengel, A. Comprehensive Analysis of the Genetic Landscape of 21 Cases with Blastic Plasmacytoid Dendritic Cell Neoplasm by Whole Genome and Whole Transcriptome Sequencing. Leuk. Lymphoma 2021, 62, 2543–2546. [Google Scholar] [CrossRef]
- Yin, C.C.; Pemmaraju, N.; You, M.J.; Li, S.; Xu, J.; Wang, W.; Tang, Z.; Alswailmi, O.; Bhalla, K.N.; Qazilbash, M.H.; et al. Integrated Clinical Genotype-Phenotype Characteristics of Blastic Plasmacytoid Dendritic Cell Neoplasm. Cancers 2021, 13, 5888. [Google Scholar] [CrossRef]
- Fears, S.; Chakrabarti, S.R.; Nucifora, G.; Rowley, J.D. Differential Expression of TCL1 during Pre-B-Cell Acute Lymphoblastic Leukemia Progression. Cancer Genet. Cytogenet. 2002, 135, 110–119. [Google Scholar] [CrossRef]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and Management of AML in Adults: 2017 ELN Recommendations from an International Expert Panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef]
- Garnache-Ottou, F.; Vidal, C.; Biichlé, S.; Renosi, F.; Poret, E.; Pagadoy, M.; Desmarets, M.; Roggy, A.; Seilles, E.; Soret, L.; et al. How Should We Diagnose and Treat Blastic Plasmacytoid Dendritic Cell Neoplasm Patients? Blood Adv. 2019, 3, 4238–4251. [Google Scholar] [CrossRef]
- Taylor, J.; Haddadin, M.; Upadhyay, V.A.; Grussie, E.; Mehta-Shah, N.; Brunner, A.M.; Louissaint, A.; Lovitch, S.B.; Dogan, A.; Fathi, A.T.; et al. Multicenter Analysis of Outcomes in Blastic Plasmacytoid Dendritic Cell Neoplasm Offers a Pre-Targeted Therapy Benchmark. Blood 2019, 134, 678–687. [Google Scholar] [CrossRef]
- Sumarriva Lezama, L.; Chisholm, K.M.; Carneal, E.; Nagy, A.; Cascio, M.J.; Yan, J.; Chang, C.-C.; Cherry, A.; George, T.I.; Ohgami, R.S. An Analysis of Blastic Plasmacytoid Dendritic Cell Neoplasm with Translocations Involving the MYC Locus Identifies t(6;8)(P21;Q24) as a Recurrent Cytogenetic Abnormality. Histopathology 2018, 73, 767–776. [Google Scholar] [CrossRef]
- Szczepaniak, A.; Machnicki, M.; Gniot, M.; Pępek, M.; Rydzanicz, M.; Płoski, R.; Kaźmierczak, M.; Stokłosa, T.; Lewandowski, K. Germline Missense NF1 Mutation in an Elderly Patient with a Blastic Plasmacytoid Dendritic Cell Neoplasm. Int. J. Hematol. 2019, 110, 102–106. [Google Scholar] [CrossRef]
- Laribi, K.; Denizon, N.; Ghnaya, H.; Atlassi, M.; Besançon, A.; Pineau-Vincent, F.; Gaulard, P.; Petrella, T. Blastic Plasmacytoid Dendritic Cell Neoplasm: The First Report of Two Cases Treated by 5-Azacytidine. Eur. J. Haematol. 2014, 93, 81–85. [Google Scholar] [CrossRef]
- Khwaja, R.; Daly, A.; Wong, M.; Mahé, E.; Cerquozzi, S.; Owen, C. Azacitidine in the Treatment of Blastic Plasmacytoid Dendritic Cell Neoplasm: A Report of 3 Cases. Leuk. Lymphoma 2016, 57, 2720–2722. [Google Scholar] [CrossRef]
- Ceroi, A.; Masson, D.; Roggy, A.; Roumier, C.; Chagué, C.; Gauthier, T.; Philippe, L.; Lamarthée, B.; Angelot-Delettre, F.; Bonnefoy, F.; et al. LXR Agonist Treatment of Blastic Plasmacytoid Dendritic Cell Neoplasm Restores Cholesterol Efflux and Triggers Apoptosis. Blood 2016, 128, 2694–2707. [Google Scholar] [CrossRef]
- Sapienza, M.R.; Fuligni, F.; Agostinelli, C.; Tripodo, C.; Righi, S.; Laginestra, M.A.; Pileri, A.; Mancini, M.; Rossi, M.; Ricci, F.; et al. Molecular Profiling of Blastic Plasmacytoid Dendritic Cell Neoplasm Reveals a Unique Pattern and Suggests Selective Sensitivity to NF-KB Pathway Inhibition. Leukemia 2014, 28, 1606–1616. [Google Scholar] [CrossRef]
- Dijkman, R.; van Doorn, R.; Szuhai, K.; Willemze, R.; Vermeer, M.H.; Tensen, C.P. Gene-Expression Profiling and Array-Based CGH Classify CD4+CD56+ Hematodermic Neoplasm and Cutaneous Myelomonocytic Leukemia as Distinct Disease Entities. Blood 2007, 109, 1720–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saegusa, M.; Hashimura, M.; Kuwata, T. Sox4 Functions as a Positive Regulator of β-Catenin Signaling through Upregulation of TCF4 during Morular Differentiation of Endometrial Carcinomas. Lab. Investig. J. Tech. Methods Pathol. 2012, 92, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Ceribelli, M.; Hou, Z.E.; Kelly, P.N.; Huang, D.W.; Wright, G.; Ganapathi, K.; Evbuomwan, M.O.; Pittaluga, S.; Shaffer, A.L.; Marcucci, G.; et al. A Druggable TCF4- and BRD4-Dependent Transcriptional Network Sustains Malignancy in Blastic Plasmacytoid Dendritic Cell Neoplasm. Cancer Cell 2016, 30, 764–778. [Google Scholar] [CrossRef] [PubMed]
- Sukswai, N.; Aung, P.P.; Yin, C.C.; Li, S.; Wang, W.; Wang, S.A.; Ortega, V.; Lyapichev, K.; Nagarajan, P.; Alfattal, R.; et al. Dual Expression of TCF4 and CD123 Is Highly Sensitive and Specific for Blastic Plasmacytoid Dendritic Cell Neoplasm. Am. J. Surg. Pathol. 2019, 43, 1429–1437. [Google Scholar] [CrossRef]
- Agha, M.E.; Monaghan, S.A.; Swerdlow, S.H. Venetoclax in a Patient with a Blastic Plasmacytoid Dendritic-Cell Neoplasm. N. Engl. J. Med. 2018, 379, 1479–1481. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Rausch, C.R.; Benton, C.; Kadia, T.; Jain, N.; Pemmaraju, N.; Daver, N.; Covert, W.; Marx, K.R.; Mace, M.; et al. Clinical Experience with the BCL2-Inhibitor Venetoclax in Combination Therapy for Relapsed and Refractory Acute Myeloid Leukemia and Related Myeloid Malignancies. Am. J. Hematol. 2018, 93, 401–407. [Google Scholar] [CrossRef]
- Beird, H.C.; Khan, M.; Wang, F.; Alfayez, M.; Cai, T.; Zhao, L.; Khoury, J.; Futreal, P.A.; Konopleva, M.; Pemmaraju, N. Features of Non-Activation Dendritic State and Immune Deficiency in Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN). Blood Cancer J. 2019, 9, 99. [Google Scholar] [CrossRef]
- DePasquale, E.A.K.; Ssozi, D.; Ainciburu, M.; Good, J.; Noel, J.; Villanueva, M.A.; Couturier, C.P.; Shalek, A.K.; Aranki, S.F.; Mallidi, H.R.; et al. Single-Cell Multiomics Reveals Clonal T-Cell Expansions and Exhaustion in Blastic Plasmacytoid Dendritic Cell Neoplasm. Front. Immunol. 2022, 13, 809414. [Google Scholar] [CrossRef]
- Nomburg, J.; Bullman, S.; Chung, S.S.; Togami, K.; Walker, M.A.; Griffin, G.K.; Morgan, E.A.; LeBoeuf, N.R.; DeCaprio, J.A.; Meyerson, M.; et al. Comprehensive Metagenomic Analysis of Blastic Plasmacytoid Dendritic Cell Neoplasm. Blood Adv. 2020, 4, 1006–1011. [Google Scholar] [CrossRef]
- Sapienza, M.R.; Benvenuto, G.; Ferracin, M.; Mazzara, S.; Fuligni, F.; Tripodo, C.; Belmonte, B.; Fanoni, D.; Melle, F.; Motta, G.; et al. Newly-Discovered Neural Features Expand the Pathobiological Knowledge of Blastic Plasmacytoid Dendritic Cell Neoplasm. Cancers 2021, 13, 4680. [Google Scholar] [CrossRef]
- Song, P.; Sekhon, H.S.; Jia, Y.; Keller, J.A.; Blusztajn, J.K.; Mark, G.P.; Spindel, E.R. Acetylcholine Is Synthesized by and Acts as an Autocrine Growth Factor for Small Cell Lung Carcinoma. Cancer Res. 2003, 63, 214–221. [Google Scholar]
- Orazi, A.; Chiu, R.; O’Malley, D.P.; Czader, M.; Allen, S.L.; An, C.; Vance, G.H. Chronic Myelomonocytic Leukemia: The Role of Bone Marrow Biopsy Immunohistology. Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc. 2006, 19, 1536–1545. [Google Scholar] [CrossRef] [Green Version]
- Vitte, F.; Fabiani, B.; Bénet, C.; Dalac, S.; Balme, B.; Delattre, C.; Vergier, B.; Beylot-Barry, M.; Vignon-Pennamen, D.; Ortonne, N.; et al. Specific Skin Lesions in Chronic Myelomonocytic Leukemia: A Spectrum of Myelomonocytic and Dendritic Cell Proliferations: A Study of 42 Cases. Am. J. Surg. Pathol. 2012, 36, 1302–1316. [Google Scholar] [CrossRef]
- Vuckovic, S.; Fearnley, D.B.; Gunningham, S.; Spearing, R.L.; Patton, W.N.; Hart, D.N. Dendritic Cells in Chronic Myelomonocytic Leukaemia. Br. J. Haematol. 1999, 105, 974–985. [Google Scholar] [CrossRef]
- Vermi, W.; Facchetti, F.; Rosati, S.; Vergoni, F.; Rossi, E.; Festa, S.; Remotti, D.; Grigolato, P.; Massarelli, G.; Frizzera, G. Nodal and Extranodal Tumor-Forming Accumulation of Plasmacytoid Monocytes/Interferon-Producing Cells Associated with Myeloid Disorders. Am. J. Surg. Pathol. 2004, 28, 585–595. [Google Scholar] [CrossRef]
- Lucas, N.; Duchmann, M.; Rameau, P.; Noël, F.; Michea, P.; Saada, V.; Kosmider, O.; Pierron, G.; Fernandez-Zapico, M.E.; Howard, M.T.; et al. Biology and Prognostic Impact of Clonal Plasmacytoid Dendritic Cells in Chronic Myelomonocytic Leukemia. Leukemia 2019, 33, 2466–2480. [Google Scholar] [CrossRef]
- Kuo, M.-C.; Liang, D.-C.; Huang, C.-F.; Shih, Y.-S.; Wu, J.-H.; Lin, T.-L.; Shih, L.-Y. RUNX1 Mutations Are Frequent in Chronic Myelomonocytic Leukemia and Mutations at the C-Terminal Region Might Predict Acute Myeloid Leukemia Transformation. Leukemia 2009, 23, 1426–1431. [Google Scholar] [CrossRef]
- Tsai, S.-C.; Shih, L.-Y.; Liang, S.-T.; Huang, Y.-J.; Kuo, M.-C.; Huang, C.-F.; Shih, Y.-S.; Lin, T.-H.; Chiu, M.-C.; Liang, D.-C. Biological Activities of RUNX1 Mutants Predict Secondary Acute Leukemia Transformation from Chronic Myelomonocytic Leukemia and Myelodysplastic Syndromes. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015, 21, 3541–3551. [Google Scholar] [CrossRef]
- Hamadeh, F.; Awadallah, A.; Meyerson, H.J.; Beck, R.C. Flow Cytometry Identifies a Spectrum of Maturation in Myeloid Neoplasms Having Plasmacytoid Dendritic Cell Differentiation. Cytometry B Clin. Cytom. 2020, 98, 43–51. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Y.; Chang, Y.; Yuan, X.; Hao, L.; Shi, H.; Lai, Y.; Huang, X.; Liu, Y. Myeloid Neoplasms with Elevated Plasmacytoid Dendritic Cell Differentiation Reflect the Maturation Process of Dendritic Cells. Cytom. Part J. Int. Soc. Anal. Cytol. 2020, 97, 61–69. [Google Scholar] [CrossRef]
- Xiao, W.; Chan, A.; Waarts, M.R.; Mishra, T.; Liu, Y.; Cai, S.F.; Yao, J.; Gao, Q.; Bowman, R.L.; Koche, R.P.; et al. Plasmacytoid Dendritic Cell Expansion Defines a Distinct Subset of RUNX1-Mutated Acute Myeloid Leukemia. Blood 2021, 137, 1377–1391. [Google Scholar] [CrossRef]
- Zalmaï, L.; Viailly, P.-J.; Biichle, S.; Cheok, M.; Soret, L.; Angelot-Delettre, F.; Petrella, T.; Collonge-Rame, M.-A.; Seilles, E.; Geffroy, S.; et al. Plasmacytoid Dendritic Cells Proliferation Associated with Acute Myeloid Leukemia: Phenotype Profile and Mutation Landscape. Haematologica 2021, 106, 3056–3066. [Google Scholar] [CrossRef]
- Dalland, J.C.; Meyer, R.; Ketterling, R.P.; Reichard, K.K. Myeloid Sarcoma With CBFB-MYH11 Fusion (Inv(16) or t(16;16)) Prevails in the Abdomen. Am. J. Clin. Pathol. 2020, 153, 333–341. [Google Scholar] [CrossRef]
- Rickmann, M.; Krauter, J.; Stamer, K.; Heuser, M.; Salguero, G.; Mischak-Weissinger, E.; Ganser, A.; Stripecke, R. Elevated Frequencies of Leukemic Myeloid and Plasmacytoid Dendritic Cells in Acute Myeloid Leukemia with the FLT3 Internal Tandem Duplication. Ann. Hematol. 2011, 90, 1047–1058. [Google Scholar] [CrossRef]
- Mohty, M.; Jarrossay, D.; Lafage-Pochitaloff, M.; Zandotti, C.; Brière, F.; de Lamballeri, X.N.; Isnardon, D.; Sainty, D.; Olive, D.; Gaugler, B. Circulating Blood Dendritic Cells from Myeloid Leukemia Patients Display Quantitative and Cytogenetic Abnormalities as Well as Functional Impairment. Blood 2001, 98, 3750–3756. [Google Scholar] [CrossRef]
- Pileri, S.A.; Ascani, S.; Cox, M.C.; Campidelli, C.; Bacci, F.; Piccioli, M.; Piccaluga, P.P.; Agostinelli, C.; Asioli, S.; Novero, D.; et al. Myeloid Sarcoma: Clinico-Pathologic, Phenotypic and Cytogenetic Analysis of 92 Adult Patients. Leukemia 2007, 21, 340–350. [Google Scholar] [CrossRef]
- Gaidzik, V.I.; Teleanu, V.; Papaemmanuil, E.; Weber, D.; Paschka, P.; Hahn, J.; Wallrabenstein, T.; Kolbinger, B.; Köhne, C.H.; Horst, H.A.; et al. RUNX1 Mutations in Acute Myeloid Leukemia Are Associated with Distinct Clinico-Pathologic and Genetic Features. Leukemia 2016, 30, 2282. [Google Scholar] [CrossRef]
- Preudhomme, C.; Warot-Loze, D.; Roumier, C.; Grardel-Duflos, N.; Garand, R.; Lai, J.L.; Dastugue, N.; Macintyre, E.; Denis, C.; Bauters, F.; et al. High Incidence of Biallelic Point Mutations in the Runt Domain of the AML1/PEBP2 Alpha B Gene in Mo Acute Myeloid Leukemia and in Myeloid Malignancies with Acquired Trisomy 21. Blood 2000, 96, 2862–2869. [Google Scholar] [CrossRef]
- Tang, J.-L.; Hou, H.-A.; Chen, C.-Y.; Liu, C.-Y.; Chou, W.-C.; Tseng, M.-H.; Huang, C.-F.; Lee, F.-Y.; Liu, M.-C.; Yao, M.; et al. AML1/RUNX1 Mutations in 470 Adult Patients with de Novo Acute Myeloid Leukemia: Prognostic Implication and Interaction with Other Gene Alterations. Blood 2009, 114, 5352–5361. [Google Scholar] [CrossRef]
- Schnittger, S.; Dicker, F.; Kern, W.; Wendland, N.; Sundermann, J.; Alpermann, T.; Haferlach, C.; Haferlach, T. RUNX1 Mutations Are Frequent in de Novo AML with Noncomplex Karyotype and Confer an Unfavorable Prognosis. Blood 2011, 117, 2348–2357. [Google Scholar] [CrossRef]
- Gaidzik, V.I.; Bullinger, L.; Schlenk, R.F.; Zimmermann, A.S.; Röck, J.; Paschka, P.; Corbacioglu, A.; Krauter, J.; Schlegelberger, B.; Ganser, A.; et al. RUNX1 Mutations in Acute Myeloid Leukemia: Results from a Comprehensive Genetic and Clinical Analysis from the AML Study Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Li, C.; Wang, Y.; Rao, Q.; Mi, Y.; Wang, M.; Wei, H.; Wang, J. Mature Plasmacytoid Dendritic Cells Associated with Acute Myeloid Leukemia Show Similar Genetic Mutations and Expression Profiles to Leukemia Cells. Blood Sci. 2022, 4, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Speck, N.A.; Gilliland, D.G. Core-Binding Factors in Haematopoiesis and Leukaemia. Nat. Rev. Cancer 2002, 2, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, M.; Hirai, H. Role of AML1/Runx1 in the Pathogenesis of Hematological Malignancies. Cancer Sci. 2003, 94, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Morita, K.; Suzuki, K.; Maeda, S.; Matsuo, A.; Mitsuda, Y.; Tokushige, C.; Kashiwazaki, G.; Taniguchi, J.; Maeda, R.; Noura, M.; et al. Genetic Regulation of the RUNX Transcription Factor Family Has Antitumor Effects. J. Clin. Investig. 2017, 127, 2815–2828. [Google Scholar] [CrossRef] [PubMed]
- Kamikubo, Y. Genetic Compensation of RUNX Family Transcription Factors in Leukemia. Cancer Sci. 2018, 109, 2358–2363. [Google Scholar] [CrossRef]
- Chopin, M.; Preston, S.P.; Lun, A.T.L.; Tellier, J.; Smyth, G.K.; Pellegrini, M.; Belz, G.T.; Corcoran, L.M.; Visvader, J.E.; Wu, L.; et al. RUNX2 Mediates Plasmacytoid Dendritic Cell Egress from the Bone Marrow and Controls Viral Immunity. Cell Rep. 2016, 15, 866–878. [Google Scholar] [CrossRef]
- Menezes, A.C.; Jones, R.; Shrestha, A.; Nicholson, R.; Leckenby, A.; Azevedo, A.; Davies, S.; Baker, S.; Gilkes, A.F.; Darley, R.L.; et al. Increased Expression of RUNX3 Inhibits Normal Human Myeloid Development. Leukemia 2022, 36, 1769–1780. [Google Scholar] [CrossRef]
- Cheng, C.K.; Li, L.; Cheng, S.H.; Lau, K.M.; Chan, N.P.H.; Wong, R.S.M.; Shing, M.M.K.; Li, C.K.; Ng, M.H.L. Transcriptional Repression of the RUNX3/AML2 Gene by the t(8;21) and Inv(16) Fusion Proteins in Acute Myeloid Leukemia. Blood 2008, 112, 3391–3402. [Google Scholar] [CrossRef]
- Tsagarakis, N.J.; Kentrou, N.A.; Papadimitriou, K.A.; Pagoni, M.; Kokkini, G.; Papadaki, H.; Pappa, V.; Marinakis, T.; Anagnostopoulos, N.I.; Vadikolia, C.; et al. Acute Lymphoplasmacytoid Dendritic Cell (DC2) Leukemia: Results from the Hellenic Dendritic Cell Leukemia Study Group. Leuk. Res. 2010, 34, 438–446. [Google Scholar] [CrossRef]
- Alam, H.; Saeed, N.; Rashid, A. Indispensable Role of Immunophenotyping in Diagnosing Leukemic Phase of Blastic Plasmacytoid Dendritic Cell Neoplasm without Cutaneous Manifestation. Leuk. Res. Rep. 2022, 17, 100317. [Google Scholar] [CrossRef]
- Venugopal, S.; Zhou, S.; El Jamal, S.M.; Lane, A.A.; Mascarenhas, J. Blastic Plasmacytoid Dendritic Cell Neoplasm-Current Insights. Clin. Lymphoma Myeloma Leuk. 2019, 19, 545–554. [Google Scholar] [CrossRef]
- Ramachandran, V.; Park, K.E.; Loya, A.; Duvic, M. Second Primary Malignancies in Blastic Plasmacytoid Dendritic Cell Neoplasm: A National Database Study. J. Am. Acad. Dermatol. 2020, 83, 1786–1789. [Google Scholar] [CrossRef]
- Lebecque, B.; Vial, J.-P.; Pigneux, A.; Lechevalier, N. Chronic Myelomonocytic Leukaemia Followed by Blastic Plasmacytoid Dendritic Cell Neoplasm. Br. J. Haematol. 2019, 185, 398. [Google Scholar] [CrossRef]
- Hu, Z.; Sun, T. Blastic Plasmacytoid Dendritic Cell Neoplasm Associated with Chronic Myelomonocytic Leukemia. Blood 2016, 128, 1664. [Google Scholar] [CrossRef]
- Espasa, A.; Sorigue, M.; Tapia, G.; Cabezon, M.; Vergara, S.; Raya, M.; Navarro, J.-T.; Junca, J.; Zamora, L.; Xicoy, B. Chronic Myelomonocytic Leukemia and Blastic Plasmacytoid Dendritic Cell Neoplasm. A Case Report and Systematic Review. Cytom. B Clin. Cytom. 2020, 100, 292–295. [Google Scholar] [CrossRef]
- Krause, J.R.; Baugh, L.; Swink, A.; Burch, M. Blastic Plasmacytoid Dendritic Cell Neoplasm Following Acquired Erythropoietic Protoporphyria. Proc. Bayl. Univ. Med. Cent. 2017, 30, 450–451. [Google Scholar] [CrossRef]
- Chamoun, K.; Loghavi, S.; Pemmaraju, N.; Konopleva, M.; Kroll, M.; Nguyen-Cao, M.; Hornbaker, M.; DiNardo, C.D.; Kadia, T.; Jorgensen, J.; et al. Early Detection of Transformation to BPDCN in a Patient with MDS. Exp. Hematol. Oncol. 2018, 7, 26. [Google Scholar] [CrossRef]
- Yun, S.; Sokol, L.; Zhang, L. Disseminated Cutaneous Lesions in a Patient With a Medical History of Myelodysplastic Syndrome. JAMA Oncol. 2018, 4, 1281–1282. [Google Scholar] [CrossRef]
- Kazakov, D.V.; Mentzel, T.; Burg, G.; Dummer, R.; Kempf, W. Blastic Natural Killer-Cell Lymphoma of the Skin Associated with Myelodysplastic Syndrome or Myelogenous Leukaemia: A Coincidence or More? Br. J. Dermatol. 2003, 149, 869–876. [Google Scholar] [CrossRef]
- Philippe, L.; Ceroi, A.; Bôle-Richard, E.; Jenvrin, A.; Biichle, S.; Perrin, S.; Limat, S.; Bonnefoy, F.; Deconinck, E.; Saas, P.; et al. Bortezomib as a New Therapeutic Approach for Blastic Plasmacytoid Dendritic Cell Neoplasm. Haematologica 2017, 102, 1861–1868. [Google Scholar] [CrossRef] [PubMed]
- Montero, J.; Stephansky, J.; Cai, T.; Griffin, G.K.; Cabal-Hierro, L.; Togami, K.; Hogdal, L.J.; Galinsky, I.; Morgan, E.A.; Aster, J.C.; et al. Blastic Plasmacytoid Dendritic Cell Neoplasm Is Dependent on BCL2 and Sensitive to Venetoclax. Cancer Discov. 2017, 7, 156–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mill, C.P.; Fiskus, W.; DiNardo, C.D.; Qian, Y.; Raina, K.; Rajapakshe, K.; Perera, D.; Coarfa, C.; Kadia, T.M.; Khoury, J.D.; et al. RUNX1-Targeted Therapy for AML Expressing Somatic or Germline Mutation in RUNX1. Blood 2019, 134, 59–73. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renosi, F.; Callanan, M.; Lefebvre, C. Genetics and Epigenetics in Neoplasms with Plasmacytoid Dendritic Cells. Cancers 2022, 14, 4132. https://doi.org/10.3390/cancers14174132
Renosi F, Callanan M, Lefebvre C. Genetics and Epigenetics in Neoplasms with Plasmacytoid Dendritic Cells. Cancers. 2022; 14(17):4132. https://doi.org/10.3390/cancers14174132
Chicago/Turabian StyleRenosi, Florian, Mary Callanan, and Christine Lefebvre. 2022. "Genetics and Epigenetics in Neoplasms with Plasmacytoid Dendritic Cells" Cancers 14, no. 17: 4132. https://doi.org/10.3390/cancers14174132
APA StyleRenosi, F., Callanan, M., & Lefebvre, C. (2022). Genetics and Epigenetics in Neoplasms with Plasmacytoid Dendritic Cells. Cancers, 14(17), 4132. https://doi.org/10.3390/cancers14174132