Proton Beam Therapy for Esophageal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction: Background and Current Treatment of Esophageal Cancer
2. Rationale of PBT as Treatment for Esophageal Cancer
3. Clinical Outcomes of PBT for Esophageal Cancer
4. Reduction of Treatment-Related Lymphopenia with PBT
5. Ongoing Clinical Trials
6. Challenges and Limitations of PBT
6.1. PBT Planning
6.2. Issues of Equity
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- McCormack, V.A.; Menya, D.; Munishi, M.O.; Dzamalala, C.; Gasmelseed, N.; Leon Roux, M.; Assefa, M.; Osano, O.; Watts, M.; Mwasamwaja, A.O.; et al. Informing Etiologic Research Priorities for Squamous Cell Esophageal Cancer in Africa: A Review of Setting-Specific Exposures to Known and Putative Risk Factors: Esophageal Cancer in Africa. Int. J. Cancer 2017, 140, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Thun, M.J.; Linet, M.S.; Cerhan, J.R.; Haiman, C.; Schottenfeld, D. (Eds.) Schottenfeld and Fraumeni Cancer Epidemiology and Prevention, 4th ed.; Oxford University Press: New York, NY, USA, 2018; ISBN 978-0-19-023866-7. [Google Scholar]
- Arnold, M.; Laversanne, M.; Brown, L.M.; Devesa, S.S.; Bray, F. Predicting the Future Burden of Esophageal Cancer by Histological Subtype: International Trends in Incidence up to 2030. Am. J. Gastroenterol. 2017, 112, 1247–1255. [Google Scholar] [CrossRef]
- Shapiro, J.; van Lanschot, J.J.B.; Hulshof, M.C.C.M.; van Hagen, P.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; van Laarhoven, H.W.M.; Nieuwenhuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; et al. Neoadjuvant Chemoradiotherapy plus Surgery versus Surgery Alone for Oesophageal or Junctional Cancer (CROSS): Long-Term Results of a Randomised Controlled Trial. Lancet Oncol. 2015, 16, 1090–1098. [Google Scholar] [CrossRef]
- Deng, W.; Lin, S.H. Advances in Radiotherapy for Esophageal Cancer. Ann. Transl. Med. 2018, 6, 79. [Google Scholar] [CrossRef] [Green Version]
- Kumagai, K.; Rouvelas, I.; Tsai, J.A.; Mariosa, D.; Klevebro, F.; Lindblad, M.; Ye, W.; Lundell, L.; Nilsson, M. Meta-Analysis of Postoperative Morbidity and Perioperative Mortality in Patients Receiving Neoadjuvant Chemotherapy or Chemoradiotherapy for Resectable Oesophageal and Gastro-Oesophageal Junctional Cancers. Br. J. Surg. 2014, 101, 321–338. [Google Scholar] [CrossRef]
- Al-Sukhni, E.; Gabriel, E.; Attwood, K.; Kukar, M.; Nurkin, S.J.; Hochwald, S.N. No Survival Difference with Neoadjuvant Chemoradiotherapy Compared with Chemotherapy in Resectable Esophageal and Gastroesophageal Junction Adenocarcinoma: Results from the National Cancer Data Base. J. Am. Coll. Surg. 2016, 223, 784–792e1. [Google Scholar] [CrossRef]
- Luu, T.D.; Gaur, P.; Force, S.D.; Staley, C.A.; Mansour, K.A.; Miller, J.I.; Miller, D.L. Neoadjuvant Chemoradiation Versus Chemotherapy for Patients Undergoing Esophagectomy for Esophageal Cancer. Ann. Thorac. Surg. 2008, 85, 1217–1224. [Google Scholar] [CrossRef]
- Bedenne, L.; Michel, P.; Bouché, O.; Milan, C.; Mariette, C.; Conroy, T.; Pezet, D.; Roullet, B.; Seitz, J.-F.; Herr, J.-P.; et al. Chemoradiation Followed by Surgery Compared with Chemoradiation Alone in Squamous Cancer of the Esophagus: FFCD 9102. J. Clin. Oncol. 2007, 25, 1160–1168. [Google Scholar] [CrossRef] [Green Version]
- Stahl, M.; Stuschke, M.; Lehmann, N.; Meyer, H.-J.; Walz, M.K.; Seeber, S.; Klump, B.; Budach, W.; Teichmann, R.; Schmitt, M.; et al. Chemoradiation With and Without Surgery in Patients with Locally Advanced Squamous Cell Carcinoma of the Esophagus. J. Clin. Oncol. 2005, 23, 2310–2317. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.S.; Guo, M.D.; Herskovic, A.; Macdonald, J.S.; Martenson, J.A., Jr.; Al-Sarraf, M.; Byhardt, R.; Russell, A.H.; Beitler, J.J.; Spencer, S.; et al. Chemoradiotherapy of Locally Advanced Esophageal Cancer: Long-Term Follow-up of a Prospective Randomized Trial (RTOG 85-01). JAMA 1999, 281, 1623–1627. [Google Scholar] [CrossRef]
- Minsky, B.D.; Pajak, T.F.; Ginsberg, R.J.; Pisansky, T.M.; Martenson, J.; Komaki, R.; Okawara, G.; Rosenthal, S.A.; Kelsen, D.P. INT 0123 (Radiation Therapy Oncology Group 94-05) Phase III Trial of Combined-Modality Therapy for Esophageal Cancer: High-Dose Versus Standard-Dose Radiation Therapy. J. Clin. Oncol. 2002, 20, 1167–1174. [Google Scholar] [CrossRef]
- Vošmik, M.; Hodek, M.; Buka, D.; Sýkorová, P.; Grepl, J.; Paluska, P.; Paulíková, S.; Sirák, I. Cardiotoxicity of Radiation Therapy in Esophageal Cancer. Rep. Pract. Oncol. Radiother. 2020, 25, 318–322. [Google Scholar] [CrossRef]
- Piessen, G.; Messager, M.; Mirabel, X.; Briez, N.; Robb, W.B.; Adenis, A.; Mariette, C. Is There a Role for Surgery for Patients with a Complete Clinical Response after Chemoradiation for Esophageal Cancer? An Intention-to-Treat Case-Control Study. Ann. Surg. 2013, 258, 793–800. [Google Scholar] [CrossRef]
- Xi, M.; Xu, C.; Liao, Z.; Hofstetter, W.L.; Blum Murphy, M.; Maru, D.M.; Bhutani, M.S.; Lee, J.H.; Weston, B.; Komaki, R.; et al. The Impact of Histology on Recurrence Patterns in Esophageal Cancer Treated with Definitive Chemoradiotherapy. Radiother. Oncol. 2017, 124, 318–324. [Google Scholar] [CrossRef]
- Wu, V.W.C.; Sham, J.S.T.; Kwong, D.L.W. Inverse Planning in Three-Dimensional Conformal and Intensity-Modulated Radiotherapy of Mid-Thoracic Oesophageal Cancer. Br. J. Radiol. 2004, 77, 568–572. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Y.; Zhu, J.; Li, B.; Chen, J.; Yin, Y. 3D-Conformal RT, Fixed-Field IMRT and RapidArc, Which One Is Better for Esophageal Carcinoma Treated with Elective Nodal Irradiation. Technol. Cancer Res. Treat. 2011, 10, 487–494. [Google Scholar] [CrossRef]
- Kole, T.P.; Aghayere, O.; Kwah, J.; Yorke, E.D.; Goodman, K.A. Comparison of Heart and Coronary Artery Doses Associated with Intensity-Modulated Radiotherapy Versus Three-Dimensional Conformal Radiotherapy for Distal Esophageal Cancer. Int. J. Radiat. Oncol. 2012, 83, 1580–1586. [Google Scholar] [CrossRef]
- Gharzai, L.; Verma, V.; Denniston, K.A.; Bhirud, A.R.; Bennion, N.R.; Lin, C. Radiation Therapy and Cardiac Death in Long-Term Survivors of Esophageal Cancer: An Analysis of the Surveillance, Epidemiology, and End Result Database. PLoS ONE 2016, 11, e0158916. [Google Scholar] [CrossRef] [Green Version]
- Frandsen, J.; Boothe, D.; Gaffney, D.K.; Wilson, B.D.; Lloyd, S. Increased Risk of Death Due to Heart Disease after Radiotherapy for Esophageal Cancer. J. Gastrointest. Oncol. 2015, 6, 516–523. [Google Scholar] [CrossRef]
- Wei, X.; Liu, H.H.; Tucker, S.L.; Wang, S.; Mohan, R.; Cox, J.D.; Komaki, R.; Liao, Z. Risk Factors for Pericardial Effusion in Inoperable Esophageal Cancer Patients Treated with Definitive Chemoradiation Therapy. Int. J. Radiat. Oncol. 2008, 70, 707–714. [Google Scholar] [CrossRef]
- Fukada, J.; Shigematsu, N.; Takeuchi, H.; Ohashi, T.; Saikawa, Y.; Takaishi, H.; Hanada, T.; Shiraishi, Y.; Kitagawa, Y.; Fukuda, K. Symptomatic Pericardial Effusion After Chemoradiation Therapy in Esophageal Cancer Patients. Int. J. Radiat. Oncol. 2013, 87, 487–493. [Google Scholar] [CrossRef]
- Hayashi, Y.; Iijima, H.; Isohashi, F.; Tsujii, Y.; Fujinaga, T.; Nagai, K.; Yoshii, S.; Sakatani, A.; Hiyama, S.; Shinzaki, S.; et al. The Heart’s Exposure to Radiation Increases the Risk of Cardiac Toxicity after Chemoradiotherapy for Superficial Esophageal Cancer: A Retrospective Cohort Study. BMC Cancer 2019, 19, 195. [Google Scholar] [CrossRef]
- Tonison, J.J.; Fischer, S.G.; Viehrig, M.; Welz, S.; Boeke, S.; Zwirner, K.; Klumpp, B.; Braun, L.H.; Zips, D.; Gani, C. Radiation Pneumonitis after Intensity-Modulated Radiotherapy for Esophageal Cancer: Institutional Data and a Systematic Review. Sci. Rep. 2019, 9, 2255. [Google Scholar] [CrossRef]
- Münch, S.; Aichmeier, S.; Hapfelmeier, A.; Duma, M.-N.; Oechsner, M.; Feith, M.; Combs, S.E.; Habermehl, D. Comparison of Dosimetric Parameters and Toxicity in Esophageal Cancer Patients Undergoing 3D Conformal Radiotherapy or VMAT. Strahlenther. Onkol. 2016, 192, 722–729. [Google Scholar] [CrossRef]
- Ling, T.; Slater, J.; Nookala, P.; Mifflin, R.; Grove, R.; Ly, A.; Patyal, B.; Slater, J.; Yang, G. Analysis of Intensity-Modulated Radiation Therapy (IMRT), Proton and 3D Conformal Radiotherapy (3D-CRT) for Reducing Perioperative Cardiopulmonary Complications in Esophageal Cancer Patients. Cancers 2014, 6, 2356–2368. [Google Scholar] [CrossRef]
- Takada, A.; Nakamura, T.; Takayama, K.; Makita, C.; Suzuki, M.; Azami, Y.; Kato, T.; Tsukiyama, I.; Hareyama, M.; Kikuchi, Y.; et al. Preliminary Treatment Results of Proton Beam Therapy with Chemoradiotherapy for Stage I–III Esophageal Cancer. Cancer Med. 2016, 5, 506–515. [Google Scholar] [CrossRef] [Green Version]
- Jethwa, K.R.; Haddock, M.G.; Tryggestad, E.J.; Hallemeier, C.L. The Emerging Role of Proton Therapy for Esophagus Cancer. J. Gastrointest. Oncol. 2020, 11, 144–156. [Google Scholar] [CrossRef]
- Terasawa, T. Systematic Review: Charged-Particle Radiation Therapy for Cancer. Ann. Intern. Med. 2009, 151, 556. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhao, K.; Guerrero, T.M.; Mcguire, S.E.; Yaremko, B.; Komaki, R.; Cox, J.D.; Hui, Z.; Li, Y.; Newhauser, W.D.; et al. Four-Dimensional Computed Tomography–Based Treatment Planning for Intensity-Modulated Radiation Therapy and Proton Therapy for Distal Esophageal Cancer. Int. J. Radiat. Oncol. 2008, 72, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Xi, M.; Xu, C.; Liao, Z.; Chang, J.Y.; Gomez, D.R.; Jeter, M.; Cox, J.D.; Komaki, R.; Mehran, R.; Blum, M.A.; et al. Comparative Outcomes After Definitive Chemoradiotherapy Using Proton Beam Therapy Versus Intensity Modulated Radiation Therapy for Esophageal Cancer: A Retrospective, Single-Institutional Analysis. Int. J. Radiat. Oncol. 2017, 99, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, Y.; Xu, C.; Yang, J.; Komaki, R.; Lin, S.H. Dosimetric Comparison to the Heart and Cardiac Substructure in a Large Cohort of Esophageal Cancer Patients Treated with Proton Beam Therapy or Intensity-Modulated Radiation Therapy. Radiother. Oncol. 2017, 125, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.; Gomez, D.; Palmer, M.B.; Riley, B.A.; Mayankkumar, A.V.; Komaki, R.; Dong, L.; Zhu, X.R.; Likhacheva, A.; Liao, Z.; et al. Intensity-Modulated Proton Therapy Further Reduces Normal Tissue Exposure During Definitive Therapy for Locally Advanced Distal Esophageal Tumors: A Dosimetric Study. Int. J. Radiat. Oncol. 2011, 81, 1336–1342. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Palmer, M.; Bilton, S.D.; Vu, K.N.; Greer, S.; Frame, R.; Liao, Z.; Komaki, R.; Cox, J.D.; Lin, S.H. Comparing Proton Beam to Intensity Modulated Radiation Therapy Planning in Esophageal Cancer. Int. J. Part. Ther. 2015, 1, 866–877. [Google Scholar] [CrossRef] [Green Version]
- Warren, S.; Partridge, M.; Bolsi, A.; Lomax, A.J.; Hurt, C.; Crosby, T.; Hawkins, M.A. An Analysis of Plan Robustness for Esophageal Tumors: Comparing Volumetric Modulated Arc Therapy Plans and Spot Scanning Proton Planning. Int. J. Radiat. Oncol. 2016, 95, 199–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirano, Y.; Onozawa, M.; Hojo, H.; Motegi, A.; Zenda, S.; Hotta, K.; Moriya, S.; Tachibana, H.; Nakamura, N.; Kojima, T.; et al. Dosimetric Comparison between Proton Beam Therapy and Photon Radiation Therapy for Locally Advanced Esophageal Squamous Cell Carcinoma. Radiat. Oncol. 2018, 13, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macomber, M.W.; Bowen, S.R.; Gopan, O.; Yeung, R.; Apisarnthanarax, S.; Zeng, J.; Patel, S. Heart Dose and Outcomes in Radiation Treatment for Esophageal Cancer. Cureus 2018, 10, e2378. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Bhangoo, R.S.; Sio, T.T.; Yu, N.Y.; Shan, J.; Chiang, J.S.; Ding, J.X.; Rule, W.G.; Korte, S.; Lara, P.; et al. Dosimetric Comparison of Distal Esophageal Carcinoma Plans for Patients Treated with Small-spot Intensity-modulated Proton versus Volumetric-modulated Arc Therapies. J. Appl. Clin. Med. Phys. 2019, 20, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Haas-Kogan, D.; Indelicato, D.; Paganetti, H.; Esiashvili, N.; Mahajan, A.; Yock, T.; Flampouri, S.; MacDonald, S.; Fouladi, M.; Stephen, K.; et al. National Cancer Institute Workshop on Proton Therapy for Children: Considerations Regarding Brainstem Injury. Int. J. Radiat. Oncol. 2018, 101, 152–168. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Jiang, L.; Cui, X.; Zhang, J.; Yu, J. Proton Beam Therapy for Cancer in the Era of Precision Medicine. J. Hematol. Oncol. 2018, 11, 136. [Google Scholar] [CrossRef]
- Wo, J.Y.; Plastaras, J.P.; Metz, J.M.; Jiang, W.; Yeap, B.Y.; Drapek, L.C.; Adams, J.; Baglini, C.; Ryan, D.P.; Murphy, J.E.; et al. Pencil Beam Scanning Proton Beam Chemoradiation Therapy With 5-Fluorouracil and Mitomycin-C for Definitive Treatment of Carcinoma of the Anal Canal: A Multi-Institutional Pilot Feasibility Study. Int. J. Radiat. Oncol. 2019, 105, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Gunderson, L.L.; Winter, K.A.; Ajani, J.A.; Pedersen, J.E.; Moughan, J.; Benson, A.B.; Thomas, C.R.; Mayer, R.J.; Haddock, M.G.; Rich, T.A.; et al. Long-Term Update of US GI Intergroup RTOG 98-11 Phase III Trial for Anal Carcinoma: Survival, Relapse, and Colostomy Failure with Concurrent Chemoradiation Involving Fluorouracil/Mitomycin versus Fluorouracil/Cisplatin. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012, 30, 4344–4351. [Google Scholar] [CrossRef] [PubMed]
- Dee, E.C.; Eyler, C.E.; Sanford, N.N.; Wo, J.Y. Local Therapy Options for Recurrent Rectal and Anal Cancer: Current Strategies and New Directions. Curr. Colorectal Cancer Rep. 2019, 15, 157–169. [Google Scholar] [CrossRef]
- Hallemeier, C.L.; You, Y.N.; Larson, D.W.; Dozois, E.J.; Nelson, H.; Klein, K.A.; Miller, R.C.; Haddock, M.G. Multimodality Therapy Including Salvage Surgical Resection and Intraoperative Radiotherapy for Patients with Squamous-Cell Carcinoma of the Anus with Residual or Recurrent Disease After Primary Chemoradiotherapy. Dis. Colon Rectum 2014, 57, 442–448. [Google Scholar] [CrossRef]
- Sugahara, S.; Tokuuye, K.; Okumura, T.; Nakahara, A.; Saida, Y.; Kagei, K.; Ohara, K.; Hata, M.; Igaki, H.; Akine, Y. Clinical Results of Proton Beam Therapy for Cancer of the Esophagus. Int. J. Radiat. Oncol. 2005, 61, 76–84. [Google Scholar] [CrossRef]
- Mizumoto, M.; Sugahara, S.; Nakayama, H.; Hashii, H.; Nakahara, A.; Terashima, H.; Okumura, T.; Tsuboi, K.; Tokuuye, K.; Sakurai, H. Clinical Results of Proton-Beam Therapy for Locoregionally Advanced Esophageal Cancer. Strahlenther. Onkol. 2010, 186, 482–488. [Google Scholar] [CrossRef]
- Ono, T.; Wada, H.; Ishikawa, H.; Tamamura, H.; Tokumaru, S. Clinical Results of Proton Beam Therapy for Esophageal Cancer: Multicenter Retrospective Study in Japan. Cancers 2019, 11, 993. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Zhang, L.; Luo, L.; Li, Q.; Shen, J.; Feng, Z.; Feng, Y.; Yang, H.; Liu, M.; Xi, M. Failure Pattern of Elective Nodal Irradiation for Esophageal Squamous Cell Cancer Treated with Neoadjuvant Chemoradiotherapy. Jpn. J. Clin. Oncol. 2018, 48, 815–821. [Google Scholar] [CrossRef]
- Ishikawa, H.; Hashimoto, T.; Moriwaki, T.; Hyodo, I.; Hisakura, K.; Terashima, H.; Ohkohchi, N.; Ohno, T.; Makishima, H.; Mizumoto, M.; et al. Proton Beam Therapy Combined with Concurrent Chemotherapy for Esophageal Cancer. Anticancer Res. 2015, 35, 1757–1762. [Google Scholar] [CrossRef]
- Lin, S.H.; Komaki, R.; Liao, Z.; Wei, C.; Myles, B.; Guo, X.; Palmer, M.; Mohan, R.; Swisher, S.G.; Hofstetter, W.L.; et al. Proton Beam Therapy and Concurrent Chemotherapy for Esophageal Cancer. Int. J. Radiat. Oncol. 2012, 83, e345–e351. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.H.; Merrell, K.W.; Shen, J.; Verma, V.; Correa, A.M.; Wang, L.; Thall, P.F.; Bhooshan, N.; James, S.E.; Haddock, M.G.; et al. Multi-Institutional Analysis of Radiation Modality Use and Postoperative Outcomes of Neoadjuvant Chemoradiation for Esophageal Cancer. Radiother. Oncol. 2017, 123, 376–381. [Google Scholar] [CrossRef]
- Lin, S.H.; Hobbs, B.P.; Verma, V.; Tidwell, R.S.; Smith, G.L.; Lei, X.; Corsini, E.M.; Mok, I.; Wei, X.; Yao, L.; et al. Randomized Phase IIB Trial of Proton Beam Therapy Versus Intensity-Modulated Radiation Therapy for Locally Advanced Esophageal Cancer. J. Clin. Oncol. 2020, 38, 1569–1579. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, Y.; Mitsumori, M.; Hiraoka, M.; Koike, R.; Nakamatsu, K.; Kawamura, M.; Negoro, Y.; Fujiwara, K.; Sakurai, H.; Mitsuhashi, N. A Randomized Phase II Study of Cisplatin/5-FU Concurrent Chemoradiotherapy for Esophageal Cancer: Short-Term Infusion versus Protracted Infusion Chemotherapy (KROSG0101/JROSG021). Radiother. Oncol. 2009, 92, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Muro, K.; Minashi, K.; Ohtsu, A.; Ishikura, S.; Boku, N.; Takiuchi, H.; Komatsu, Y.; Miyata, Y.; Fukuda, H. Phase II Study of Chemoradiotherapy with 5-Fluorouracil and Cisplatin for Stage II–III Esophageal Squamous Cell Carcinoma: JCOG Trial (JCOG 9906). Int. J. Radiat. Oncol. 2011, 81, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Jingu, K.; Umezawa, R.; Matsushita, H.; Sugawara, T.; Kubozono, M.; Yamamoto, T.; Ishikawa, Y.; Kozumi, M.; Takahashi, N.; Katagiri, Y.; et al. Chemoradiotherapy for T4 and/or M1 Lymph Node Esophageal Cancer: Experience since 2000 at a High-Volume Center in Japan. Int. J. Clin. Oncol. 2016, 21, 276–282. [Google Scholar] [CrossRef]
- Geh, J.I.; Bond, S.J.; Bentzen, S.M.; Glynne-Jones, R. Systematic Overview of Preoperative (Neoadjuvant) Chemoradiotherapy Trials in Oesophageal Cancer: Evidence of a Radiation and Chemotherapy Dose Response. Radiother. Oncol. 2006, 78, 236–244. [Google Scholar] [CrossRef]
- Suh, Y.-G.; Lee, I.J.; Koom, W.S.; Cha, J.; Lee, J.Y.; Kim, S.K.; Lee, C.G. High-Dose Versus Standard-Dose Radiotherapy with Concurrent Chemotherapy in Stages II–III Esophageal Cancer. Jpn. J. Clin. Oncol. 2014, 44, 534–540. [Google Scholar] [CrossRef]
- Zhang, Z.; Liao, Z.; Jin, J.; Ajani, J.; Chang, J.Y.; Jeter, M.; Guerrero, T.; Stevens, C.W.; Swisher, S.; Ho, L.; et al. Dose–Response Relationship in Locoregional Control for Patients with Stage II-III Esophageal Cancer Treated with Concurrent Chemotherapy and Radiotherapy. Int. J. Radiat. Oncol. 2005, 61, 656–664. [Google Scholar] [CrossRef]
- Simone, C.B. First Randomized Trial Supporting the Use of Proton Over Photon Chemoradiotherapy in Esophageal Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 2952–2955. [Google Scholar] [CrossRef]
- Verma, V.; Mishra, M.V.; Mehta, M.P. A Systematic Review of the Cost and Cost-Effectiveness Studies of Proton Radiotherapy: Cost-Effectiveness of Protons. Cancer 2016, 122, 1483–1501. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Fang, P.; Xu, C.; Song, J.; Krishnan, S.; Koay, E.J.; Mehran, R.J.; Hofstetter, W.L.; Blum-Murphy, M.; Ajani, J.A.; et al. Severe Lymphopenia during Neoadjuvant Chemoradiation for Esophageal Cancer: A Propensity Matched Analysis of the Relative Risk of Proton versus Photon-Based Radiation Therapy. Radiother. Oncol. 2018, 128, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Fang, P.; Shiraishi, Y.; Verma, V.; Jiang, W.; Song, J.; Hobbs, B.P.; Lin, S.H. Lymphocyte-Sparing Effect of Proton Therapy in Patients with Esophageal Cancer Treated with Definitive Chemoradiation. Int. J. Part. Ther. 2017, 4, 23–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Routman, D.M.; Garant, A.; Lester, S.C.; Day, C.N.; Harmsen, W.S.; Sanheuza, C.T.; Yoon, H.H.; Neben-Wittich, M.A.; Martenson, J.A.; Haddock, M.G.; et al. A Comparison of Grade 4 Lymphopenia with Proton Versus Photon Radiation Therapy for Esophageal Cancer. Adv. Radiat. Oncol. 2019, 4, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Ishikura, S.; Nihei, K.; Ohtsu, A.; Boku, N.; Hironaka, S.; Mera, K.; Muto, M.; Ogino, T.; Yoshida, S. Long-Term Toxicity After Definitive Chemoradiotherapy for Squamous Cell Carcinoma of the Thoracic Esophagus. J. Clin. Oncol. 2003, 21, 2697–2702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morota, M.; Gomi, K.; Kozuka, T.; Chin, K.; Matsuura, M.; Oguchi, M.; Ito, H.; Yamashita, T. Late Toxicity After Definitive Concurrent Chemoradiotherapy for Thoracic Esophageal Carcinoma. Int. J. Radiat. Oncol. 2009, 75, 122–128. [Google Scholar] [CrossRef]
- Verma, V.; Simone, C.B.; Mishra, M.V. Quality of Life and Patient-Reported Outcomes Following Proton Radiation Therapy: A Systematic Review. JNCI J. Natl. Cancer Inst. 2018, 110, 341–353. [Google Scholar] [CrossRef]
- Garant, A.; Whitaker, T.J.; Spears, G.M.; Routman, D.M.; Harmsen, W.S.; Wilhite, T.J.; Ashman, J.B.; Sio, T.T.; Rule, W.G.; Neben Wittich, M.A.; et al. A Comparison of Patient-Reported Health-Related Quality of Life During Proton Versus Photon Chemoradiation Therapy for Esophageal Cancer. Pract. Radiat. Oncol. 2019, 9, 410–417. [Google Scholar] [CrossRef]
- Swann, J.B.; Smyth, M.J. Immune Surveillance of Tumors. J. Clin. Investig. 2007, 117, 1137–1146. [Google Scholar] [CrossRef] [Green Version]
- Ray-Coquard, I.; Cropet, C.; Van Glabbeke, M.; Sebban, C.; Le Cesne, A.; Judson, I.; Tredan, O.; Verweij, J.; Biron, P.; Labidi, I.; et al. Lymphopenia as a Prognostic Factor for Overall Survival in Advanced Carcinomas, Sarcomas, and Lymphomas. Cancer Res. 2009, 69, 5383–5391. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.; Kim, D.W.; Muralidhar, V.; Mitra, D.; Horick, N.K.; Eyler, C.E.; Hong, T.S.; Drapek, L.C.; Allen, J.N.; Blaszkowsky, L.S.; et al. Chemoradiation-Related Lymphopenia and Its Association with Survival in Patients with Squamous Cell Carcinoma of the Anal Canal. Oncologist 2020, 25, 1015–1022. [Google Scholar] [CrossRef]
- Davuluri, R.; Jiang, W.; Fang, P.; Xu, C.; Komaki, R.; Gomez, D.R.; Welsh, J.; Cox, J.D.; Crane, C.H.; Hsu, C.C.; et al. Lymphocyte Nadir and Esophageal Cancer Survival Outcomes After Chemoradiation Therapy. Int. J. Radiat. Oncol. 2017, 99, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, N.; Kusunoki, Y.; Akiyama, M. Radiosensitivity of CD4 or CD8 Positive Human T-Lymphocytes by an in Vitro Colony Formation Assay. Radiat. Res. 1990, 123, 224. [Google Scholar] [CrossRef]
- Yovino, S.; Kleinberg, L.; Grossman, S.A.; Narayanan, M.; Ford, E. The Etiology of Treatment-Related Lymphopenia in Patients with Malignant Gliomas: Modeling Radiation Dose to Circulating Lymphocytes Explains Clinical Observations and Suggests Methods of Modifying the Impact of Radiation on Immune Cells. Cancer Investig. 2013, 31, 140–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.-L.; Zhu, W.-G.; Zhu, Z.-J.; Wang, W.-W.; Deng, X.; Tao, W.-J.; Ji, F.-Z.; Tong, Y.-S. Lymphopenia in Esophageal Squamous Cell Carcinoma: Relationship to Malnutrition, Various Disease Parameters, and Response to Concurrent Chemoradiotherapy. Oncologist 2019, 24, e677–e686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tryggestad, E.J.; Liu, W.; Pepin, M.D.; Hallemeier, C.L.; Sio, T.T. Managing Treatment-Related Uncertainties in Proton Beam Radiotherapy for Gastrointestinal Cancers. J. Gastrointest. Oncol. 2020, 11, 212–224. [Google Scholar] [CrossRef]
- Liu, W.; Schild, S.E.; Chang, J.Y.; Liao, Z.; Chang, Y.-H.; Wen, Z.; Shen, J.; Stoker, J.B.; Ding, X.; Hu, Y.; et al. Exploratory Study of 4D versus 3D Robust Optimization in Intensity Modulated Proton Therapy for Lung Cancer. Int. J. Radiat. Oncol. 2016, 95, 523–533. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Zhang, X.; Liao, L.; Li, H.; Zhu, R.; Park, P.C.; Sahoo, N.; Gillin, M.; Li, Y.; Chang, J.Y.; et al. Motion-robust Intensity-modulated Proton Therapy for Distal Esophageal Cancer. Med. Phys. 2016, 43, 1111–1118. [Google Scholar] [CrossRef]
- Pan, C.C.; Kavanagh, B.D.; Dawson, L.A.; Li, X.A.; Das, S.K.; Miften, M.; Ten Haken, R.K. Radiation-Associated Liver Injury. Int. J. Radiat. Oncol. 2010, 76, S94–S100. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Souris, K.; Kang, M.; Glick, A.; Lin, H.; Huang, S.; Stützer, K.; Janssens, G.; Sterpin, E.; Lee, J.A.; et al. Evaluation of Motion Mitigation Using Abdominal Compression in the Clinical Implementation of Pencil Beam Scanning Proton Therapy of Liver Tumors. Med. Phys. 2017, 44, 703–712. [Google Scholar] [CrossRef]
- Zeng, Y.-C.; Vyas, S.; Dang, Q.; Schultz, L.; Bowen, S.R.; Shankaran, V.; Farjah, F.; Oelschlager, B.K.; Apisarnthanarax, S.; Zeng, J. Proton Therapy Posterior Beam Approach with Pencil Beam Scanning for Esophageal Cancer: Clinical Outcome, Dosimetry, and Feasibility. Strahlenther. Onkol. 2016, 192, 913–921. [Google Scholar] [CrossRef]
- Ribeiro, C.O.; Meijers, A.; Korevaar, E.W.; Muijs, C.T.; Both, S.; Langendijk, J.A.; Knopf, A. Comprehensive 4D Robustness Evaluation for Pencil Beam Scanned Proton Plans. Radiother. Oncol. 2019, 136, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Visser, S.; den Otter, L.A.; Ribeiro, C.O.; Korevaar, E.W.; Both, S.; Langendijk, J.A.; Muijs, C.T.; Sijtsema, N.M.; Knopf, A. Diaphragm-Based Position Verification to Improve Daily Target Dose Coverage in Proton and Photon Radiation Therapy Treatment of Distal Esophageal Cancer. Int. J. Radiat. Oncol. 2022, 112, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Efstathiou, J.A.; Sharp, G.C.; Lu, H.-M.; Frank Ciernik, I.; Trofimov, A.V. Evaluation of the Dosimetric Impact of Interfractional Anatomical Variations on Prostate Proton Therapy Using Daily In-Room CT Images: Impact of Interfractional Organ Motion on Prostate PT. Med. Phys. 2011, 38, 4623–4633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodkins, J.; Hopman, W.M.; Wells, J.C.; Lievens, Y.; Malik, R.A.; Pramesh, C.S.; Gyawali, B.; Hammad, N.; Mukherji, D.; Sullivan, R.; et al. Is Clinical Research Serving the Needs of the Global Cancer Burden? An Analysis of Contemporary Global Radiation Therapy Randomized Controlled Trials. Int. J. Radiat. Oncol. 2022, 113, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Dee, E.C.; Eala, M.A.B.; Small, W.; Gaffney, D.K.; Tangco, E.D.; Abdel-Wahab, M.; Grover, S. Equity in Radiation Oncology Trials: From Knowledge Generation to Clinical Translation. Int. J. Radiat. Oncol. 2022, 113, 511–512. [Google Scholar] [CrossRef]
- Ileana Pérez Álvarez, S.; Javier Lozano Ruiz, F.; Maldonado Magos, F.; Mota García, A. Proton Therapy in Lower-Middle-Income Countries: From Facts and Reality to Desire, Challenges and Limitations. In Proton Therapy—Current Status and Future Directions; FitzGerald, T.J., Bishop-Jodoin, M., Eds.; IntechOpen: London, UK, 2021; ISBN 978-1-83968-012-0. [Google Scholar]
- Division for Human Health: DIRAC (Directory of Radiotherapy Centers). Available online: https://dirac.iaea.org/Query/Map2?mapId=0 (accessed on 11 June 2022).
- Taschetta-Millane, M. Southern Asia’s First Proton Therapy Center Begins Treatments. Image Technology News. 2019. Available online: https://www.itnonline.com/content/southern-asias-first-proton-therapy-center-begins-treatments (accessed on 11 June 2022).
- PRNewswire. First Proton Therapy Treatment Delivered in Southeast Asia at Her Royal Highness Princess Maha Chakri Sirindhorn Proton Center, Thailand. Yahoo! 2022. Available online: https://www.yahoo.com/now/first-proton-therapy-treatment-delivered-211500481.html#:~:text=BANGKOK%2C%20Feb.,in%20Thailand%20and%20Southeast%20Asia (accessed on 11 June 2022).
- Ting, Y.W.; Doi, Y. Hitachi Is Selected by National Cancer Centre Singapore for Southeast Asia’s First Proton Beam Therapy System. Available online: https://www.itnonline.com/content/hitachi-selected-southeast-asias-first-proton-beam-therapy-system (accessed on 11 June 2022).
- Wells, J.C.; Sharma, S.; Del Paggio, J.C.; Hopman, W.M.; Gyawali, B.; Mukherji, D.; Hammad, N.; Pramesh, C.S.; Aggarwal, A.; Sullivan, R.; et al. An Analysis of Contemporary Oncology Randomized Clinical Trials from Low/Middle-Income vs. High-Income Countries. JAMA Oncol. 2021, 7, 379. [Google Scholar] [CrossRef]
- Grover, S.; Xu, M.; Jhingran, A.; Mahantshetty, U.; Chuang, L.; Small, W.; Gaffney, D. Clinical Trials in Low and Middle-Income Countries—Successes and Challenges. Gynecol. Oncol. Rep. 2017, 19, 5–9. [Google Scholar] [CrossRef]
- Futoma, J.; Simons, M.; Panch, T.; Doshi-Velez, F.; Celi, L.A. The Myth of Generalisability in Clinical Research and Machine Learning in Health Care. Lancet Digit. Health 2020, 2, e489–e492. [Google Scholar] [CrossRef]
Author (Year) | Country/Countries of Origin | Number of Patients | Race/Ethnicity Breakdown (n) | Cancer Features Breakdown (n) | Comparison Arms | Dose (Gy)/Number of Fractions | Dosimetric Advantages of PBT |
---|---|---|---|---|---|---|---|
Zhang et al. (2008) [31] | United States | 15 | - | Location: distal/GEJ; Stage not stated | PS-PBT vs. IMRT | 50.4/28 | Heart: V40–50 Gy. Lung: Dmean, V5–20 Gy |
Welsh et al. (2011) [34] | United States | 10 | - | Location: distal; Stage not stated | PBS-PBT vs. IMRT | 65.8/28 | Lung: Dmean, V5–20 Gy |
Wang et al. (2015) [35] | United States | 55 | - | Location: upper (2), mid (11), distal (42); Stage not stated | PS-PBT vs. IMRT | 50.4/28 | Heart: Dmean, V10–30 Gy Lung: Dmean, V5–20 Gy |
Warren et al. (2016) [36] | United Kingdom | 21 | - | Location: midthoracic | PBS-PBT vs. VMAT | 50–62.5/25 | Heart: Dmean, V5 Gy Lung: Dmean |
Shiraishi et al. (2017) [33] | United States | 727 | - | Location: mid (76), distal (651); Stage I (18), IIA (225), IIB (29), III (423), IVA (32) | PS-PBT (99%) or PBS-PBT vs. IMRT | 50.4/28 | Heart: Dmean, V5–40 Gy Lung: Dmean, V5 Gy Liver: Dmean, V30 Gy |
Xi et al. (2017) [32] | United States | 343 | Ethnicity: Caucasian (290), others (53) | Location: upper/mid (95), distal/GEJ (248); Stage I/II (117), III (226) | PS-PBT (95%) or PBS-PBT vs. IMRT | 50.4/28 | Heart: Dmean, V30 Gy Lung: Dmean, V5–20 Gy |
Hirano et al. (2018) [37] | Japan | 27 | - | Location: upper (5), mid (9), mid/distal (6), distal (5), distal/abdominal (2); Stage IIIA (15), IIIB (9), IIIC (3) | PBS-PBT vs. 3DCRT or IMRT | 60/30 | Heart: Dmean, V10–40 Lung: Dmean, V5–20 Gy |
Macomber et al. (2018) [38] | United States | 55 | - | Location: mid (10), distal/GEJ (45); Stage IIA (3), IIB (16), IIIA (30), IIIB (5), IIIC (1) | Mixed PS-PBT and PBS-PBT vs. IMRT vs. 3DCRT | 50.4/28 | Heart: Dmean, V5–40 Gy |
Liu et al. (2019) [39] | United States | 35 | - | Location: distal; Stage not stated | PBS-PBT vs. VMAT | 50–50.4/25–28 | Heart: Dmean, V20 Gy Lung: Dmean, V5 Gy Liver: Dmean, V30 Gy |
Author (Year) | Country/ Countries of Origin | Study Design | Number of Patients | Race/Ethnicity Breakdown (n) | Cancer Features Breakdown (n) | Technique/ Modality | Dose (Gy)/Number of Fractions | Outcomes of PBT (IMRT) | Toxicity of PBT (IMRT) | Post-Op Complications of PBT (IMRT) |
---|---|---|---|---|---|---|---|---|---|---|
Lin et al. (2012) [51] | United States | Retrospective cohort | 62 | Ethnicity: Caucasian (59), African American (1), Hispanic (1), Asian (1) | Location: upper (3), mid (11), distal/GEJ (48); Stage I (2), II (20), III (32), IVA (2), IVB (6) | PS-PBT | 50.4/28 | OS3: 52%; RFS3: 41%; DMFS3: 67%; LRC3: 57% | G2+ pneumonitis: 3%; mortality: 3% | Pulmonary: 7%; cardiac: 8%; anastomotic leak: 7%; wound: 3% |
Ishikawa et al. (2015) [50] | Japan | Retrospective cohort | 40 | - | Location: cervical (2), upper (10), mid (21), distal (7); Stage I (16), II (9), III (15) | PS-PBT | 60/30 | OS2: 75%; LRC2: 66%; CSS2: 77% | G3+ pulmonary: 0%; G3+ cardiac: 0% | – |
Xi et al. (2017) [32] | United States | Retrospective cohort | 343 | Ethnicity: Caucasian (290), others (53) | Location: upper/mid (95), distal/GEJ (248); Stage I/II (117), III (226) | PBS-PBT/PS-PBT; IMRT | 50.4/28 | OS5: 42% (32%) *; PFS5: 35% (20%) *; DMFS5: 65% (50%) * | G3+: 38% (45%) | – |
Lin et al. (2017) [52] | United States | Multi-institutional retrospective cohort | 580 | - | Location: upper/mid (41), distal/GEJ/cardia (539); Stage I/II (211), III/IV (369) | PBS-PBT/PS-PBT; IMRT; 3DCRT | 50.4/28 | – | – | Pulmonary: 16% (24%) *; cardiac: 12% (12%); wound: 5% (14%) *; GI: 19% (23%); hospital stay: 9 [12] days * |
Hirano et al. (2018) [37] | Japan | Retrospective cohort | 27 | - | Location: upper (5), mid (9), mid/distal (6), distal (5), distal/abdominal (2); Stage IIIA (15), IIIB (9), IIIC (3) | PBS-PBT | 60/30 | OS1: 90.8% PFS1: 40.6% | G3+ Esophagitis: 4% G2+ cardiac: 19% | - |
Ono et al. (2019) [48] | Japan | Multicenter retrospective cohort | 202 | - | Location: cervical (20), thoracic (181), abdominal (1); Stage I (72), II (30), III (52), IV (48) | PBT | BED10 87.2 | OS5: 56.3% LRC: 64.4% | G3+ cardiac: 1% G3+ pulmonary: 0.5% | - |
Lin et al. (2020) [53] | United States | Prospective randomized phase IIb trial | 107 | Race: White (98), Black (2), Asian (1), unknown (6); Ethnicity: Not Hispanic (95), Hispanic (11), unknown (1) | Location: upper (3), mid (15), distal (98); Stage I (6), II (41), III (60) | PS-PBT/PBS-PBT; IMRT | 50.4/28 | PFS3: 51.2% (50.8%) OS3: 44.5% (44.5%) | TTB: 17.4 (39.9) | POCS: 2.5 (19.1) |
Author (Year) | Country/Countries of Origin | Number of Patients | Treatment Arm | Dose (Gy)/Number of Fractions | Lymphopenia |
---|---|---|---|---|---|
Fang et al. (2017) [63] | United States | 220 | IMRT vs. PBT | 45–50.4/25–28 | 47.27% vs. 30.9% (AOR: 2.13) |
Davuluri et al. (2017) [72] | United States | 504 | IMRT vs. PBT | 50.4/28 | 33% vs. 16% |
Shiraishi et al. (2018) [62] | United States | 480 | IMRT vs. PBT | 50.4/28 | 40.4% vs. 17.6% (OR: 3.45) |
Routman et al. (2019) [64] | United States | 144 | 3DCRT or IMRT vs. PBT | 41.4–50.4/23–28 | 56% vs. 22% (OR: 5.13) |
Zhou et al. (2019) [75] | China | 286 | CRT | 50–60/28–30 | 31% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solidum, J.G.N.; Rojo, R.D.; Wo, J.Y.; Dee, E.C. Proton Beam Therapy for Esophageal Cancer. Cancers 2022, 14, 4045. https://doi.org/10.3390/cancers14164045
Solidum JGN, Rojo RD, Wo JY, Dee EC. Proton Beam Therapy for Esophageal Cancer. Cancers. 2022; 14(16):4045. https://doi.org/10.3390/cancers14164045
Chicago/Turabian StyleSolidum, Jea Giezl N., Raniv D. Rojo, Jennifer Y. Wo, and Edward Christopher Dee. 2022. "Proton Beam Therapy for Esophageal Cancer" Cancers 14, no. 16: 4045. https://doi.org/10.3390/cancers14164045
APA StyleSolidum, J. G. N., Rojo, R. D., Wo, J. Y., & Dee, E. C. (2022). Proton Beam Therapy for Esophageal Cancer. Cancers, 14(16), 4045. https://doi.org/10.3390/cancers14164045