Treatment Planning in Intraoperative Radiation Therapy (IORT): Where Should We Go?
Abstract
Simple Summary
Abstract
1. Introduction
2. Current Technology
3. Needs and Opportunities
4. Prospected Development and Possible Strategies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ge, Y.; Wu, Q.J. Knowledge-based planning for intensity-modulated radiation therapy: A review of data-driven approaches. Med. Phys. 2019, 46, 2760–2775. [Google Scholar] [CrossRef] [PubMed]
- Alhamada, H.; Simon, S.; Philippson, C.; Vandekerkhove, C.; Jourani, Y.; Pauly, N.; Van Gestel, D.; Reynaert, N. Monte Carlo dose calculations of shielding disks with different material combinations in intraoperative electron radiation therapy (IOERT). Cancer Radiother. 2020, 24, 128–134. [Google Scholar] [CrossRef] [PubMed]
- McCormick, B. Five year results of Intrabeam intra-operative treatment for Breast Cancer, from France and not from Target A. Breast J. 2020, 26, 2143–2144. [Google Scholar] [CrossRef]
- Vidal, M.; Ibáñez, P.; Guerra, P.; Valdivieso-Casique, M.F.; Rodríguez, R.; Illana, C.; Udías, J.M. Fast optimized Monte Carlo phase-space generation and dose prediction for low energy x-ray intra-operative radiation therapy. Phys. Med. Biol. 2019, 64, 075002. [Google Scholar] [CrossRef]
- Alhamada, H.; Simon, S.; Philippson, C.; Vandekerkhove, C.; Jourani, Y.; Pauly, N.; VanGestel, D.; Reynaert, N. 3D Monte Carlo dosimetry of intraoperative electron radiation therapy (IOERT). Phys. Med. 2019, 57, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Guerra, P.; Udías, J.M.; Herranz, E.; Santos-Miranda, J.A.; Herraiz, J.L.; Valdivieso, M.F.; Rodríguez, R.; Calama, J.A.; Pascau, J.; Calvo, F.A.; et al. Feasibility assessment of the interactive use of a Monte Carlo algorithm in treatment planning for intraoperative electron radiation therapy. Phys. Med. Biol. 2014, 59, 7159–7179. [Google Scholar] [CrossRef]
- Ronga, M.G.; Cavallone, M.; Patriarca, A.; Leite, A.M.; Loap, P.; Favaudon, V.; Créhange, G.; De Marzi, L. Back to the Future: Very High-Energy Electrons (VHEEs) and Their Potential Application in Radiation Therapy. Cancers 2021, 13, 4942. [Google Scholar] [CrossRef]
- García-Vázquez, V.; Calvo, F.A.; Ledesma-Carbayo, M.J.; Sole, C.V.; Calvo-Haro, J.; Desco, M.; Pascau, J. Intraoperative computed tomography imaging for dose calculation in intraoperative electron radiation therapy: Initial clinical observations. PLoS ONE 2020, 15, e0227155. [Google Scholar] [CrossRef]
- Pascau, J.; Santos Miranda, J.A.; Calvo, F.A.; Bouche, A.; Morillo, V.; González-San Segundo, C.; Ferrer, C.; Tarjuelo, J.L.; Desco, M. An inno-vative tool for intraoperative electron beam radiotherapy simulation and planning: Description and initial evaluation by radiation oncologists. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, e287–e295. [Google Scholar] [CrossRef] [PubMed]
- Valdivieso-Casique, M.F.; Rodríguez, R.; Rodríguez-Bescós, S.; Lardíes, D.; Guerra, P.; Ledesma, M.J.; Santos, A.; Ibáñez, P.; Vidal, M.; Udías, J.M.; et al. RADIANCE—A planning software for intra-operative radiation therapy. Transl. Cancer Res. 2015, 4, 196–209. [Google Scholar] [CrossRef]
- Harrer, C.; Ullrich, W.; Wilkens, J.J. Prediction of multi-criteria optimization (MCO) parameter efficiency in volumetric modulated arc therapy (VMAT) treatment planning using machine learning (ML). Phys. Med. 2021, 81, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Bijman, R.; Sharfo, A.W.; Rossi, L.; Breedveld, S.; Heijmen, B. Pre-clinical validation of a novel system for fully-automated treatment planning. Radiother. Oncol. 2021, 158, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Schneider, F.; Bludau, F.; Clausen, S.; Fleckenstein, J.; Obertacke, U.; Wenz, F. Precision IORT-Image guided intraoperative radiation therapy (igIORT) using online treatment planning including tissue heterogeneity correction. Phys. Med. 2017, 37, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Consorti, R.; Petrucci, A.; Fortunato, F.; Soriani, A.; Marzi, S.; Iaccarino, G.; Landoni, V.; Benassi, M. In vivo dosimetry with MOS-FETs: Dosimetric characterization and first clinical results in intraoperative radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 952–960. [Google Scholar] [CrossRef]
- Khan, F.M.; Gibbons, J.P. Electron beam therapy. In Khan’s the Physics of Radiation Therapy; Pine, J.W., Jr., Moyer, E., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014; pp. 256–308. [Google Scholar]
- López-Tarjuelo, J.; Morillo-Macías, V.; Bouché-Babiloni, A.; Boldó-Roda, E.; Lozoya-Albacar, R.; Ferrer-Albiach, C. Implementation of an intraoperative electron radiotherapy in vivo dosimetry program. Radiat. Oncol. 2016, 11, 41. [Google Scholar] [CrossRef]
- Costa, F.; Sarmento, S.; Sousa, O. Assessment of clinically relevant dose distributions in pelvic IOERT using Gafchromic EBT3 films. Phys. Med. 2015, 31, 692–701. [Google Scholar] [CrossRef][Green Version]
- Santos, J.; Silva, S.; Sarmento, S. Optimized method for in vivo dosimetry with small films in pelvic IOERT for rectal cancer. Phys. Med. 2021, 81, 20–30. [Google Scholar] [CrossRef]
- Esplen, N.; Mendonca, M.S.; Bazalova-Carter, M. Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: A topical review. Phys. Med. Biol. 2020, 65, 23TR03. [Google Scholar] [CrossRef]
- Bourhis, J.; Montay-Gruel, P.; Gonçalves Jorge, P.; Bailat, C.; Petit, B.; Ollivier, J.; Jeanneret-Sozzi, W.; Ozsahin, M.; Bochud, F.; Moeckli, R.; et al. Clinical translation of FLASH radiotherapy: Why and how? Radiother. Oncol. 2019, 139, 11–17. [Google Scholar] [CrossRef]
- Marcu, L.G.; Bezak, E.; Peukert, D.D.; Wilson, P. Translational Research in FLASH Radiotherapy-From Radiobiological Mechanisms to In Vivo Results. Biomedicines 2021, 9, 181. [Google Scholar] [CrossRef]
- McMahon, S.J.; Prise, K.M. Mechanistic Modelling of Radiation Responses. Cancers 2019, 11, 205. [Google Scholar] [CrossRef] [PubMed]
- Bug, M.U.; Baek, W.Y.; Rabus, H.; Villagrasa, C.; Meylan, S.; Rosenfeld, A.B. An electron-impact cross section data set (10 eV–1 keV) of DNA constituents based on consistent experimental data: A requisite for Monte Carlo simulations. Radiat. Phys. Chem. 2017, 130, 459–479. [Google Scholar] [CrossRef]
- Francis, Z.; el Bitar, Z.; Incerti, S.; Bernal, M.A.; Karamitros, M.; Tran, H.N. Calculation of lineal energies for water and DNA bases using the Rudd model cross sections integrated within the Geant4-DNA processes. J. Appl. Phys. 2017, 122, 014701. [Google Scholar] [CrossRef]
- Calvo, F.A.; Sole, C.V.; Gonzalez, M.E.; Tangco, E.D.; López-Tarjuelo, J.; Koubychine, I.; Santos, J.A.; Pascau, J.; Herranz, R.; Ferrer, C. Research opportunities in intraoperative radiation therapy: The next decade 2013–2023. Clin. Transl. Oncol. 2013, 15, 683–690. [Google Scholar] [CrossRef]
- Chetty, I.J.; Rosu-Bubulac, M. Deformable Registration for Dose Accumulation. Semin. Radiat. Oncol. 2019, 29, 198–208. [Google Scholar] [CrossRef]
- Brock, K.K. Image registration in intensity- modulated, image-guided and stereotactic body radiation therapy. Front. Radiat. Ther. Oncol. 2007, 40, 94–115. [Google Scholar] [CrossRef]
- Rankin, T.M.; Giovinco, N.A.; Cucher, D.J.; Watts, G.; Hurwitz, B.; Armstrong, D.G. Three-dimensional printing surgical instruments: Are we there yet? J. Surg. Res. 2014, 189, 193–197. [Google Scholar] [CrossRef]
- García-Vázquez, V.; Marinetto, E.; Guerra, P.; Valdivieso-Casique, M.F.; Calvo, F.Á.; Alvarado-Vásquez, E.; Sole, C.V.; Vosburgh, K.G.; Desco, M.; Pascau, J. Assessment of intraoperative 3D imaging alternatives for IOERT dose estimation. Z. Med. Phys. 2017, 27, 218–231. [Google Scholar] [CrossRef]
- García-Vázquez, V.; Sesé-Lucio, B.; Calvo, F.A.; Vaquero, J.J.; Desco, M.; Pascau, J. Surface scanning for 3D dose calculation in intraoperative electron radiation therapy. Radiat. Oncol. 2018, 13, 243. [Google Scholar] [CrossRef]
- Hensley, F.W. Present state and issues in IORT Physics. Radiat. Oncol. 2017, 12, 37. [Google Scholar] [CrossRef]
- Chiavassa, S.; Buge, F.; Hervé, C.; Delpon, G.; Rigaud, J.; Lisbona, A.; Supiot, S. Monte Carlo evaluation of the effect of inhomogeneities on dose calculation for low energy photons intra-operative radiation therapy in pelvic area. Phys. Med. 2015, 31, 956–962. [Google Scholar] [CrossRef] [PubMed]
- García-Vázquez, V.; Marinetto, E.; Santos-Miranda, J.A.; Calvo, F.A.; Desco, M.; Pascau, J. Feasibility of integrating a multi-camera optical tracking system in intra-operative electron radiation therapy scenarios. Phys. Med. Biol. 2013, 58, 8769–8782. [Google Scholar] [CrossRef] [PubMed]
- Washio, H.; Ohira, S.; Funama, Y.; Ueda, Y.; Isono, M.; Inui, S.; Miyazaki, M.; Teshima, T. Accuracy of dose calculation on iterative CBCT for head and neck radiotherapy. Phys. Med. 2021, 86, 106–112. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavedon, C.; Mazzarotto, R. Treatment Planning in Intraoperative Radiation Therapy (IORT): Where Should We Go? Cancers 2022, 14, 3532. https://doi.org/10.3390/cancers14143532
Cavedon C, Mazzarotto R. Treatment Planning in Intraoperative Radiation Therapy (IORT): Where Should We Go? Cancers. 2022; 14(14):3532. https://doi.org/10.3390/cancers14143532
Chicago/Turabian StyleCavedon, Carlo, and Renzo Mazzarotto. 2022. "Treatment Planning in Intraoperative Radiation Therapy (IORT): Where Should We Go?" Cancers 14, no. 14: 3532. https://doi.org/10.3390/cancers14143532
APA StyleCavedon, C., & Mazzarotto, R. (2022). Treatment Planning in Intraoperative Radiation Therapy (IORT): Where Should We Go? Cancers, 14(14), 3532. https://doi.org/10.3390/cancers14143532