Autophagy-Related Gene Signature Highlights Metabolic and Immunogenic Status of Malignant Cells in Non-Small Cell Lung Cancer Adenocarcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset Source, Pre-Processing and Workflow
2.2. Autophagy Signature and Clustering Analysis
2.3. Functional Annotation Enrichment
2.4. Immune Cell Infiltration, Stromal Cell Population and Exhaustion Marker Expression Analysis
2.5. Autophagy Signature Expression in Sorted-Cell Fresh Tumor Samples Datasets and Single Cell Analysis
2.6. Autophagy Clustering Analysis in Malignant Tumor Cells
2.7. Gene Set Enrichment Analysis in A549 Deficient for Autophagy
2.8. Cell Culture, Proliferation Analysis and Confocal Microscopy
2.9. Statistical Analysis
3. Results
3.1. Autophagy Gene Expression Was Distinct, According to the Subtype of Lung Tumors
3.2. Autophagy-Related Gene Signature in Lung Adenocarcinoma Correlates with an Increase in Anabolic and a Decrease in Catabolic Pathways
3.3. Autophagy-Related Gene Signature Highlighted a Decrease in Immunity-Related Pathways and an Increase in Exhaustion Genes
3.4. The Autophagy Signature B Was Enriched in Malignant Cells and Revealed Metabolic and Immunogenic Status of Tumor Cells
3.5. Autophagy Is Required for the Proliferation of Tumor Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nasim, F.; Sabath, B.F.; Eapen, G.A. Lung Cancer. Med. Clin. N. Am. 2019, 103, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Zappa, C.; Mousa, S.A. Non-Small Cell Lung Cancer: Current Treatment and Future Advances. Transl. Lung Cancer Res. 2016, 5, 288–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Meng, Y.; Zong, C.; Zhang, S.; Wei, L. Autophagy and Tumorigenesis. Adv. Exp. Med. Biol. 2020, 1207, 275–299. [Google Scholar] [CrossRef]
- Li, X.; He, S.; Ma, B. Autophagy and Autophagy-Related Proteins in Cancer. Mol. Cancer 2020, 19, 12. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, N.; Levine, B. Autophagy in Human Diseases. N. Engl. J. Med. 2020, 383, 1564–1576. [Google Scholar] [CrossRef]
- Levine, B.; Kroemer, G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell 2019, 176, 11–42. [Google Scholar] [CrossRef] [Green Version]
- Mulcahy Levy, J.M.; Thorburn, A. Autophagy in Cancer: Moving from Understanding Mechanism to Improving Therapy Responses in Patients. Cell Death Differ. 2020, 27, 843–857. [Google Scholar] [CrossRef]
- Maher, C.M.; Thomas, J.D.; Haas, D.A.; Longen, C.G.; Oyer, H.M.; Tong, J.Y.; Kim, F.J. Small-Molecule Sigma1 Modulator Induces Autophagic Degradation of PD-L1. Mol. Cancer Res. 2018, 16, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.-M.; Tan, Y.; Wang, H.; Peng, L.; Chen, H.-T.; Meng, X.-J.; Li, L.-L.; Liu, Y.; Li, W.-F.; Shan, H. The Relationship between Autophagy and the Immune System and Its Applications for Tumor Immunotherapy. Mol. Cancer 2019, 18, 17. [Google Scholar] [CrossRef] [Green Version]
- Jang, Y.J.; Kim, J.H.; Byun, S. Modulation of Autophagy for Controlling Immunity. Cells 2019, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Chen, X.; Wang, X.; Zhao, Z.; Hu, W.; Zeng, S.; Wei, J.; Yang, X.; Qian, L.; Zhou, S.; et al. The Effects and the Mechanisms of Autophagy on the Cancer-Associated Fibroblasts in Cancer. J. Exp. Clin. Cancer Res. 2019, 38, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Xiong, H.; Shen, H.; You, Q. Autophagy Characteristics and Establishment of Autophagy Prognostic Models in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma. PLoS ONE 2022, 17, e0266070. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, M.; Hu, D. Development of an Autophagy-Related Gene Prognostic Signature in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma. PeerJ 2020, 8, e8288. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Shao, W.; Dai, H.; Zhu, X. A Robust Signature Based on Autophagy-Associated LncRNAs for Predicting Prognosis in Lung Adenocarcinoma. BioMed Res. Int. 2020, 2020, e3858373. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Xie, S.; Zhang, Z.; Zhao, H.; Zhao, Z.; Sun, H.; Zheng, J. A Novel Risk Model Based on Autophagy Pathway Related Genes for Survival Prediction in Lung Adenocarcinoma. Med. Sci. Monit. 2020, 26, e924710-1–e924710-10. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, L.; Ao, H.; Zhao, M.; Leng, X.; Liu, M.; Ma, J.; Zhu, J. Prognostic Implications of Autophagy-Associated Gene Signatures in Non-Small Cell Lung Cancer. Aging 2019, 11, 11440–11462. [Google Scholar] [CrossRef]
- Becht, E.; Giraldo, N.A.; Lacroix, L.; Buttard, B.; Elarouci, N.; Petitprez, F.; Selves, J.; Laurent-Puig, P.; Sautès-Fridman, C.; Fridman, W.H.; et al. Estimating the Population Abundance of Tissue-Infiltrating Immune and Stromal Cell Populations Using Gene Expression. Genome Biol. 2016, 17, 218. [Google Scholar] [CrossRef]
- Guo, W.; Du, K.; Luo, S.; Hu, D. Recent Advances of Autophagy in Non-Small Cell Lung Cancer: From Basic Mechanisms to Clinical Application. Front. Oncol. 2022, 12, 861959. [Google Scholar] [CrossRef]
- Liu, G.; Pei, F.; Yang, F.; Li, L.; Amin, A.D.; Liu, S.; Buchan, J.R.; Cho, W.C. Role of Autophagy and Apoptosis in Non-Small-Cell Lung Cancer. Int. J. Mol. Sci. 2017, 18, 367. [Google Scholar] [CrossRef]
- Langer, R.; Neppl, C.; Keller, M.D.; Schmid, R.A.; Tschan, M.P.; Berezowska, S. Expression Analysis of Autophagy Related Markers LC3B, P62 and HMGB1 Indicate an Autophagy-Independent Negative Prognostic Impact of High P62 Expression in Pulmonary Squamous Cell Carcinomas. Cancers 2018, 10, 281. [Google Scholar] [CrossRef] [Green Version]
- Überall, I.; Gachechiladze, M.; Joerger, M.; Anděl, J.; Smičková, P.; Kolek, V.; Grygárková, I.; Škarda, J. Tumor Autophagy Is Associated with Survival Outcomes in Patients with Resected Non-Small Cell Lung Cancer. Lung Cancer 2019, 129, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Zhang, Q.; Lv, L.; Ma, P.; Zhang, Y.; Zhao, N.; Zhang, Y. Identification of an Autophagy-Related Gene Signature for Predicting Prognosis and Immune Activity in Pancreatic Adenocarcinoma. Sci. Rep. 2022, 12, 7006. [Google Scholar] [CrossRef] [PubMed]
- Jiang, A.; Liu, N.; Bai, S.; Wang, J.; Gao, H.; Zheng, X.; Fu, X.; Ren, M.; Zhang, X.; Tian, T.; et al. Identification and Validation of an Autophagy-Related Long Non-Coding RNA Signature as a Prognostic Biomarker for Patients with Lung Adenocarcinoma. J. Thorac. Dis. 2021, 13, 720–734. [Google Scholar] [CrossRef] [PubMed]
- Research, A.A. for C. Autophagy Inhibition Synergizes with Immunotherapy in Pancreatic Cancer. Cancer Discov. 2020, 10, 760. [Google Scholar] [CrossRef]
- Zhou, X.; He, Y.-Z.; Liu, D.; Lin, C.-R.; Liang, D.; Huang, R.; Wang, L. An Autophagy-Related Gene Signature Can Better Predict Prognosis and Resistance in Diffuse Large B-Cell Lymphoma. Front. Genet. 2022, 13. [Google Scholar] [CrossRef]
- Ishimwe, N.; Zhang, W.; Qian, J.; Zhang, Y.; Wen, L. Autophagy Regulation as a Promising Approach for Improving Cancer Immunotherapy. Cancer Lett. 2020, 475, 34–42. [Google Scholar] [CrossRef]
- Shi, X.; Wu, J.; Liu, Y.; Jiang, Y.; Zhi, C.; Li, J. ERO1L Promotes NSCLC Development by Modulating Cell Cycle-related Molecules. Cell Biol. Int. 2020, 44, 2473–2484. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, C.; Li, S.; Qu, Y.; Xue, P.; Ma, Z.; Zhang, X.; Bai, H.; Wang, J. ERO1L Is a Novel and Potential Biomarker in Lung Adenocarcinoma and Shapes the Immune-Suppressive Tumor Microenvironment. Front. Immunol. 2021, 12, 677169. [Google Scholar] [CrossRef]
- Johnson, B.D.; Geldenhuys, W.J.; Hazlehurst, L.A. The Role of ERO1alpha in Modulating Cancer Progression and Immune Escape. J. Cancer Immunol. 2020, 2, 103–115. [Google Scholar] [CrossRef]
- Niu, N.; Zeng, J.; Ke, X.; Zheng, W.; Fu, C.; Lv, S.; Fu, J.; Yu, Y. ATIC Facilitates Cell Growth and Migration by Upregulating Myc Expression in Lung Adenocarcinoma. Oncol. Lett. 2022, 23, 131. [Google Scholar] [CrossRef]
- Xu, L.; Yu, W.; Xiao, H.; Lin, K. BIRC5 Is a Prognostic Biomarker Associated with Tumor Immune Cell Infiltration. Sci. Rep. 2021, 11, 390. [Google Scholar] [CrossRef] [PubMed]
- Crighton, D.; Wilkinson, S.; O’Prey, J.; Syed, N.; Smith, P.; Harrison, P.R.; Gasco, M.; Garrone, O.; Crook, T.; Ryan, K.M. DRAM, a P53-Induced Modulator of Autophagy, Is Critical for Apoptosis. Cell 2006, 126, 121–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Q.; Yang, L.; Gao, K.; Ding, P.; Chen, Q.; Xiong, J.; Yang, W.; Song, Y.; Wang, L.; Wang, Y.; et al. FTSJ1 Regulates TRNA 2′-O-Methyladenosine Modification and Suppresses the Malignancy of NSCLC via Inhibiting DRAM1 Expression. Cell Death Dis. 2020, 11, 348. [Google Scholar] [CrossRef]
- Geng, J.; Zhang, R.; Yuan, X.; Xu, H.; Zhu, Z.; Wang, X.; Wang, Y.; Xu, G.; Guo, W.; Wu, J.; et al. DRAM1 Plays a Tumor Suppressor Role in NSCLC Cells by Promoting Lysosomal Degradation of EGFR. Cell Death Dis. 2020, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
Datasets Source | Platform | Samples Types | Subtype | Stage | Number of Samples |
---|---|---|---|---|---|
TCGA: | Illumina | All TME | LUAD + LUSC | I/II: 879 | 1129 |
LUNG | RNAseq | III/IV: 250 | |||
TCGA: | Illumina | All TME | LUAD | I/II: 879 | 576 |
LUAD | RNAseq | III/IV: 438 | |||
GEO: | GPL17553 | All TME | LUAD | I/II: 138 | 226 |
GSE31210 | Illumina Hiseq 2000 | ||||
GEO: | GPL17553 | Sorted | LUAD | NA | 21–23 |
GSE111907 | Illumina Hiseq 2000 | Cells | |||
GEO: | GPL16791 | Single | LUAD | NA | 8 patients (18,124 cells) |
GSE123904 | Illumina HiSeq 2500 | Cells | |||
GEO: | GPL10558 | A549 | LUAD cells line | NA | 12 |
GSE73158 | Illumina HumanHT-12 V4.0 expression beadchip |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonardi, L.; Siberil, S.; Alifano, M.; Cremer, I.; Joubert, P.-E. Autophagy-Related Gene Signature Highlights Metabolic and Immunogenic Status of Malignant Cells in Non-Small Cell Lung Cancer Adenocarcinoma. Cancers 2022, 14, 3462. https://doi.org/10.3390/cancers14143462
Leonardi L, Siberil S, Alifano M, Cremer I, Joubert P-E. Autophagy-Related Gene Signature Highlights Metabolic and Immunogenic Status of Malignant Cells in Non-Small Cell Lung Cancer Adenocarcinoma. Cancers. 2022; 14(14):3462. https://doi.org/10.3390/cancers14143462
Chicago/Turabian StyleLeonardi, Lucas, Sophie Siberil, Marco Alifano, Isabelle Cremer, and Pierre-Emmanuel Joubert. 2022. "Autophagy-Related Gene Signature Highlights Metabolic and Immunogenic Status of Malignant Cells in Non-Small Cell Lung Cancer Adenocarcinoma" Cancers 14, no. 14: 3462. https://doi.org/10.3390/cancers14143462
APA StyleLeonardi, L., Siberil, S., Alifano, M., Cremer, I., & Joubert, P.-E. (2022). Autophagy-Related Gene Signature Highlights Metabolic and Immunogenic Status of Malignant Cells in Non-Small Cell Lung Cancer Adenocarcinoma. Cancers, 14(14), 3462. https://doi.org/10.3390/cancers14143462