CISH Expression Is Associated with Metastasis-Free Interval in Triple-Negative Breast Cancer and Refines the Prognostic Value of PDL1 Expression
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Breast Cancer Samples
2.2. Gene Expression Data Analysis
2.3. Statistical Analysis
3. Results
3.1. CISH Expression in TNBC and Clinicopathological Features
3.2. CISH Expression and Metastasis-Free Interval in TNBC
3.3. CISH Expression and Immune Features in TNBC
3.4. Prognostic Synergy of PDL1 and CISH Expression in TNBC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Denkert, C.; Loibl, S.; Noske, A.; Roller, M.; Müller, B.M.; Komor, M.; Budczies, J.; Darb-Esfahani, S.; Kronenwett, R.; Hanusch, C.; et al. Tumor-Associated Lymphocytes as an Independent Predictor of Response to Neoadjuvant Chemotherapy in Breast Cancer. J. Clin. Oncol. 2010, 28, 105–113. [Google Scholar] [CrossRef]
- Ali, H.R.; Provenzano, E.; Dawson, S.-J.; Blows, F.M.; Liu, B.; Shah, M.; Earl, H.M.; Poole, C.J.; Hiller, L.; Dunn, J.A.; et al. Association between CD8+ T-Cell Infiltration and Breast Cancer Survival in 12,439 Patients. Ann. Oncol. 2014, 25, 1536–1543. [Google Scholar] [CrossRef] [PubMed]
- Rody, A.; Holtrich, U.; Pusztai, L.; Liedtke, C.; Gaetje, R.; Ruckhaeberle, E.; Solbach, C.; Hanker, L.; Ahr, A.; Metzler, D.; et al. T-Cell Metagene Predicts a Favorable Prognosis in Estrogen Receptor-Negative and HER2-Positive Breast Cancers. Breast Cancer Res. 2009, 11, R15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teschendorff, A.E.; Miremadi, A.; Pinder, S.E.; Ellis, I.O.; Caldas, C. An Immune Response Gene Expression Module Identifies a Good Prognosis Subtype in Estrogen Receptor Negative Breast Cancer. Genome Biol. 2007, 8, R157. [Google Scholar] [CrossRef] [Green Version]
- Sabatier, R.; Finetti, P.; Mamessier, E.; Raynaud, S.; Cervera, N.; Lambaudie, E.; Jacquemier, J.; Viens, P.; Birnbaum, D.; Bertucci, F. Kinome Expression Profiling and Prognosis of Basal Breast Cancers. Mol. Cancer 2011, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Bertucci, F.; Finetti, P.; Simeone, I.; Hendrickx, W.; Wang, E.; Marincola, F.M.; Viens, P.; Mamessier, E.; Ceccarelli, M.; Birnbaum, D.; et al. The Immunologic Constant of Rejection Classification Refines the Prognostic Value of Conventional Prognostic Signatures in Breast Cancer. Br. J. Cancer 2018, 119, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Sabatier, R.; Finetti, P.; Mamessier, E.; Adelaide, J.; Chaffanet, M.; Ali, H.R.; Viens, P.; Caldas, C.; Birnbaum, D.; Bertucci, F. Prognostic and Predictive Value of PDL1 Expression in Breast Cancer. Oncotarget 2015, 6, 5449–5464. [Google Scholar] [CrossRef] [Green Version]
- Emens, L.A.; Adams, S.; Cimino-Mathews, A.; Disis, M.L.; Gatti-Mays, M.E.; Ho, A.Y.; Kalinsky, K.; McArthur, H.L.; Mittendorf, E.A.; Nanda, R.; et al. Society for Immunotherapy of Cancer (SITC) Clinical Practice Guideline on Immunotherapy for the Treatment of Breast Cancer. J. Immunother. Cancer 2021, 9, e002597. [Google Scholar] [CrossRef]
- Cortes, J.; Cescon, D.W.; Rugo, H.S.; Nowecki, Z.; Im, S.-A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Holgado, E.; et al. Pembrolizumab plus Chemotherapy versus Placebo plus Chemotherapy for Previously Untreated Locally Recurrent Inoperable or Metastatic Triple-Negative Breast Cancer (KEYNOTE-355): A Randomised, Placebo-Controlled, Double-Blind, Phase 3 Clinical Trial. Lancet 2020, 396, 1817–1828. [Google Scholar] [CrossRef]
- Emens, L.A.; Adams, S.; Barrios, C.H.; Diéras, V.; Iwata, H.; Loi, S.; Rugo, H.S.; Schneeweiss, A.; Winer, E.P.; Patel, S.; et al. First-Line Atezolizumab plus Nab-Paclitaxel for Unresectable, Locally Advanced, or Metastatic Triple-Negative Breast Cancer: IMpassion130 Final Overall Survival Analysis. Ann. Oncol. 2021, 32, 983–993. [Google Scholar] [CrossRef]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sarthi, P.; Mani, I.; Ashraf, M.U.; Kang, M.-H.; Kumar, V.; Bae, Y.-S. Epitranscriptomic Approach: To Improve the Efficacy of ICB Therapy by Co-Targeting Intracellular Checkpoint CISH. Cells 2021, 10, 2250. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, A.; Ito, M.; Chikuma, S.; Akanuma, T.; Nakatsukasa, H. Negative Regulation of Cytokine Signaling in Immunity. Cold Spring Harb. Perspect. Biol. 2018, 10, a028571. [Google Scholar] [CrossRef]
- Palmer, D.; Webber, B.; Patel, Y.; Johnson, M.; Kariya, C.; Lahr, W.; Parkhurst, M.; Gartner, J.; Prickett, T.; Lowery, F.; et al. 333 Targeting the Apical Intracellular Checkpoint CISH Unleashes T Cell Neoantigen Reactivity and Effector Program. J. Immunother. Cancer 2020, 8, A204. [Google Scholar] [CrossRef]
- Guittard, G.; Dios-Esponera, A.; Palmer, D.C.; Akpan, I.; Barr, V.A.; Manna, A.; Restifo, N.P.; Samelson, L.E. The Cish SH2 Domain Is Essential for PLC-γ1 Regulation in TCR Stimulated CD8+ T Cells. Sci. Rep. 2018, 8, 5336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, D.C.; Guittard, G.C.; Franco, Z.; Crompton, J.G.; Eil, R.L.; Patel, S.J.; Ji, Y.; Van Panhuys, N.; Klebanoff, C.A.; Sukumar, M.; et al. Cish Actively Silences TCR Signaling in CD8+ T Cells to Maintain Tumor Tolerance. J. Exp. Med. 2015, 212, 2095–2113. [Google Scholar] [CrossRef] [Green Version]
- Palmer, D.C.; Webber, B.R.; Patel, Y.; Johnson, M.J.; Kariya, C.M.; Lahr, W.S.; Parkhurst, M.R.; Gartner, J.J.; Prickett, T.D.; Lowery, F.J.; et al. Internal Checkpoint Regulates T Cell Neoantigen Reactivity and Susceptibility to PD1 Blockade. bioRxiv 2020. [Google Scholar] [CrossRef]
- Delconte, R.B.; Kolesnik, T.B.; Dagley, L.F.; Rautela, J.; Shi, W.; Putz, E.M.; Stannard, K.; Zhang, J.-G.; Teh, C.; Firth, M.; et al. CIS is a Potent Checkpoint in NK Cell-Mediated Tumor Immunity. Nat. Immunol. 2016, 17, 816–824. [Google Scholar] [CrossRef]
- Bernard, P.-L.; Delconte, R.B.; Pastor, S.; Laletin, V.; Silva, C.C.D.; Goubard, A.; Josselin, E.; Castellano, R.; Krug, A.; Vernerey, J.; et al. Targeting CISH Enhances Natural Cytotoxicity Receptor Signaling and Reduces NK Cell Exhaustion to Improve Solid Tumor Immunity. bioRxiv 2021. [Google Scholar] [CrossRef]
- Putz, E.M.; Guillerey, C.; Kos, K.; Stannard, K.; Miles, K.; Delconte, R.B.; Takeda, K.; Nicholson, S.E.; Huntington, N.D.; Smyth, M.J. Targeting Cytokine Signaling Checkpoint CIS Activates NK Cells to Protect from Tumor Initiation and Metastasis. Oncoimmunology 2017, 6, e1267892. [Google Scholar] [CrossRef] [Green Version]
- Raccurt, M.; Tam, S.P.; Lau, P.; Mertani, H.C.; Lambert, A.; Garcia-Caballero, T.; Li, H.; Brown, R.J.; McGuckin, M.A.; Morel, G.; et al. Suppressor of Cytokine Signalling Gene Expression Is Elevated in Breast Carcinoma. Br. J. Cancer 2003, 89, 524–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatier, R.; Finetti, P.; Adelaide, J.; Guille, A.; Borg, J.-P.; Chaffanet, M.; Lane, L.; Birnbaum, D.; Bertucci, F. Down-Regulation of ECRG4, a Candidate Tumor Suppressor Gene, in Human Breast Cancer. PLoS ONE 2011, 6, e27656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Nonneville, A.; Finetti, P.; Mamessier, E.; Bertucci, F. RE: NDRG1 in Aggressive Breast Cancer Progression and Brain Metastasis. J. Natl. Cancer Inst. 2022. [Google Scholar] [CrossRef]
- Bertucci, F.; Finetti, P.; Cervera, N.; Charafe-Jauffret, E.; Buttarelli, M.; Jacquemier, J.; Chaffanet, M.; Maraninchi, D.; Viens, P.; Birnbaum, D. How Different Are Luminal A and Basal Breast Cancers? Int. J. Cancer 2009, 124, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.; Finetti, P.; Sabatier, R.; Gilabert, M.; Adelaide, J.; Borg, J.-P.; Chaffanet, M.; Viens, P.; Birnbaum, D.; Bertucci, F. Poly(ADP-Ribose) Polymerase-1 mRNA Expression in Human Breast Cancer: A Meta-Analysis. Breast Cancer Res. Treat. 2011, 127, 273–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of Human Triple-Negative Breast Cancer Subtypes and Preclinical Models for Selection of Targeted Therapies. J. Clin. Investig. 2011, 121, 2750–2767. [Google Scholar] [CrossRef] [Green Version]
- Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, S.P.; Shankaran, V.; et al. IFN-γ-Related mRNA Profile Predicts Clinical Response to PD-1 Blockade. J. Clin. Investig. 2017, 127, 2930–2940. [Google Scholar] [CrossRef]
- Coppola, D.; Nebozhyn, M.; Khalil, F.; Dai, H.; Yeatman, T.; Loboda, A.; Mulé, J.J. Unique Ectopic Lymph Node-like Structures Present in Human Primary Colorectal Carcinoma Are Identified by Immune Gene Array Profiling. Am. J. Pathol. 2011, 179, 37–45. [Google Scholar] [CrossRef]
- Bindea, G.; Mlecnik, B.; Tosolini, M.; Kirilovsky, A.; Waldner, M.; Obenauf, A.C.; Angell, H.; Fredriksen, T.; Lafontaine, L.; Berger, A.; et al. Spatiotemporal Dynamics of Intratumoral Immune Cells Reveal the Immune Landscape in Human Cancer. Immunity 2013, 39, 782–795. [Google Scholar] [CrossRef] [Green Version]
- Rooney, M.S.; Shukla, S.A.; Wu, C.J.; Getz, G.; Hacohen, N. Molecular and Genetic Properties of Tumors Associated with Local Immune Cytolytic Activity. Cell 2015, 160, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Gatza, M.L.; Lucas, J.E.; Barry, W.T.; Kim, J.W.; Wang, Q.; Crawford, M.D.; Datto, M.B.; Kelley, M.; Mathey-Prevot, B.; Potti, A.; et al. A Pathway-Based Classification of Human Breast Cancer. Proc. Natl. Acad. Sci. USA 2010, 107, 6994–6999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.; Chen, J.; Zhang, W.; Zhang, R.; Ye, Y.; Liu, P.; Yu, W.; Wei, F.; Ren, X.; Yu, J. Interleukin-6 Trans-Signaling Pathway Promotes Immunosuppressive Myeloid-Derived Suppressor Cells via Suppression of Suppressor of Cytokine Signaling 3 in Breast Cancer. Front. Immunol. 2017, 8, 1840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasi, W.; Jiang, W.G.; Sharma, A.; Mokbel, K. Higher Expression Levels of SOCS 1,3,4,7 Are Associated with Earlier Tumour Stage and Better Clinical Outcome in Human Breast Cancer. BMC Cancer 2010, 10, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.; Tang, C.; Liu, J.; Jiang, W.; Yu, H.; Dong, F.; Huang, C.; Rixiati, Y. Comprehensive Analysis of Suppressor of Cytokine Signaling Proteins in Human Breast Cancer. BMC Cancer 2021, 21, 696. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Oskooei, V.K.; Azari, I.; Taheri, M. Suppressor of Cytokine Signaling (SOCS) Genes Are Downregulated in Breast Cancer. World J. Surg. Oncol. 2018, 16, 226. [Google Scholar] [CrossRef] [PubMed]
- Jacquemier, J.; Bertucci, F.; Finetti, P.; Esterni, B.; Charafe-Jauffret, E.; Thibult, M.-L.; Houvenaeghel, G.; Van den Eynde, B.; Birnbaum, D.; Olive, D.; et al. High Expression of Indoleamine 2,3-Dioxygenase in the Tumour Is Associated with Medullary Features and Favourable Outcome in Basal-Like Breast Carcinoma. Int. J. Cancer 2012, 130, 96–104. [Google Scholar] [CrossRef]
- Asadzadeh, Z.; Mohammadi, H.; Safarzadeh, E.; Hemmatzadeh, M.; Mahdian-shakib, A.; Jadidi-Niaragh, F.; Azizi, G.; Baradaran, B. The Paradox of Th17 Cell Functions in Tumor Immunity. Cell. Immunol. 2017, 322, 15–25. [Google Scholar] [CrossRef]
- Karpisheh, V.; Ahmadi, M.; Abbaszadeh-Goudarzi, K.; Mohammadpour Saray, M.; Barshidi, A.; Mohammadi, H.; Yousefi, M.; Jadidi-Niaragh, F. The Role of Th17 Cells in the Pathogenesis and Treatment of Breast Cancer. Cancer Cell Int. 2022, 22, 108. [Google Scholar] [CrossRef]
- Schmid, P.; Cortes, J.; Dent, R.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; et al. Event-Free Survival with Pembrolizumab in Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2022, 386, 556–567. [Google Scholar] [CrossRef]
- Delconte, R.B.; Guittard, G.; Goh, W.; Hediyeh-Zadeh, S.; Hennessy, R.J.; Rautela, J.; Davis, M.J.; Souza-Fonseca-Guimaraes, F.; Nunès, J.A.; Huntington, N.D. NK Cell Priming From Endogenous Homeostatic Signals Is Modulated by CIS. Front. Immunol. 2020, 11, 75. [Google Scholar] [CrossRef]
- Rautela, J.; Huntington, N.D. IL-15 Signaling in NK Cell Cancer Immunotherapy. Curr. Opin. Immunol. 2017, 44, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Pipeline—ONK Therapeutics. Available online: https://www.onktherapeutics.com/pipeline/ (accessed on 5 June 2022).
N | All | CISH Class | |||
---|---|---|---|---|---|
Down | Up | p-Value | |||
Age at diagnosis (years) | 0.480 | ||||
≤50 | 726 | 726 (47%) | 570 (46%) | 156 (49%) | |
>50 | 824 | 824 (53%) | 660 (54%) | 164 (51%) | |
Pathological type | 0.359 | ||||
ductal | 814 | 814 (83%) | 683 (84%) | 131 (81%) | |
lobular | 31 | 31 (3%) | 23 (3%) | 8 (5%) | |
other | 133 | 133 (14%) | 111 (14%) | 22 (14%) | |
Pathological lymph node (pN) | 6.33 × 10−3 | ||||
negative | 662 | 662 (57%) | 576 (59%) | 86 (48%) | |
positive | 499 | 499 (43%) | 404 (41%) | 95 (52%) | |
Pathological size (pT) | 0.543 | ||||
pT1 | 344 | 344 (32%) | 294 (32%) | 50 (31%) | |
pT2 | 606 | 606 (56%) | 519 (56%) | 87 (54%) | |
pT3 | 139 | 139 (13%) | 114 (12%) | 25 (15%) | |
Pathological grade | 0.482 | ||||
1 | 36 | 36 (3%) | 26 (2%) | 10 (3%) | |
2 | 243 | 243 (17%) | 184 (17%) | 59 (19%) | |
3 | 1114 | 1114 (80%) | 873 (81%) | 241 (78%) | |
Lehmann’s subtypes * | 6.32 × 10−39 | ||||
BL1 | 308 | 308 (16%) | 220 (20%) | 88 (10%) | |
BL2 | 144 | 144 (7%) | 80 (7%) | 64 (8%) | |
IM | 395 | 395 (20%) | 168 (15%) | 227 (27%) | |
LAR | 314 | 314 (16%) | 110 (10%) | 204 (24%) | |
M | 447 | 447 (23%) | 339 (31%) | 108 (13%) | |
MSL | 328 | 328 (17%) | 169 (16%) | 159 (19%) | |
Chemotherapy delivery | |||||
no | 364 | 364 (28%) | 317 (30%) | 47 (19%) | 7.22 × 10−4 |
yes | 920 | 920 (72%) | 724 (70%) | 196 (81%) | |
Follow-up median, months (min-max) | 692 | 39 (1–286) | 36 (1–286) | 43 (1–181) | 0.076 |
MFI event, N (%) | 692 | 207 (30%) | 149 (32%) | 58 (25%) | 0.064 |
5-year MFI (95%CI) | 692 | 64% (60–68) | 60% (55–66) | 72% (65–79) | 2.87 × 10−2 |
MFI, TNBC | Univariate | Multivariate | |||||
---|---|---|---|---|---|---|---|
N | HR [95% CI] | p-Value | N | HR [95% CI] | p-Value | ||
Age at diag. (years) | >50 vs. ≤50 | 534 | 1.22 [0.84–1.78] | 0.291 | |||
Pathological type | lobular vs. ductal | 343 | 2.13 [0.52–8.84] | 0.215 | |||
other vs. ductal | 0.53 [0.21–1.34] | ||||||
Pathological lymph node (pN) | positive vs. negative | 524 | 1.21 [0.83–1.77] | 0.314 | |||
Pathological size (pT) | pT2 vs. pT1 | 475 | 1.13 [0.72–1.76] | 0.108 | |||
pT3 vs. pT1 | 1.99 [1.03–3.83] | ||||||
Pathological grade | 2 vs. 1 | 343 | 4.69 [0.63–34.95] | 0.117 | |||
3 vs. 1 | 6.16 [0.86–44.31] | ||||||
Chemotherapy delivery | yes vs. no | 497 | 0.67 [0.46–0.98] | 4.03 × 10−2 | 497 | 0.68 [0.46–1.00] | 4.80 × 10−2 |
Lehmann’s subtypes * | BL1 vs. M | 692 | 0.59 [0.38–0.90] | 4.75 × 10−3 | 497 | 0.47 [0.26–0.84] | 1.04 × 10−2 |
BL2 vs. M | 0.87 [0.52–1.45] | 497 | 0.65 [0.31–1.35] | 0.249 | |||
IM vs. M | 0.44 [0.29–0.68] | 497 | 0.37 [0.20–0.67] | 1.01 × 10−3 | |||
LAR vs. M | 0.86 [0.57–1.30] | 497 | 0.60 [0.32–1.12] | 0.107 | |||
MSL vs. M | 0.74 [0.47–1.18] | 497 | 0.72 [0.40–1.30] | 0.278 | |||
CISH class | up vs. down | 692 | 0.71 [0.53–0.97] | 2.92 × 10−2 | 497 | 0.98 [0.63–1.51] | 0.909 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boudin, L.; De Nonneville, A.; Finetti, P.; Guittard, G.; Nunes, J.A.; Birnbaum, D.; Mamessier, E.; Bertucci, F. CISH Expression Is Associated with Metastasis-Free Interval in Triple-Negative Breast Cancer and Refines the Prognostic Value of PDL1 Expression. Cancers 2022, 14, 3356. https://doi.org/10.3390/cancers14143356
Boudin L, De Nonneville A, Finetti P, Guittard G, Nunes JA, Birnbaum D, Mamessier E, Bertucci F. CISH Expression Is Associated with Metastasis-Free Interval in Triple-Negative Breast Cancer and Refines the Prognostic Value of PDL1 Expression. Cancers. 2022; 14(14):3356. https://doi.org/10.3390/cancers14143356
Chicago/Turabian StyleBoudin, Laurys, Alexandre De Nonneville, Pascal Finetti, Geoffrey Guittard, Jacques A. Nunes, Daniel Birnbaum, Emilie Mamessier, and François Bertucci. 2022. "CISH Expression Is Associated with Metastasis-Free Interval in Triple-Negative Breast Cancer and Refines the Prognostic Value of PDL1 Expression" Cancers 14, no. 14: 3356. https://doi.org/10.3390/cancers14143356
APA StyleBoudin, L., De Nonneville, A., Finetti, P., Guittard, G., Nunes, J. A., Birnbaum, D., Mamessier, E., & Bertucci, F. (2022). CISH Expression Is Associated with Metastasis-Free Interval in Triple-Negative Breast Cancer and Refines the Prognostic Value of PDL1 Expression. Cancers, 14(14), 3356. https://doi.org/10.3390/cancers14143356