Genetic Aspects of Mammographic Density Measures Associated with Breast Cancer Risk
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Mammographic Density Measurements
2.3. Genome-Wide SNP Genotyping, Quality Control, and Imputation
2.4. Breast Cancer PRS
2.5. Statistical Methods
3. Results
3.1. Sample Characteristics
3.2. Correlations between the MRSs and PRSs
3.3. Associations between the MRSs and PRSs
3.4. Associations between the MRSs and SNPs Known to Be Associated with Breast Cancer Risk
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Byng, J.W.; Yaffe, M.J.; Jong, R.A.; Shumak, R.S.; Lockwood, G.A.; Tritchler, D.L.; Boyd, N.F. Analysis of mammographic density and breast cancer risk from digitized mammograms. Radiographics 1998, 18, 1587–1598. [Google Scholar] [CrossRef][Green Version]
- Nguyen, T.L.; Aung, Y.K.; Evans, C.F.; Dite, G.S.; Stone, J.; MacInnis, R.J.; Dowty, J.G.; Bickerstaffe, A.; Aujard, K.; Rommens, J.M.; et al. Mammographic density defined by higher than conventional brightness thresholds better predicts breast cancer risk. Int. J. Epidemiol. 2017, 46, 652–661. [Google Scholar] [CrossRef][Green Version]
- Nguyen, T.L.; Aung, Y.K.; Evans, C.F.; Yoon-Ho, C.; Jenkins, M.A.; Sung, J.; Hopper, J.L.; Song, Y.M. Mammographic density defined by higher than conventional brightness threshold better predicts breast cancer risk for full-field digital mammograms. Breast Cancer Res. 2015, 17, 142. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nguyen, T.L.; Aung, Y.K.; Li, S.; Trinh, N.H.; Evans, C.F.; Baglietto, L.; Krishnan, K.; Dite, G.S.; Stone, J.; English, D.R.; et al. Predicting interval and screen-detected breast cancers from mammographic density defined by different brightness thresholds. Breast Cancer Res. 2018, 20, 152. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nguyen, T.L.; Choi, Y.H.; Aung, Y.K.; Evans, C.F.; Trinh, N.H.; Li, S.; Dite, G.S.; Kim, M.S.; Brennan, P.C.; Jenkins, M.A.; et al. Breast Cancer Risk Associations with Digital Mammographic Density by Pixel Brightness Threshold and Mammographic System. Radiology 2018, 286, 433–442. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Boyd, N.F.; Guo, H.; Martin, L.J.; Sun, L.; Stone, J.; Fishell, E.; Jong, R.A.; Hislop, G.; Chiarelli, A.; Minkin, S.; et al. Mammographic density and the risk and detection of breast cancer. N. Engl. J. Med. 2007, 356, 227–236. [Google Scholar] [CrossRef][Green Version]
- Nguyen, T.L.; Li, S.; Dite, G.S.; Aung, Y.K.; Evans, C.F.; Trinh, H.N.; Baglietto, L.; Stone, J.; Song, Y.M.; Sung, J.; et al. Interval breast cancer risk associations with breast density, family history and breast tissue aging. Int. J. Cancer 2020, 147, 375–382. [Google Scholar] [CrossRef][Green Version]
- Watt, G.P.; Knight, J.A.; Nguyen, T.L.; Reiner, A.S.; Malone, K.E.; John, E.M.; Lynch, C.F.; Brooks, J.D.; Woods, M.; Liang, X.; et al. Association of contralateral breast cancer risk with mammographic density defined at higher-than-conventional intensity thresholds. Int. J. Cancer 2022, 2022, 1–6. [Google Scholar] [CrossRef]
- Hopper, J.L.; Nguyen, T.L.; Schmidt, D.F.; Makalic, E.; Song, Y.M.; Sung, J.; Dite, G.S.; Dowty, J.G.; Li, S. Going beyond conventional mammographic density to discover novel mammogram-based predictors of breast cancer risk. J. Clin. Med. 2020, 9, 627. [Google Scholar] [CrossRef][Green Version]
- Boyd, N.F.; Dite, G.S.; Stone, J.; Gunasekara, A.; English, D.R.; McCredie, M.R.; Giles, G.G.; Tritchler, D.; Chiarelli, A.; Yaffe, M.J.; et al. Heritability of mammographic density, a risk factor for breast cancer. N. Engl. J. Med. 2002, 347, 886–894. [Google Scholar] [CrossRef]
- Stone, J.; Dite, G.S.; Gunasekara, A.; English, D.R.; McCredie, M.R.; Giles, G.G.; Cawson, J.N.; Hegele, R.A.; Chiarelli, A.M.; Yaffe, M.J.; et al. The heritability of mammographically dense and nondense breast tissue. Cancer Epidemiol. Biomark. Prev. 2006, 15, 612–617. [Google Scholar] [CrossRef][Green Version]
- Nguyen, T.L.; Schmidt, D.F.; Makalic, E.; Dite, G.S.; Stone, J.; Apicella, C.; Bui, M.; Macinnis, R.J.; Odefrey, F.; Cawson, J.N.; et al. Explaining variance in the cumulus mammographic measures that predict breast cancer risk: A twins and sisters study. Cancer Epidemiol. Biomark. Prev. 2013, 22, 2395–2403. [Google Scholar] [CrossRef][Green Version]
- Nguyen, T.L.; Li, S.; Dowty, J.G.; Dite, G.S.; Ye, Z.; Nguyen-Dumont, T.; Trinh, H.N.; Evans, C.F.; Tan, M.; Sung, J.; et al. Familial aspects of mammographic density measures associated with breast cancer risk. Cancers 2022, 14, 1483. [Google Scholar] [CrossRef]
- Hopper, J.L.; Carlin, J.B. Familial aggregation of a disease consequent upon correlation between relatives in a risk factor measured on a continuous scale. Am. J. Epidemiol. 1992, 136, 1138–1147. [Google Scholar] [CrossRef]
- Aalen, O.O. Modelling the influence of risk factors on familial aggregation of disease. Biometrics 1991, 47, 933–945. [Google Scholar] [CrossRef]
- Pharoah, P.D.P.; Antoniou, A.; Bobrow, M.; Zimmern, R.L.; Easton, D.F.; Ponder, B.A. Polygenic susceptibility to breast cancer and implications for prevention. Nat. Genet. 2002, 31, 33–36. [Google Scholar] [CrossRef]
- Clayton, D.G. Prediction and interaction in complex disease genetics: Experience in type 1 diabetes. PLoS Genet. 2009, 5, e1000540. [Google Scholar] [CrossRef][Green Version]
- Mavaddat, N.; Michailidou, K.; Dennis, J.; Lush, M.; Fachal, L.; Lee, A.; Tyrer, J.P.; Chen, T.H.; Wang, Q.; Bolla, M.K.; et al. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. Am. J. Hum. Genet. 2019, 104, 21–34. [Google Scholar] [CrossRef][Green Version]
- Sieh, W.; Rothstein, J.H.; Klein, R.J.; Alexeeff, S.E.; Sakoda, L.C.; Jorgenson, E.; McBride, R.B.; Graff, R.E.; McGuire, V.; Achacoso, N.; et al. Identification of 31 loci for mammographic density phenotypes and their associations with breast cancer risk. Nat. Commun. 2020, 11, 5116. [Google Scholar] [CrossRef]
- Fernandez-Navarro, P.; González-Neira, A.; Pita, G.; Díaz-Uriarte, R.; Tais Moreno, L.; Ederra, M.; Pedraz-Pingarrón, C.; Sánchez-Contador, C.; Vázquez-Carrete, J.A.; Moreo, P.; et al. Genome wide association study identifies a novel putative mammographic density locus at 1q12-q21. Int. J. Cancer 2015, 136, 2427–2436. [Google Scholar] [CrossRef]
- Lindstrom, S.; Thompson, D.J.; Paterson, A.D.; Li, J.; Gierach, G.L.; Scott, C.; Stone, J.; Douglas, J.A.; dos-Santos-Silva, I.; Fernandez-Navarro, P.; et al. Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk. Nat. Commun. 2014, 5, 5303. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Brand, J.S.; Li, J.; Humphreys, K.; Karlsson, R.; Eriksson, M.; Ivansson, E.; Hall, P.; Czene, K. Identification of two novel mammographic density loci at 6Q25.1. Breast Cancer Res. 2015, 17, 75. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lindstrom, S.; Vachon, C.M.; Li, J.; Varghese, J.; Thompson, D.; Warren, R.; Brown, J.; Leyland, J.; Audley, T.; Wareham, N.J.; et al. Common variants in ZNF365 are associated with both mammographic density and breast cancer risk. Nat. Genet. 2011, 43, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Stevens, K.N.; Lindstrom, S.; Scott, C.G.; Thompson, D.; Sellers, T.A.; Wang, X.; Wang, A.; Atkinson, E.; Rider, D.N.; Eckel-Passow, J.E.; et al. Identification of a novel percent mammographic density locus at 12q24. Hum. Mol. Genet. 2012, 21, 3299–3305. [Google Scholar] [CrossRef]
- Chen, H.; Fan, S.; Stone, J.; Thompson, D.J.; Douglas, J.; Li, S.; Scott, C.; Bolla, M.K.; Wang, Q.; Dennis, J.; et al. Genome-wide and transcriptome-wide association studies of mammographic density phenotypes reveal novel loci. Breast Cancer Res. 2022, 24, 27. [Google Scholar] [CrossRef]
- Stone, J.; Thompson, D.J.; Dos Santos Silva, I.; Scott, C.; Tamimi, R.M.; Lindstrom, S.; Kraft, P.; Hazra, A.; Li, J.; Eriksson, L.; et al. Novel associations between common breast cancer susceptibility variants and risk-predicting mammographic density measures. Cancer Res. 2015, 75, 2457–2467. [Google Scholar] [CrossRef][Green Version]
- Nguyen, T.L.; Schmidt, D.F.; Makalic, E.; Maskarinec, G.; Li, S.; Dite, G.S.; Aung, Y.K.; Evans, C.F.; Trinh, H.N.; Baglietto, L.; et al. Novel mammogram-based measures improve breast cancer risk prediction beyond an established mammographic density measure. Int. J. Cancer 2021, 148, 2193–2202. [Google Scholar] [CrossRef]
- Amos, C.I.; Dennis, J.; Wang, Z.; Byun, J.; Schumacher, F.R.; Gayther, S.A.; Casey, G.; Hunter, D.J.; Sellers, T.A.; Gruber, S.B.; et al. The OncoArray Consortium: A network for understanding the genetic architecture of common cancers. Cancer Epidemiol. Biomark. Prev. 2017, 26, 126–135. [Google Scholar] [CrossRef][Green Version]
- Hopper, J.L. Odds per adjusted standard deviation: Comparing strengths of associations for risk factors measured on different scales and across diseases and populations. Am. J. Epidemiol. 2015, 182, 863–867. [Google Scholar] [CrossRef][Green Version]
- Kapoor, P.M.; Lindström, S.; Behrens, S.; Wang, X.; Michailidou, K.; Bolla, M.K.; Wang, Q.; Dennis, J.; Dunning, A.M.; Pharoah, P.D.P.; et al. Assessment of interactions between 205 breast cancer susceptibility loci and 13 established risk factors in relation to breast cancer risk, in the Breast Cancer Association Consortium. Int. J. Epidemiol. 2020, 49, 216–232. [Google Scholar] [CrossRef][Green Version]
- Hopper, J.L.; Nguyen, T.L. Towards risk-stratified population breast cancer screening: More than mammographic density. Med. J. Aust. 2021, 215, 350–351. [Google Scholar] [CrossRef]
- Li, S.; Dugue, P.A.; Baglietto, L.; Severi, G.; Wong, E.M.; Nguyen, T.L.; Stone, J.; English, D.R.; Southey, M.C.; Giles, G.G.; et al. Genome-wide association study of peripheral blood DNA methylation and conventional mammographic density measures. Int. J. Cancer 2019, 145, 1768–1773. [Google Scholar] [CrossRef][Green Version]
- Ramón, Y.C.T.; Chirivella, I.; Miranda, J.; Teule, A.; Izquierdo, Á.; Balmaña, J.; Sánchez-Heras, A.B.; Llort, G.; Fisas, D.; Lope, V.; et al. Mammographic density and breast cancer in women from high risk families. Breast Cancer Res. 2015, 17, 93. [Google Scholar] [CrossRef][Green Version]
- Mitchell, G.; Antoniou, A.C.; Warren, R.; Peock, S.; Brown, J.; Davies, R.; Mattison, J.; Cook, M.; Warsi, I.; Evans, D.G.; et al. Mammographic density and breast cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Res. 2006, 66, 1866–1872. [Google Scholar] [CrossRef][Green Version]
- Li, S.; MacInnis, R.J.; Lee, A.; Nguyen-Dumont, T.; Dorling, L.; Carvalho, S.; Dite, G.S.; Shah, M.; Luccarini, C.; Wang, Q.; et al. Segregation analysis of 17,425 population-based breast cancer families: Evidence for genetic susceptibility and risk prediction. medRxiv 2022. [Google Scholar] [CrossRef]
Characteristics and Measurements | Total Sample (n = 2559) | MZ Twins (n = 1168) | DZ Twins (n = 636) | Non-Twin Sisters (n = 755) |
---|---|---|---|---|
Age, BMI, and breast cancer PRS, Mean (standard deviation) | ||||
Age (years) | 54.0 (8.4) | 54.2 (8.2) | 53.5 (8.9) | 54.1 (8.1) |
BMI (kg/m2) | 26.1 (5.2) | 25.7 (4.9) | 26.4 (5.2) | 26.5 (5.7) |
PRS for overall breast cancer | −0.42 (0.64) | −0.44 (0.63) | −0.44 (0.64) | −0.36 (0.65) |
PRS for ER− breast cancer | −0.32 (0.60) | −0.34 (0.60) | −0.34 (0.62) | −0.28 (0.58) |
PRS for ER+ breast cancer | −0.42 (0.68) | −0.43 (0.68) | −0.43 (0.68) | −0.34 (0.70) |
Mammogram density measures, Median (Inter-quartile range) | ||||
Cumulus (cm2) | 29.4 (18.2–42.9) | 28.4 (17.7–41.1) | 29.0 (18.2–42.8) | 31.9 (19.0–46.0) |
Cumulus–percent (%) | 29.6 (16.6–43.2) | 29.8 (16.8–42.9) | 28.4 (15.7–42.3) | 30.0 (17.5–44.2) |
Altocumulus (cm2) | 11.3 (6.7–17.1) | 11.1 (6.7–16.1) | 11.0 (6.2–17.0) | 12.1 (6.9–18.6) |
Cirrocumulus (cm2) | 1.6 (0.7–3.1) | 1.6 (0.7–3.0) | 1.5 (0.7–3.2) | 1.7 (0.7–3.3) |
Cumulus-white (cm2) | 17.3 (10.4–26.5) | 16.6 (10.2–25.8) | 17.1 (10.7–26.8) | 17.9 (10.7–28.0) |
Mammogram Risk Scores | PRS for Overall Breast Cancer | PRS for ER− Breast Cancer | PRS for ER+ Breast Cancer | ||||||
---|---|---|---|---|---|---|---|---|---|
Correlation (95% CI) | p | BIC | Correlation (95% CI) | p | BIC | Correlation (95% CI) | p | BIC | |
Cumulus MRS | 0.06 (0.02, 0.10) | 2.7 × 10−3 | 7275.68 | 0.06 (0.02, 0.10) | 3.0 × 10−3 | 7275.88 | 0.05 (0.02, 0.09) | 0.01 | 7277.13 |
Cumulus- percent MRS | 0.06 (0.02, 0.10) | 1.8 × 10−3 | 7274.93 | 0.07 (0.03, 0.11) | 2.5 × 10−4 | 7271.22 | 0.06 (0.02, 0.09) | 0.01 | 7276.64 |
Altocumulus MRS | 0.08 (0.04, 0.12) | 5.9 × 10−5 | 7268.50 | 0.07 (0.03, 0.11) | 6.0 × 10−4 | 7272.87 | 0.08 (0.04, 0.11) | 1.1 × 10−4 | 7269.19 |
Cirrocumulus MRS | 0.05 (0.02, 0.09) | 0.01 | 7277.07 | 0.04 (0.01, 0.08) | 0.03 | 7284.23 | 0.05 (0.01, 0.09) | 0.01 | 7277.45 |
Cumulus-white MRS | 0.04 (−0.01, 0.08) | 0.06 | 7281.04 | 0.04 (0.01, 0.08) | 0.03 | 7279.65 | 0.03 (−0.01, 0.07) | 0.10 | 7282.02 |
Mammogram Risk Scores | PRS for Overall Breast Cancer | PRS for ER− Breast Cancer | PRS for ER+ Breast Cancer | ||||||
---|---|---|---|---|---|---|---|---|---|
Regression Coefficient (95% CI) | p | BIC | Regression Coefficient (95% CI) | p | BIC | Regression Coefficient (95% CI) | p | BIC | |
Cumulus MRS | 0.061 (0.017, 0.105) | 6.3 × 10−3 | 7334.37 | 0.059 (0.015, 0.103) | 9.2 × 10−3 | 7335.49 | 0.056 (0.012, 0.100) | 0.01 | 7335.76 |
Cumulus- percent MRS | 0.060 (0.016, 0.104) | 7.4 × 10−3 | 7344.65 | 0.065 (0.021, 0.109) | 3.6 × 10−3 | 7343.22 | 0.055 (0.011, 0.099) | 0.01 | 7345.95 |
Altocumulus MRS | 0.081 (0.037, 0.125) | 2.9 × 10−4 | 7328.35 | 0.068 (0.024, 0.112) | 2.5 × 10−3 | 7334.05 | 0.078 (0.034, 0.121) | 5.1 × 10−5 | 7329.35 |
Cirrocumulus MRS | 0.058 (0.016, 0.101) | 7.3 × 10−3 | 7345.52 | 0.046 (0.003, 0.089) | 0.03 | 7350.05 | 0.056 (0.014, 0.099) | 9.4 × 10−3 | 7345.41 |
Cumulus-white MRS | 0.039 (−0.004, 0.083) | 0.08 | 7342.32 | 0.045 (0.002, 0.089) | 0.04 | 7341.48 | 0.033 (−0.010, 0.077) | 0.13 | 7343.28 |
Mammogram Risk Scores | Other Mammogram Risk Score(s) Adjusted for | PRS for Overall Breast Cancer | PRS for ER− Breast Cancer | PRS for ER+ Breast Cancer | |||
---|---|---|---|---|---|---|---|
Regression Coefficient (95% CI) | p | Regression Coefficient (95% CI) | p | Regression Coefficient (95% CI) | p | ||
Cumulus MRS | Altocumulus | −0.010 (−0.029, 0.009) | 0.30 | −0.001 (−0.019. 0.019) | 0.99 | −0.013 (−0.032, 0.006) | 0.17 |
Cirrocumulus | 0.024 (−0.007, 0.056) | 0.13 | 0.032 (0.0001, 0.063) | 0.049 | 0.021 (−0.011, 0.052) | 0.20 | |
Altocumulus + Cirrocumulus | −0.011 (−0.030, 0.008) | 0.25 | −0.001 (−0.020, 0.018) | 0.89 | −0.014 (−0.033, 0.005) | 0.14 | |
Cumulus-percent MRS | Altocumulus | −0.021 (−0.067, 0.024) | 0.35 | 0.020 (−0.025, 0.066) | 0.38 | −0.028 (−0.073, 0.017) | 0.22 |
Cirrocumulus | 0.018 (−0.033, 0.068) | 0.50 | 0.057 (0.006, 0.108) | 0.03 | 0.009 (−0.042, 0.060) | 0.73 | |
Altocumulus + Cirrocumulus | −0.019 (−0.064, 0.025) | 0.39 | 0.023 (−0.022, 0.067) | 0.32 | −0.026 (−0.071, 0.018) | 0.25 | |
Altocumulus MRS | Cumulus MRS | 0.026 (0.008, 0.045) | 5.8 × 10−3 | 0.015 (−0.004, 0.034) | 0.11 | 0.028 (0.009, 0.047) | 3.6 × 10−3 |
Cirrocumulus MRS | 0.035 (0.010, 0.059) | 5.4 × 10−3 | 0.033 (0.009, 0.058) | 7.6 × 10−3 | 0.033 (0.008, 0.057) | 9.0 × 10−3 | |
Cumulus + Cirrocumulus | 0.020 (0.006, 0.035) | 6.9 × 10−3 | 0.014 (−0.001, 0.028) | 0.07 | 0.021 (0.006, 0.035) | 5.3 × 10−3 | |
Cirrocumulus MRS | Cumulus | 0.015 (−0.014, 0.045) | 0.31 | 0.003 (−0.027, 0.033) | 0.85 | 0.018 (−0.012, 0.047) | 0.25 |
Altocumulus | −0.009 (−0.032, 0.015) | 0.47 | −0.012 (−0.036, 0.011) | 0.31 | −0.007 (−0.031, 0.016) | 0.54 | |
Cumulus + Altocumulus | −0.011 (−0.034, 0.012) | 0.36 | −0.012 (−0.035, 0.011) | 0.30 | −0.010 (−0.033, 0.013) | 0.39 | |
Cumulus-white MRS | Altocumulus | −0.007 (−0.023, 0.009) | 0.42 | −0.001 (−0.017, 0.016) | 0.96 | −0.008 (−0.025, 0.008) | 0.31 |
Cirrocumulus | 0.009 (−0.011, 0.028) | 0.40 | 0.013 (−0.007, 0.033) | 0.19 | 0.006 (−0.014, 0.026) | 0.54 | |
Altocumulus + Cirrocumulus | −0.008 (−0.024, 0.008) | 0.33 | −0.001 (−0.017, 0.014) | 0.86 | −0.010 (−0.025, 0.006) | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Nguyen, T.L.; Nguyen-Dumont, T.; Dowty, J.G.; Dite, G.S.; Ye, Z.; Trinh, H.N.; Evans, C.F.; Tan, M.; Sung, J.; et al. Genetic Aspects of Mammographic Density Measures Associated with Breast Cancer Risk. Cancers 2022, 14, 2767. https://doi.org/10.3390/cancers14112767
Li S, Nguyen TL, Nguyen-Dumont T, Dowty JG, Dite GS, Ye Z, Trinh HN, Evans CF, Tan M, Sung J, et al. Genetic Aspects of Mammographic Density Measures Associated with Breast Cancer Risk. Cancers. 2022; 14(11):2767. https://doi.org/10.3390/cancers14112767
Chicago/Turabian StyleLi, Shuai, Tuong L. Nguyen, Tu Nguyen-Dumont, James G. Dowty, Gillian S. Dite, Zhoufeng Ye, Ho N. Trinh, Christopher F. Evans, Maxine Tan, Joohon Sung, and et al. 2022. "Genetic Aspects of Mammographic Density Measures Associated with Breast Cancer Risk" Cancers 14, no. 11: 2767. https://doi.org/10.3390/cancers14112767