Evolution of Medical Approaches and Prominent Therapies in Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Origins in Antiquity
1.2. A Cellular Basis for Cancer
2. The Reign of the Knife
2.1. The Race toward Radiotherapy
2.2. The Second Coming: Chemotherapy
2.3. Targeted Therapies Take Hold
2.4. Immunotherapy: A Third Pillar Is Erected
3. Progression toward Personalized Medicine and Closing Remarks
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lakhtakia, R. A Brief History of Breast Cancer: Part I: Surgical domination reinvented. Sultan Qaboos Univ. Med. J. 2014, 14, e166–e169. [Google Scholar] [PubMed]
- Breasted, J.H. (Ed.) The Edwin Smith Surgical Papyrus; The University Chicago Press: Chicago, IL, USA, 1930. [Google Scholar]
- Hajdu, S.I. A note from history: Landmarks in history of cancer, part 1. Cancer 2010, 117, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- The History of Cancer; American Cancer Society: Atlanta, GA, USA, 2009.
- Faria, M.A. A journey through time to ancient Greek medicine with medical historian and classical scholar Plinio Prioreschi, MD, PhD. Surg Neurol Int. 2015, 6, 100. [Google Scholar] [CrossRef]
- De Moulin, D. A Short History of Breast Cancer; Martinus Nijhoff: Boston, MA, USA, 1983; pp. 1–107. [Google Scholar]
- Hajdu, S.I. Greco-Roman thought about cancer. Cancer 2004, 100, 2048–2051. [Google Scholar] [CrossRef] [PubMed]
- De Moulin, D. Historical notes on breast cancer, with emphasis on The Netherlands. III. The growth of scientific surgery in the 19th century. Neth. J. Surg. 1982, 34, 193–200. [Google Scholar] [PubMed]
- Wollman, A.J.; Nudd, R.; Hedlund, E.G.; Leake, M.C. From Animaculum to single molecules: 300 years of the light microscope. Open Biol. 2015, 5, 150019. [Google Scholar] [CrossRef] [Green Version]
- Loison, L. The Microscope against Cell Theory: Cancer Research in Nineteenth-Century Parisian Anatomical Pathology. J. Hist. Med. Allied Sci. 2016, 71, 271–292. [Google Scholar] [CrossRef] [Green Version]
- Sakorafas, G.H.; Safioleas, M. Breast cancer surgery: An historical narrative. Part II. 18th and 19th centuries. Eur. J. Cancer Care 2010, 19, 6–29. [Google Scholar] [CrossRef]
- Warren, J.C. Inhalation of ethereal vapor for the prevention of pain in surgical operations. Boston Med. Surg. J. 1846, 35, 375–379. [Google Scholar] [CrossRef]
- Lister, J. On the antiseptic principle in the practice of surgery. Br. Med. J. 1867, 2, 246–248. [Google Scholar] [CrossRef]
- Olson, J.S. The History of Cancer: An Annotated Bibliography; ABC-CLIO: Santa Barbara, CA, USA, 1989. [Google Scholar]
- Virchow, R. Cellular Pathology as Based Upon Physiological and Pathological Histology; J.B. Lippincott: Philadelphia, PA, USA, 1863. [Google Scholar]
- Paget, J. Lectures on Tumours; Wilson and Ogilvy: London, UK, 1851. [Google Scholar]
- Paget, J. Lectures on Surgical Pathology; Lindsay and Blakiston: Philadelphia, PA, USA, 1865. [Google Scholar]
- Paget, J. On Disease of the Mammary Areola Preceding Cancer of the Mammary Gland. St. Bartholomew Hosp. Rep. 1874, 10, 87–89. [Google Scholar] [CrossRef]
- Byers, J.M. Rudolf Virchow—Father of cellular pathology. Am. J. Clin. Pathol. 1989, 92 (Suppl. S1), S2–S8. [Google Scholar] [PubMed]
- Patel, M.; Ayyaswami, V.; Prabhu, A.V. Sir James Paget—Contributions of a surgeon and pathologist. JAMA Dermatol. 2018, 154, 335. [Google Scholar] [CrossRef]
- Recamier, J.C.A. Recherches sur le Traitement du Cancer; Gabon: Paris, France, 1829. [Google Scholar]
- Androutsos, G.; Karamanou, M.; Stamboulis, E.; Tsoucalas, G.; Kousoulis, A.A.; Mandelenaki, D. Joseph-Claude-Anthelme Récamier (1774–1852): Forerunner in surgical oncology. J. Buon 2011, 16, 572–576. [Google Scholar]
- Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 1889, 1, 571–573. [Google Scholar] [CrossRef] [Green Version]
- Halsted, W.S. The results of operations for the cure of cancer of the breast performed at the Johns Hopkins Hospital from June, 1889, to January, 1894. Ann. Surg. 1894, 20, 497–555. [Google Scholar] [CrossRef]
- Halsted, W.S. A clinical and histological study of certain adenocarcinomata of the breast and a brief consideration of the supraclavicular operation and of the results of operations for cancer of the breast from 1889 to 1898 at the Johns Hopkins Hospital. Ann. Surg. 1898, 28, 557–576. [Google Scholar] [PubMed]
- Halsted, W.S. The results of radical operations for the cure of cancer of the breast. Ann. Surg. 1907, 46, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Keen, W.W. Amputation of the female breast. Clevel. Med. Gaz. 1894, 10, 39–54. [Google Scholar]
- Fisher, B.; Fisher, E.R. The interrelationship of hematogenous and lymphatic tumor cell dissemination. Surg. Gynecol. Obstet. 1966, 122, 791–799. [Google Scholar]
- Sakorafas, G.H.; Safioleas, M. Breast cancer surgery: An historical narrative. Part III. From the sunset of the 19th to the dawn of the 21st century. Eur. J. Cancer Care 2010, 19, 145–166. [Google Scholar] [CrossRef] [PubMed]
- Fisher, B.; Ravdin, R.G.; Ausman, R.K.; Slack, N.H.; Moore, G.E.; Noer, R.J. Surgical adjuvant chemotherapy in cancer of the breast: Results of a decade of cooperative investigation. Ann. Surg. 1968, 168, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Beatson, G.T. On the treatment of inoperable cancer of the mammae. Suggestions for a new method of treatment with illustrative cases. Lancet 1896, 2, 104–107. [Google Scholar] [CrossRef] [Green Version]
- De Hevesy, G.C. Marie Curie and her contemporaries. The Becquerel-Curie memorial lecture. J. Nucl. Med. 1984, 25, 116–131. [Google Scholar] [PubMed]
- Curie, P.; Curie, M. Sur la radioactivité provoquée par les rayons de Bécquerel. C. R. Acad. Sci. 1899, 129, 714–716. [Google Scholar]
- Sgantos, M.; Tsoucalas, G.; Laios, K.; Androutsos, G. The physician who first applied radiotherapy, Victor Despeignes, on 1896. Hell. J. Nucl. Med. 2014, 17, 45–46. [Google Scholar]
- Grubbe, E.H. X-ray Treatment: Its Origin, Birth and Early History; Blace Ed: Saint Paul, MN, USA, 1949. [Google Scholar]
- Hadley, W.S. Parasternal invasion of the thorax in breast cancer and its suppression by the use of radium tubes as an operative precaution. Surg. Gynecol. Obstet. 1927, 45, 721–782. [Google Scholar]
- Keynes, G. The treatment of primary carcinoma of the breast with radium. Acta Radiol. 1929, 10, 893–901. [Google Scholar] [CrossRef]
- Keynes, G.L. The radium treatment of carcinoma of the breast. Br. J. Surg. 1932, 19, 415–480. [Google Scholar] [CrossRef]
- Richards, G.E. Mammary cancer: The place of surgery and of radiotherapy in its management. Br. J. Radiol. 1948, 21, 109–127. [Google Scholar] [CrossRef]
- Kaae, S.; Johansen, H. Breast cancer: Five year results. Two random series of simple mastectomy with postoperative irradiation versus extended radical mastectomy. Am. J. Roentgeneol. 1962, 87, 82–88. [Google Scholar]
- Pusey, W.A. Report of cases treated with Roentgen rays. J. Am. Med. Assoc. 1902, 38, 911. [Google Scholar] [CrossRef] [Green Version]
- Senn, N. Case of splenomedullary leukemia successfully treated by the use of Rontgen ray. Med. Rec. 1903, 64, 281. [Google Scholar]
- Holding, A.F. The Results of the Treatment of Lymphosarcoma by Means of X-rays and Other Methods. Ann. Surg. 1917, 65, 686–692. [Google Scholar] [CrossRef]
- Kulakowski, A. The contribution of Marie Sklodowska-Curie to the development of modern oncology. Anal. Bioanal. Chem. 2011, 400, 1583–1586. [Google Scholar] [CrossRef] [Green Version]
- The Collected Papers of Paul Erhlich; Pergamon Press: London, UK; New York, NY, USA, 1960.
- Papac, R.J. Origins of cancer therapy. Yale J. Biol. Med. 2001, 74, 391–398. [Google Scholar]
- Gilman, A. Symposium on advances in pharmacology resulting from war research: Therapeutic applications of chemical warfare agents. Fed. Proc. 1946, 5, 285–292. [Google Scholar] [PubMed]
- Goodman, L.S.; Wintrobe, M.M.; Dameshek, W.; Goodman, M.J.; Gilman, A.; McLennan, M.T. Nitrogen mustard therapy: Use of methyl-bis (β-chloroethyl) amine hydrochloride and tris (β-chloroethyl)amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia, and certain allied and miscellaneous disorders. JAMA 1946, 132, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Gilman, A.; Philips, F.S. The biological actions and therapeutic applications of the β-chloroethylamines and sulfides. Science 1946, 103, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Gilman, A. The initial clinical trial of nitrogen mustard. Am. J. Surg. 1963, 105, 574–578. [Google Scholar] [CrossRef]
- Fenn, J.E.; Udelsman, R. First use of intravenous chemotherapy cancer treatment: Rectifying the record. J. Am. Coll. Surg. 2011, 212, 413–417. [Google Scholar] [CrossRef] [PubMed]
- DeVita, V.T.; Chu, E. A history of cancer chemotherapy. Cancer Res. 2008, 68, 8643–8653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farber, S.; Diamond, L.K. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). N. Engl. J. Med. 1948, 238, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.C.; Prigot, A.; Wright, B.; Weintraub, S.; Wright, L.T. An evaluation of folic acid antagonists in adults with neoplastic diseases: A study of 93 patients with incurable neoplasms. J. Natl. Med. Assoc. 1951, 43, 211–240. [Google Scholar]
- Elion, G.B.; Singer, S.; Hitchings, G.H. Antagonists of nucleic acid derivatives. VIII. Synergism in combinations of biochemically related antimetabolites. J. Biol. Chem. 1954, 208, 477–488. [Google Scholar] [CrossRef]
- Hitchings, G.H.; Elion, G.B. The chemistry and biochemistry of purine analogs. Ann. N. Y. Acad. Sci. 1954, 60, 195–199. [Google Scholar] [CrossRef]
- Foye, L.V.; Chapman, C.G.; Willett, F.M.; Adams, W.S. Cyclophosphamide. A preliminary study of a new alkylating agent. Cancer Chemother. Rep. 1960, 6, 39–40. [Google Scholar]
- Heidelberger, C.; Chaudhuari, N.K.; Danenberg, P.; Mooren, D.; Griebach, L.; Duschinksy, R.; Schnitzer, R.J.; Pleven, E.; Scheiner, J. Fluorinated pyrimidines. A new class of tumor inhibitory compounds. Nature 1957, 179, 663–666. [Google Scholar] [CrossRef]
- Li, M.C.; Hertz, R.; Bergenstal, D.M. Therapy of choriocarcinoma and related trophoblastic tumors with folic acid and purine antagonists. N. Engl. J. Med. 1958, 259, 66–74. [Google Scholar] [CrossRef]
- Li, M.C.; Whitmore, W.F.; Goldbey, R.B.; Grabstald, H. Effects of combined drug therapy on metastatic cancer of the testis. JAMA 1969, 174, 1291. [Google Scholar] [CrossRef]
- Greenspan, E.M.; Fieber, M.; Lesnick, G.; Edelman, S. Response of advanced breast cancer to the combination of the anti-metabolite methotrexate and the alkylating agent thiotepa. J. Mt. Sinai Hosp. 1963, 30, 246–267. [Google Scholar]
- Canellos, G.P.; DeVita, V.T.; Gold, G.L.; Chabner, B.A.; Schein, P.S.; Young, R.C. Cyclical combination chemotherapy in the treatment of advanced breast carcinoma. Proc. Am. Assoc. Cancer Res. 1974, 15, 148. [Google Scholar]
- Fisher, B.; Carbone, P.; Economou, S.G.; Frelick, R.; Glass, A.; Lerner, H.; Redmond, C.; Zelen, M.; Band, P.; Katrych, D.L.; et al. L-phenylalanine mustard (L-PAM) in the management of primary breast cancer. N. Engl. J. Med. 1975, 292, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Bonadonna, G.; Brusamolino, E.; Valegussa, P.; Rossi, A.; Brugnatelli, L.; Brambilla, C.; De Lena, M.; Tancini, G.; Bajetta, E.; Musumeci, R.; et al. Combination chemotherapy as an adjunct treatment in operable breast cancer. N. Engl. J. Med. 1976, 294, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Fisher, B.; Montague, E.; Redmond, C. Comparison of radical mastectomy with alternative treatments for primary breast cancer: A first report of results from a prospective randomized clinical trial. Cancer 1977, 39, 2827–2839. [Google Scholar] [CrossRef]
- Veronesi, U.; Banfi, A.; Saccozzi, R.; Salvadori, B.; Zucali, R.; Uslenghi, C.; Greco, M.; Luini, A.; Rilke, F.; Sultan, L. Conservative treatment of breast cancer. A trial in progress at the Cancer Institute of Milan. Cancer 1977, 39 (Suppl. S6), 2822–2826. [Google Scholar] [CrossRef]
- Fisher, B.; Bryant, J.; Wolmark, N.; Mamounas, E.; Brown, A.; Fisher, E.R.; Wickerham, D.L.; Begovic, M.; DeCillis, A.; Robidoux, A.; et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J. Clin. Oncol. 1998, 16, 2672–2685. [Google Scholar] [CrossRef]
- Derks, M.G.M.; van de Velde, C.J.H. Neoadjuvant chemotherapy in breast cancer: More than just downsizing. Lancet Oncol. 2017, 19, 2–3. [Google Scholar] [CrossRef] [Green Version]
- Rygaard, J.; Povlsen, C.O. Heterotransplantation of a human malignant tumour to “Nude” mice. Acta Pathol. Microbiol. Scand. 1969, 77, 758–760. [Google Scholar] [CrossRef]
- Giovanella, B.C.; Yim, S.O.; Stehlin, J.S.; Williams, L.J. Development of invasive tumors in the “nude” mouse after injection of cultured human melanoma cells. J. Natl. Cancer Inst. 1972, 48, 1531–1533. [Google Scholar]
- Di Marco, A.; Gaetani, M.; Dorigotti, L.; Soldati, M.; Bellini, O. Daunomycin: A new antibiotic with antitumor activity. Tumori 1963, 49, 203–217. [Google Scholar] [CrossRef]
- Di Marco, A.; Gaetani, M.; Scarpinato, B. Adriamycin (NSC-123,127): A new antibiotic with antitumor activity. Cancer Chemother. Rep. 1969, 53, 33–37. [Google Scholar] [PubMed]
- McGowan, J.V.; Chung, R.; Maulik, A.; Piotrowska, I.; Walker, J.M.; Yellon, D.M. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovasc. Drugs Ther. 2017, 31, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Wahba, H.A.; El-Hadaad, H.A. Current approaches in treatment of triple-negative breast cancer. Cancer Biol. Med. 2015, 12, 106–116. [Google Scholar] [PubMed]
- Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus Brevifolia. J. Am. Chem. Soc. 1971, 93, 2325–2327. [Google Scholar] [CrossRef] [PubMed]
- Schiff, P.B.; Fant, J.; Horwitz, S.B. Promotion of microtubule assembly in vitro by taxol. Nature 1979, 277, 665–667. [Google Scholar] [CrossRef]
- Bissery, M.C.; Guénard, D.; Guéritte-Voegelein, F.; Lavelle, F. Experimental antitumor activity of taxotere (RP 56976, NSC 628503), a taxol analogue. Cancer Res. 1991, 51, 4845–4852. [Google Scholar]
- Müller, V.; Clemens, M.; Jassem, J.; Al-Sakaff, N.; Auclair, P.; Nüesch, E.; Holloway, D.; Shing, M.; Bang, Y.J. Long-Term trastuzumab (Herceptin®) treatment in a continuation study of patients with HER2-positive breast cancer or HER2-positive gastric cancer. BMC Cancer 2018, 18, 295. [Google Scholar] [CrossRef]
- Huggins, C.; Hodges, C.V. Studies on Prostatic Cancer: I. The effect of castration, of estrogen, and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1941, 1, 293. [Google Scholar]
- Huggins, C.; Stephens, R.C.; Hodges, C.V. Studies on prostatic cancer: 2. The effects of castration on advanced carcinoma of the prostate gland. Arch. Surg. 1941, 43, 209. [Google Scholar] [CrossRef]
- Huggins, C.; Dao, T.L.-Y. Adrenalectomy and oophorectomy in treatment of advanced carcinoma of the breast. JAMA 1953, 151, 1388–1394. [Google Scholar]
- Dao, T.L.; Huggins, C. Bilateral adrenalectomy in the treatment of cancer of the breast. Arch. Surg. 1955, 71, 645–657. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, B.J. Massive estrogen administration in premenopausal women with metastatic breast cancer. Cancer 1962, 15, 641–648. [Google Scholar] [CrossRef]
- Nosaquo, N.D. Androgens and estrogens in the treatment of disseminated mammary carcinoma. JAMA. 1960, 172, 135–147. [Google Scholar]
- Taylor, S.G.; Ayer, J.P.; Morris, R.S. Cortical steroids in treatment of cancer. JAMA 1956, 144, 1058–1064. [Google Scholar] [CrossRef]
- Kennedy, B.J. Hormonal therapies in breast cancer. Semin. Oncol. 1974, 1, 119–129. [Google Scholar]
- Jordan, V.C. Tamoxifen treatment for breast cancer: Concept to gold standard. Oncology 1997, 11 (Suppl. S1), 7–13. [Google Scholar]
- Quirke, V.M. Tamoxifen from Failed Contraceptive Pill to Best-Selling Breast Cancer Medicine: A Case-Study in Pharmaceutical Innovation. Front. Pharmacol. 2017, 8, 620. [Google Scholar] [CrossRef]
- Ward, H.W. Anti-Oestrogen therapy for breast cancer: A trial of tamoxifen at two dose levels. Br. Med. J. 1973, 1, 13–14. [Google Scholar] [CrossRef] [Green Version]
- Baum, M.; Brinkley, D.M.; Dossett, J.A.; McPherson, K.; Patterson, J.S.; Rubens, R.D.; Smiddy, F.G.; Stoll, B.A.; Wilson, A.; Lea, J.C.; et al. Improved survival among patients treated with adjuvant tamoxifen after mastectomy for early breast cancer. Lancet 1983, 2, 450. [Google Scholar] [CrossRef]
- Controlled trial of tamoxifen as adjuvant agent in management of early breast cancer. Interim analysis at four years by Nolvadex Adjuvant Trial Organisation. Lancet 1983, 1, 257–261.
- Davies, C.; Pan, H.; Godwin, J.; Gray, R.; Arriagada, R.; Raina, V.; Abraham, M.; Medeiros Alencar, V.H.; Badran, A.; Bonfill, X.; et al. Long-Term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 2013, 381, 805–816. [Google Scholar] [CrossRef] [Green Version]
- Steinach, E.; Kun, H. Transformation of male sex hormones into a substance with action of a female hormone. Lancet 1937, 2, 845. [Google Scholar] [CrossRef]
- Nathanson, I.T.; Towne, L.E. The urinary excretion of estrogens, androgens and FSH following administration of testosterone to human female castrates. Endocrinology 1939, 25, 754–758. [Google Scholar] [CrossRef]
- West, C.D.; Damast, B.L.; Sarro, S.D.; Pearson, O.H. Conversion of testosterone to estrogens in castrated, adrenalectomized human females. J. Biol. Chem. 1956, 218, 409–418. [Google Scholar] [CrossRef]
- Ryan, K.J. Biological aromatization of steroids. J. Biol. Chem. 1959, 234, 268–272. [Google Scholar] [CrossRef]
- Lonning, P.E.; Kvinnsland, S. Mechanisms of action of amino-glutethimide as endocrine therapy of breast cancer. Drugs 1988, 35, 685–710. [Google Scholar] [CrossRef]
- Geisler, J. Aromotase inhibitors: From bench to bedside and back. Breast Cancer 2008, 15, 17–26. [Google Scholar] [CrossRef]
- Geisler, J.; King, N.; Dowsett, M.; Ottestad, L.; Lundgren, S.; Walton, P.; Kormeset, P.O.; Lønning, P.E. Influence of anastrozole (Arimidex), a selective, non-steroidal aromatase inhibitor, on in vivo aromatisation and plasma oestrogen levels in postmeno- pausal women with breast cancer. Br. J. Cancer 1996, 74, 1286–1291. [Google Scholar] [CrossRef] [Green Version]
- Geisler, J.; King, N.; Anker, G.; Ornati, G.; Di Salle, E.; Lønning, P.E.; Dowsett, M. In vivo inhibition of aromatization by exemestane, a novel irreversible aromatase inhibitor, in postmenopausal breast cancer patients. Clin. Cancer Res. 1998, 4, 2089–2093. [Google Scholar]
- Geisler, J.; Haynes, B.; Anker, G.; Dowsett, M.; Lonning, P.E. Influence of letrozole and anastrozole on total body aromatization and plasma estrogen levels in postmenopausal breast cancer patients evaluated in a randomized, cross-over study. J. Clin. Oncol. 2002, 20, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Bonneterre, J.; Buzdar, A.; Nabholtz, J.M.; Robertson, J.F.; Thürlimann, B.; von Euler, M.; Sahmoud, T.; Webster, A.; Steinberg, M. Anastrozole is superior to tamoxifen as first-line therapy in hormone receptor positive advanced breast carcinoma. Cancer 2001, 92, 2247–2258. [Google Scholar] [CrossRef]
- Mouridsen, H.; Gershanovich, M.; Sun, Y.; Pérez-Carrión, R.; Boni, C.; Monnier, A.; Apffelstaedt, J.; Smith, R.; Sleeboom, H.P.; Jänicke, F.; et al. Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmen- opausal women with advanced breast cancer: Results of a phase III study of the International Letrozole Breast Cancer Group. J. Clin. Oncol. 2001, 19, 2596–2606. [Google Scholar] [CrossRef]
- Coombes, R.C.; Hall, E.; Gibson, L.J.; Paridaens, R.; Jassem, J.; Delozier, T.; Jones, S.E.; Alvarez, I.; Bertelli, G.; Ortmann, O.; et al. A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer. N. Engl. J. Med. 2004, 350, 1081–1092. [Google Scholar] [CrossRef] [Green Version]
- Duesberg, P.H.; Vogt, P.K. Differences between the ribonucleic acids of transforming and nontransforming avian tumor viruses. Proc. Natl. Acad. Sci. USA 1970, 67, 1673–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, G.S. Rous sarcoma virus: A function required for the maintenance of the transformed state. Nature 1970, 227, 1021–1023. [Google Scholar] [CrossRef] [PubMed]
- Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef] [PubMed]
- Krause, D.S.; Van Etten, R.A. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med. 2005, 353, 172–187. [Google Scholar] [CrossRef] [Green Version]
- Scott, A.M.; Allison, J.P.; Wolchok, J.D. Monoclonal antibodies in cancer therapy. Cancer Immun. 2012, 12, 14. [Google Scholar]
- Miller, J.L. Progress in breast cancer treatment: Prevention, new therapies come to forefront. Am. J. Health Syst. Pharm. 1998, 55, 2326–2330. [Google Scholar] [CrossRef]
- Shepard, H.M.; Lewis, G.D.; Sarup, J.C.; Fendly, B.M.; Maneval, D.; Mordenti, J.; Figari, I.; Kotts, C.E.; Palladino, M.A.; Ullrich, A.; et al. Monoclonal antibody therapy of human cancer: Taking the HER2 protooncogene to the clinic. J. Clin. Immunol. 1991, 11, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Carter, P.; Presta, L.; Gorman, C.M.; Ridgway, J.B.; Henner, D.; Wong, W.L.; Rowland, A.M.; Kotts, C.; Carver, M.E.; Shepard, H.M. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl. Acad. Sci. USA 1992, 89, 4285–4289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harbeck, N.; Beckmann, M.W.; Rody, A.; Schneeweiss, A.; Müller, V.; Fehm, T.; Marschner, N.; Gluz, O.; Schrader, I.; Heinrich, G.; et al. HER2 dimerization inhibitor pertuzumab–mode of action and clinical data in breast cancer. Breast Care 2015, 8, 49–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pegram, M.D.; Lipton, A.; Hayes, D.F.; Weber, B.L.; Baselga, J.M.; Tripathy, D.; Baly, D.; Baughman, S.A.; Twaddell, T.; Glaspy, J.A.; et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J. Clin. Oncol. 1998, 16, 2659–2671. [Google Scholar] [CrossRef]
- Schneeweiss, A.; Chia, S.; Hickish, T.; Harvey, V.; Eniu, A.; Hegg, R.; Tausch, C.; Seo, J.H.; Tsai, Y.F.; Ratnayake, J.; et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: A randomized phase II cardiac safety study (TRYPHAENA). Ann. Oncol. 2013, 24, 2278–2284. [Google Scholar] [CrossRef]
- Vézina, C.; Kudelski, A.; Sehgal, S.N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. 1975, 28, 721–726. [Google Scholar] [CrossRef]
- Carew, J.S.; Kelly, K.R.; Nawrocki, S.T. Mechanisms of mTOR inhibitor resistance in cancer therapy. Target. Oncol. 2011, 6, 17–27. [Google Scholar] [CrossRef]
- Pernas, S.; Tolaney, S.M.; Winer, E.P.; Goel, S. CDK4/6 inhibition in breast cancer: Current practice and future directions. Ther. Adv. Med. Oncol. 2018, 10, 1758835918786451. [Google Scholar] [CrossRef] [Green Version]
- Nair, P. QnAs with James Allison. Proc. Natl. Acad. Sci. USA 2016, 113, 9131–9132. [Google Scholar] [CrossRef] [Green Version]
- Coley, W.B. The treatment of malignant tumors by repeated inoculations of erysipelas: With a report of ten original cases. Am. J. Med. Sci. 1893, 105, 487–511. [Google Scholar] [CrossRef]
- Coley, W.B. The Treatment of Malignant Inoperable Tumors with the Mixed Toxins of Erysipelas and Bacillus Prodigiosus; M Weissenbruch: Brussels, Belgium, 1914. [Google Scholar]
- McCarthy, E.F. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop. J. 2006, 26, 154–158. [Google Scholar] [PubMed]
- Decker, W.K.; da Silva, R.F.; Sanabria, M.H.; Angelo, L.S.; Guimarães, F.; Burt, B.M.; Kheradmand, F.; Paust, S. Cancer Immunotherapy: Historical Perspective of a Clinical Revolution and Emerging Preclinical Animal Models. Front. Immunol. 2017, 8, 829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.F.; Mitchell, G.F.; Weiss, N.S. Cellular basis of the immunological defects in thymectomized mice. Nature 1967, 214, 992–997. [Google Scholar] [CrossRef] [PubMed]
- Steinman, R.M.; Cohn, Z.A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 1973, 137, 1142–1162. [Google Scholar] [CrossRef] [PubMed]
- Kiessling, R.; Klein, E.; Pross, H.; Wigzell, H. “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur. J. Immunol. 1975, 5, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Talpaz, M.; McCredie, K.B.; Mavligit, G.M.; Gutterman, J.U. Leukocyte interferon-induced myeloid cytoreduction in chronic myelogenous leukemia. Blood 1983, 62, 689–692. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, D.H.; Shankaran, V.; Dighe, A.S.; Stockert, E.; Aguet, M.; Old, L.J.; Schreiber, R.D. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc. Natl. Acad. Sci. USA 1998, 95, 7556–7561. [Google Scholar] [CrossRef] [Green Version]
- Shankaran, V.; Ikeda, H.; Bruce, A.T.; White, J.M.; Swanson, P.E.; Old, L.J.; Schreiber, R.D. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 2001, 410, 1107–1111. [Google Scholar] [CrossRef]
- Waterhouse, P.; Penninger, J.M.; Timms, E.; Wakeham, A.; Shahinian, A.; Lee, K.P.; Thompson, C.B.; Griesser, H.; Mak, T.W. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 1995, 270, 985–988. [Google Scholar] [CrossRef] [PubMed]
- Tivol, E.A.; Borriello, F.; Schweitzer, A.N.; Lynch, W.P.; Bluestone, J.A.; Sharpe, A.H. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995, 3, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Krummel, M.F.; Allison, J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 1995, 182, 459–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996, 271, 1734–1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992, 11, 3887–3895. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, H.; Nose, M.; Hiai, H.; Minato, N.; Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999, 11, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Zhu, G.; Tamada, K.; Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 1999, 5, 1365–1369. [Google Scholar] [CrossRef]
- Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; Tamada, K.; et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med. 2002, 8, 793–800. [Google Scholar] [CrossRef]
- Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 2000, 192, 1027–1034. [Google Scholar] [CrossRef] [Green Version]
- Zou, W.; Chen, L. Inhibitory B7-family molecules in the tumour microenvironment. Nat. Rev. Immunol. 2008, 8, 467–477. [Google Scholar] [CrossRef]
- Latchman, Y.; Wood, C.R.; Chernova, T.; Chaudhary, D.; Borde, M.; Chernova, I.; Iwai, Y.; Long, A.J.; Brown, J.A.; Nunes, R.; et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2001, 2, 261–268. [Google Scholar] [CrossRef]
- Butte, M.J.; Keir, M.E.; Phamduy, T.B.; Sharpe, A.H.; Freeman, G.J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 2007, 27, 111–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.J.; Omiya, R.; Matsumura, Y.; Sakoda, Y.; Kuramasu, A.; Augustine, M.M.; Yao, S.; Tsushima, F.; Narazaki, H.; Anand, S.; et al. B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood 2010, 116, 1291–1298. [Google Scholar] [CrossRef] [PubMed]
- LaFleur, M.W.; Muroyama, Y.; Drake, C.G.; Sharpe, A.H. Inhibitors of the PD-1 Pathway in Tumor Therapy. J. Immunol. 2018, 200, 375–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, E.V. Developing combination strategies using PD-1 checkpoint inhibitors to treat cancer. Semin. Immunopathol. 2018, 41, 21–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2015, 372, 2521–2532. [Google Scholar] [CrossRef]
- Vonderheide, R.H.; Domchek, S.M.; Clark, A.S. Immunotherapy for Breast Cancer: What Are We Missing? Clin. Cancer Res. 2017, 23, 2640–2646. [Google Scholar] [CrossRef] [Green Version]
- Denkert, C.; von Minckwitz, G.; Darb-Esfahani, S.; Lederer, B.; Heppner, B.I.; Weber, K.E.; Budczies, J.; Huober, J.; Klauschen, F.; Furlanetto, J.; et al. Tumour-Infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018, 19, 40–50. [Google Scholar] [CrossRef]
- Kawaguchi, K.; Sakurai, M.; Yamamoto, Y.; Suzuki, E.; Tsuda, M.; Kataoka, T.R.; Hirata, M.; Nishie, M.; Nojiri, T.; Kumazoe, M.; et al. Alteration of specific cytokine expression patterns in patients with breast cancer. Sci. Rep. 2019, 9, 2924. [Google Scholar] [CrossRef]
- Stanton, S.E.; Adams, S.; Disis, M.L. Variation in incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: A systematic review. JAMA Oncol. 2016, 2, 1354–1360. [Google Scholar] [CrossRef]
- Pereira, B.; Chin, S.F.; Rueda, O.M.; Vollan, H.K.; Provenzano, E.; Bardwell, H.A.; Pugh, M.; Jones, L.; Russell, R.; Sammut, S.; et al. The somatic mutation profiles of 2433 breast cancers refines their genomic and transcriptomic landscapes. Nat. Commun. 2016, 7, 11479. [Google Scholar] [CrossRef] [Green Version]
- Goodman, A.M.; Kato, S.; Bazhenova, L.; Patel, S.P.; Frampton, G.M.; Miller, V.; Stephens, P.J.; Daniels, G.A.; Kurzrock, R. Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Mol. Cancer Ther. 2017, 16, 2598–2608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narang, P.; Chen, M.; Sharma, A.A.; Anderson, K.S.; Wilson, M.A. The neoepitope landscape of breast cancer: Implications for immunotherapy. BMC Cancer 2019, 19, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haricharan, S.; Bainbridge, M.N.; Scheet, P.; Brown, P.H. Somatic mutation load of estrogen receptor-positive breast tumors predicts overall survival: An analysis of genome sequence data. Breast Cancer Res. Treat. 2014, 146, 211–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimino-Mathews, A.; Thompson, E.; Taube, J.M.; Ye, X.; Lu, Y.; Meeker, A.; Xu, H.; Sharma, R.; Lecksell, K.; Cornish, T.C.; et al. PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Hum. Pathol. 2015, 47, 52–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cyprian, F.S.; Akhtar, S.; Gatalica, Z.; Vranic, S. Targeted immunotherapy with a checkpoint inhibitor in combination with chemotherapy: A new clinical paradigm in the treatment of triple-negative breast cancer. Bosn. J. Basic Med. Sci. 2019, 19, 227–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, S.; Buxton, I.L.O. Evolution of Medical Approaches and Prominent Therapies in Breast Cancer. Cancers 2022, 14, 2450. https://doi.org/10.3390/cancers14102450
Duan S, Buxton ILO. Evolution of Medical Approaches and Prominent Therapies in Breast Cancer. Cancers. 2022; 14(10):2450. https://doi.org/10.3390/cancers14102450
Chicago/Turabian StyleDuan, Suzann, and Iain L. O. Buxton. 2022. "Evolution of Medical Approaches and Prominent Therapies in Breast Cancer" Cancers 14, no. 10: 2450. https://doi.org/10.3390/cancers14102450
APA StyleDuan, S., & Buxton, I. L. O. (2022). Evolution of Medical Approaches and Prominent Therapies in Breast Cancer. Cancers, 14(10), 2450. https://doi.org/10.3390/cancers14102450