An Evaluation of the Diagnostic Accuracy of a Panel of Variants in DPYD and a Single Variant in ENOSF1 for Predicting Common Capecitabine Related Toxicities
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- Statistical evidence of an association with global fluoropyrimidine associated toxicity in ≥1 study with ≥500 patients with an OR/HR of ≥1.5.
- DPYD variant identified in ≥1 patient(s) with DPD deficiency AND ≥ 1 of the following supporting pieces of evidence consistently suggesting a negative impact on the protein activity or where an association with toxicity had been explored evidence of an increased risk of toxicity:
- (a)
- Analysis of pig DPD crystal structure predicts impact on protein folding or interactions
- (b)
- Variant allele associated with lower enzyme activity in patient samples or in vitro models (see Table 1).
- (c)
- No contradictory evidence in studies of 5-FU toxicity.
3. Results
3.1. Markers Selected for Inclusion in a Predictive Panel
3.2. DPYD Deficiency Variants Frequency Data in QUASAR 2
3.3. Comparative Receiver Operating Characteristic (ROC) Curveanalysis—Does Inclusion of Additional Variants Have Improved Diagnostic Accuracy over CPIC 2018 Variants Alone?
3.4. Risk Categorisation of QUASAR 2 Using the Selected Variants
3.5. Toxicity Outcomes of QUASAR 2 Patients Predicted to Be at Critical/High Risk of Toxicity
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paoletti, X.; Oba, K.; Burzykowski, T.; Michiels, S.; Ohashi, Y.; Pignon, J.P.; Rougier, P.; Sakamoto, J.; Sargent, D.; Sasako, M.; et al. Benefit of adjuvant chemotherapy for resectable gastric cancer: A meta-analysis. J. Am. Med. Assoc. 2010, 303, 1729–1737. [Google Scholar]
- Wolmark, N.; Fisher, B.; Rockette, H.; Redmond, C.; Wickerham, D.L.; Fisher, E.R.; Jones, J.; Glass, A.; Lerner, H.; Lawrence, W.; et al. Postoperative adjuvant chemotherapy or BCG for colon cancer: Results from NSABP protocol C-011. J. Natl. Cancer Inst. 1988, 80, 30–36. [Google Scholar] [CrossRef]
- Amstutz, U.; Henricks, L.M.; Offer, S.M.; Barbarino, J.; Schellens, J.H.; Swen, J.J.; Klein, T.E.; McLeod, H.L.; Caudle, K.E.; Diasio, R.B.; et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin. Pharmacol. Ther. 2018, 103, 210–216. [Google Scholar] [CrossRef] [PubMed]
- De Falco, V.; Natalicchio, M.I.; Napolitano, S.; Coppola, N.; Conzo, G.; Martinelli, E.; Zanaletti, N.; Vitale, P.; Giunta, E.F.; Vietri, M.T.; et al. A case report of a severe fluoropyrimidine-related toxicity due to an uncommon DPYD variant. Medicine 2019, 98, e15759. [Google Scholar] [CrossRef] [PubMed]
- Van Kuilenburg, A.B.; Dobritzsch, D.; Meinsma, R.; Haasjes, J.; Waterham, H.R.; Nowaczyk, M.J.; Maropoulos, G.D.; Hein, G.; Kalhoff, H.; Kirk, J.M.; et al. Novel disease-causing mutations in the dihydropyrimidine dehydrogenase gene interpreted by analysis of the three-dimensional protein structure. Biochem. J. 2002, 364, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Van Kuilenburg, A.B.; Meinsma, R.; Beke, E.; Bobba, B.; Boffi, P.; Enns, G.M.; Witt, D.R.; Dobritzsch, D. Identification of three novel mutations in the dihydropyrimidine dehydrogenase gene associated with altered pre-mRNA splicing or protein function. Biol. Chem. 2005, 386, 319–324. [Google Scholar] [CrossRef]
- Van Kuilenburg, A.B.P.; Vreken, P.; Abeling, N.G.G.M.; Bakker, H.D.; Meinsma, R.; Van Lenthe, H.; De Abreu, R.A.; Smeitink, J.A.M.; Kayserili, H.; Apak, M.Y.; et al. Genotype and phenotype in patients with dihydropyrimidine dehydrogenase deficiency. Qual. Life Res. 1999, 104, 1–9. [Google Scholar] [CrossRef]
- Offer, S.M.; Wegner, N.J.; Fossum, C.; Wang, K.; Diasio, R.B. Phenotypic profiling of DPYD variations relevant to 5-fluorouracil sensitivity using real-time cellular analysis and in vitro measurement of enzyme activity. Cancer Res. 2013, 73, 1958–1968. [Google Scholar] [CrossRef] [PubMed]
- Rosmarin, D.; Palles, C.; Pagnamenta, A.; Kaur, K.; Pita, G.; Martin, M.; Domingo, E.; Jones, A.; Howarth, K.; Freeman-Mills, L.; et al. A candidate gene study of capecitabine-related toxicity in colorectal cancer identifies new toxicity variants at DPYD and a putative role for ENOSF1 rather than TYMS. Gut 2015, 64, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Meulendijks, D.; Henricks, L.M.; Sonke, G.S.; Deenen, M.J.; Froehlich, T.K.; Amstutz, U.; Largiader, C.R.; Jennings, B.A.; Marinaki, A.M.; Sanderson, J.D.; et al. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: A systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015, 16, 1639–1650. [Google Scholar] [CrossRef]
- García-González, X.; Cortejoso, L.; García, M.I.; Garcia-Alfonso, P.; Robles, L.; Grávalos, C.; Gonzalez-Haba, E.; Marta, P.; Sanjurjo, M.; Lopez-Fernandez, L.A. Variants in CDA and ABCB1 are predictors of capecitabine-related adverse reactions in colorectal cancer. Oncotarget 2015, 6, 6422–6430. [Google Scholar] [CrossRef]
- Hamzic, S.; Kummer, D.; Froehlich, T.K.; Joerger, M.; Aebi, S.; Palles, C.; Thomlinson, I.; Meulendijks, D.; Schellens, J.H.; García-González, X.; et al. Evaluating the role of ENOSF1 and TYMS variants as predictors in fluoropyrimidine-related toxicities: An IPD meta-analysis. Pharmacol. Res. 2020, 152, 104594. [Google Scholar] [CrossRef]
- Wu, Q.; Dolnick, B.J. Detection of thymidylate synthase modulators by a novel screening assay. Mol. Pharmacol. 2003, 63, 167–173. [Google Scholar] [CrossRef]
- Ghosh, S.; Hossain, M.Z.; Borges, M.; Goggins, M.G.; Ingersoll, R.G.; Eshleman, J.R.; Klein, A.P.; Kern, S.E. Analysis of polymorphisms and haplotype structure of the human thymidylate synthase genetic region: A tool for pharmacogenetic studies. PLoS ONE 2012, 7, e34426. [Google Scholar] [CrossRef]
- Rimmer, A.; Phan, H.; Mathieson, I.; Iqbal, Z.; Twigg, S.R.F.; Wilkie, A.O.M.; McVean, G.; Lunter, G. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat. Genet. 2014, 46, 912–918. [Google Scholar] [CrossRef]
- Offer, S.M.; Butterfield, G.L.; Jerde, C.R.; Fossum, C.C.; Wegner, N.J.; Diasio, R.B. MicroRNAs miR-27a and miR-27b directly regulate liver dihydropyrimidine dehydrogenase expression through two conserved binding sites. Mol. Cancer Ther. 2014, 13, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Meulendijks, D.; Henricks, L.M.; Amstutz, U.; Froehlich, T.K.; Largiader, C.R.; Beijnen, J.H.; de Boer, A.; Deenen, M.J.; Cats, A.; Schellens, J.H. Rs895819 in MIR27A improves the predictive value of DPYD variants to identify patients at risk of severe fluoropyrimidine-associated toxicity. Int. J. Cancer. 2016, 138, 2752–2761. [Google Scholar] [CrossRef]
- Pellicer, M.; García-González, X.; García, M.I.; Robles, L.; Grávalos, C.; García-Alfonso, P.; Pachón, V.; Longo, F.; Martínez, V.; Blanco, C.; et al. Identification of new SNPs associated with severe toxicity to capecitabine. Pharmacol. Res. 2017, 120, 133–137. [Google Scholar] [CrossRef]
- Lunenburg, C.A.T.C.; Van Der Wouden, C.H.; Nijenhuis, M.; Rhenen, M.H.C.-V.; De Boer-Veger, N.J.; Buunk, A.M.; Houwink, E.J.F.; Mulder, H.; Rongen, G.A.; Van Schaik, R.H.N.; et al. Dutch pharmacogenetics working group (DPWG) guideline for the gene–drug interaction of DPYD and fluoropyrimidines. Eur. J. Hum. Genet. 2019, 28, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Rosmarin, D.; Palles, C.; Church, D.; Domingo, E.; Jones, A.; Johnstone, E.; Wang, H.; Love, S.; Julier, P.; Scudder, C.; et al. Genetic markers of toxicity from capecitabine and other fluorouracil-based regimens: Investigation in the QUASAR2 study, systematic review, and meta-analysis. J. Clin. Oncol. 2014, 32, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Innocenti, F.; Mills, S.C.; Sanoff, H.; Ciccolini, J.; Lenz, H.-J.; Milano, G. All you need to know about DPYD genetic testing for patients treated with fluorouracil and capecitabine: A practitioner-friendly guide. JCO Oncol. Pract. 2020, 16, 793–798. [Google Scholar] [CrossRef]
- Lee, L.Y.W.; Starkey, T.; Sivakumar, S.; Fotheringham, S.; Mozolowski, G.; Shearwood, V.; Palles, C.; Camilleri, P.; Church, D.; Kerr, R.; et al. ToxNav germline genetic testing and PROMinet digital mobile application toxicity monitoring: Results of a prospective single-center clinical utility study-PRECISE study. Cancer Med. 2019, 8, 6305–6314. [Google Scholar] [CrossRef] [PubMed]
- Kerr, R.S.; Love, S.; Segelov, E.; Johnstone, E.; Falcon, B.; Hewett, P.; Weaver, A.; Church, D.; Scudder, C.; Pearson, S.; et al. Adjuvant capecitabine plus bevacizumab versus capecitabine alone in patients with colorectal cancer (QUASAR 2): An open-label, randomised phase 3 trial. Lancet Oncol. 2016, 17, 1543–1557. [Google Scholar] [CrossRef]
- Delaneau, O.; Marchini, J.; Zagury, J.-F. A linear complexity phasing method for thousands of genomes. Nat. Methods 2011, 9, 179–181. [Google Scholar] [CrossRef] [PubMed]
- Howie, N.B.; Donnelly, P.; Marchini, J. A flexible and accurate genotype imputation method for the next generation of ge-nome-wide association studies. PLoS Genet. 2009, 5, e1000529. [Google Scholar] [CrossRef]
- Marchini, J.; Howie, B.; Myers, S.; McVean, G.; Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 2007, 39, 906–913. [Google Scholar] [CrossRef]
- Šimundić, A.-M. Measures of diagnostic accuracy: Basic definitions. EJIFCC 2009, 19, 203–211. [Google Scholar] [PubMed]
- Freeman, P.J.; Hart, R.K.; Gretton, L.J.; Brookes, A.J.; Dalgleish, R. VariantValidator: Accurate validation, mapping, and formatting of sequence variation descriptions. Hum. Mutat. 2018, 39, 61–68. [Google Scholar] [CrossRef]
- Henricks, L.; Opdam, F.; Beijnen, J.; Cats, A.; Schellens, J.H.M. DPYD genotype-guided dose individualization to improve patient safety of fluoropyrimidine therapy: Call for a drug label update. Ann. Oncol. 2017, 28, 2915–2922. [Google Scholar] [CrossRef]
- Shrestha, S.; Zhang, C.; Jerde, C.R.; Nie, Q.; Li, H.; Offer, S.M.; Diasio, R.B. Gene-specific variant classifier (DPYD-Varifier) to identify deleterious alleles of dihydropyrimidine dehydrogenase. Clin. Pharmacol. Ther. 2018, 104, 709–718. [Google Scholar] [CrossRef]
- Narasimhan, P.; Narasimhan, S.; Hitti, I.F.; Rachita, M. Serious hand-and-foot syndrome in black patients treated with capecitabine: Report of 3 cases and review of the literature. Cutis 2004, 73, 101–106. [Google Scholar]
- Lee, C.S.; Ryan, E.J.; Doherty, G.A. Gastro-intestinal toxicity of chemotherapeutics in colorectal cancer: The role of inflammation. World J. Gastroenterol. 2014, 20, 3751–3761. [Google Scholar] [CrossRef]
- Mantere, T.; Kersten, S.; Hoischen, A. Long-read sequencing emerging in medical genetics. Front. Genet. 2019, 10, 426. [Google Scholar] [CrossRef] [PubMed]
- Aguado, C.; García-Paredes, B.; Sotelo, M.J.; Sastre, J.; Díaz-Rubio, E. Should capecitabine replace 5-fluorouracil in the first-line treatment of metastatic colorectal cancer? World J. Gastroenterol. 2014, 20, 6092–6101. [Google Scholar] [CrossRef] [PubMed]
- Kwakman, M.J.J.; Elshot, Y.S.; Punt, C.J.A.; Koopman, M. Management of cytotoxic chemotherapy-induced hand-foot syn-drome. Oncol. Rev. 2020, 14, 442. [Google Scholar]
- Yen-Revollo, J.L.; Goldberg, R.M.; McLeod, H.L. Can inhibiting dihydropyrimidine dehydrogenase limit hand-foot syndrome caused by fluoropyrimidines? Clin. Cancer Res. 2008, 14, 8–13. [Google Scholar] [CrossRef]
- Mattison, L.K.; Fourie, J.; Desmond, R.A.; Modak, A.; Saif, M.W.; Diasio, R.B. Increased prevalence of dihydropyrimidine dehydrogenase deficiency in African-americans compared with Caucasians. Clin. Cancer Res. 2006, 12, 5491–5495. [Google Scholar] [CrossRef]
- Sumi, S.; Imaeda, M.; Kidouchi, K.; Ohba, S.; Hamajima, N.; Kodama, K.; Togari, H.; Wada, Y. Population and family studies of dihydropyrimidinuria: Prevalence, inheritance mode, and risk of fluorouracil toxicity. Am. J. Med Genet. 1998, 78, 336–340. [Google Scholar] [CrossRef]
Outcome Tested | Model 1 AUC 95% CI | Model 2 AUC 95%CI | Mode 1 Versus Model 2 AUC Difference | p |
---|---|---|---|---|
Models Being Compared: CPIC 2018 (Model 1), CPIC 2018 + NM_000110.3:c.257C>A +NM_000110.3:c.703C>T (Model 2). | ||||
Death | 0.999 (0.999–1.000) | 0.999 (0.999–1.000) | −0.00001 (−0.00008–0.00004) | 0.52 |
Haematological 0123v4 | 0.701 (0.403–0.999) | 0.850 (0.598–1.102) | 0.149 (−0.108–0.407) | 0.26 |
Haematological 012v34 | 0.628 (0.488–0.7690) | 0.664 (0.521–0.807) | 0.036 (−0.03–0.108) | 0.33 |
Diarrhoea 0123v4 | 0.460 (0.348–0.573) | 0.458 (0.344–0.571) | 0.003 (−0.006–0.0004) | 0.09 |
Diarrhoea 012v34 | 0.478 (0.438–0.517) | 0.481 (0.440–0.522) | 0.004 (−0.008–0.015) | 0.53 |
Mucositis/ Stomatitis 012v3 | 0.587 (0.437–0.736) | 0.632 (0.477–0.786) | 0.045 (−0.042–0.130) | 0.31 |
Global 012v34 | 0.492 (0.45–0.500) | 0.482 (0.456–0.507) | 0.002 (−0.004–0.009) | 0.47 |
HFS 012v34 | 0.457 (0.429–0.484) | 0.457 (0.429–0.485) | 0.0006 (−0.007–0.008) | 0.86 |
Outcome | AUC Model 2 | AUC Difference Model 2 vs. 3 | AUC Difference Model 2 vs. 4 | AUC Difference Model 2 vs. 5 | AUC Difference Model 2 vs. 6 |
---|---|---|---|---|---|
Death | 0.999 (0.999−1.000) | −0.121 (−0.137–−0.10) p < 0.0001 | −0.003 (−0.005–−0.0003) p = 0.03 | −0.269 (−0.285–−0.253) p < 0.0001 | −0.195 (−0.212–−0.178) p < 0.0001 |
Haematological 0123v4 | 0.850 (0.598−1.102) | 0.0295 (−0.22–0.28) p = 0.89 | −0.012 (−0.028–0.004) p = 0.16 | −0.289 (−0.327–−0.251) p < 0.0001 | −0.215 (−0.252–−0.178) p < 0.0001 |
Haematological 012v34 | 0.664 (0.521–0.807) | 0.0463 (−0.097–0.190) p = 0.53 | −0.024 (−0.035–−0.012) p < 0.0001 | −0.017 (−0.165–0.131) p = 0.82 | −0.113 (−0.242–0.015)) p < 0.0001 |
Diarrhoea 0123v4 | 0.458 (0.344–0.571) | 0.217 (0.02–0.419) p = 0.035 | −0.035 (−0.047–-0.024) p < 0.0001 | −0.067 (−0.273–0.1379) p = 0.52 | 0.269 (0.101–0.437 ) p = 0.0017 |
Diarrhoea 012v34 | 0.481 (0.440–0.522) | 0.109 (0.0390–0.179) p = 0.0023 | −0.025 (−0.045–−0.005) p = 0.014 | 0.098 (0.036–0.160) p = 0.002 | 0.154 (0.086–0.222) p < 0.0001 |
Mucositis/Stomatitis012v3 | 0.632 (0.477–0.786) | 0.144 (−0.0246–0.314) p = 0.094 | 0.024 (−0.064–0.112) p = 0.59 | −0.004 (−0.178–0.169) p = 0.96 | 0.072 (−0.105–0.249) p = 0.42 |
Global 012v34 | 0.482 (0.456–0.507) | 0.123 (0.077−0.169) p < 0.0001 | 0.030 (0.008−0.053) p = 0.008 | 0.141 0.100–0.182) p < 0.0001 | 0.075 (0.027–0.122) p = 0.0021 |
HFS 012v34 | 0.457 (0.429–0.485) | 0.129 (0.079–0.180) p < 0.0001 | 0.044 (0.015−0.073) p = 0.0027 | 0.159 (0.112–0.207) p < 0.0001 | 0.057 (0.003–0.112) p = 0.039 |
Outcome Tested | Model 2 AUC 95% CI | AUC Difference Model 2 Versus Model 7 | AUC Difference Model 2 Versus 8 |
---|---|---|---|
Diarrhoea 0123v4 | 0.458 (0.344–0.571) | 0.28 (0.103–0.459) p = 0.002 | 0.173 (−0.094–0.440) p = 0.2 |
Diarrhoea 012v34 | 0.481 (0.440–0.522) | 0.131 (0.051–0.210) p = 0.0012 | 0.084 (0.003–0.166) p = 0.04 |
Model Number | AUC Model 2 | AUC Difference Compared to Model 2 |
---|---|---|
7 | 0.461 (0.301–0.492) | −0.036 (−0.00267–0.099) p = 0.26 |
8 | 0.457 (0.429–0.486) | 0.090 (0.025–0.155) p = 0.007 |
9 | 0.457 (0.429–0.486) | 0.157 (0.107–0.208) p < 0.0001 |
10 | 0.457 (0.429–0.486) | 0.036 (−0.005–0.077) p = 0.085 |
11 | 0.457 (0.429–0.486) | 0.177 (0.129–0.226) p < 0.0001 |
12 | 0.457 (0.429–0.486) | 0.164 (0.117–0.210) p < 0.0001 |
13 | 0.457 (0.429–0.486) | 0.122 (0.057–0.186) p = 0.0002 |
14 | 0.457 (0.429–0.486) | 0.174 (0.128–0.219) p < 0.0001 |
15 | 0.457 (0.429–0.486) | 0.161 (0.100–0.222) p < 0.0001 |
Status | Genotype | Results | Clinical Interpretation |
---|---|---|---|
Critical RISK | A patient carries two no-function alleles or one no function and one low function allele | The DPD activity score prediction is 0 or 0.5. The test indicates for this individual that they are of Critical Risk as they have variants that indicate DPD Deficiency. | For patients identified as CRITICAL RISK and therefore possibly DPD DEFICIENT you should avoid use of 5-FU or 5-FU prodrug-based regimens. |
High RISK | A patient carries one copy of a no-function allele or one or two copies of a decreased function allele | The DPD activity score is 1 or 1.5. This individual is predicted to have at least 2× the risk of grade 3/4 toxicity using a standard dose of capecitabine or 5-FU monotherapy in comparison to the Standard Risk group. The variants detected are strongly associated with Partial DPD Deficiency. | For patients identified as HIGH RISK, a 5-FU or 5-FU prodrug-based regimen dose modulation of 50% is recommended. Consider dose titration guided by toxicity after first 2 cycles. |
Standard RISK | A patient carries no copies of any no function/deceased function alleles or any HFS-associated allele | The DPD activity score is 2. The test indicates no increased risk of grade 3/4 toxicity using a standard dose of capecitabine or 5-FU monotherapy in comparison to the Standard Risk. | For patients identified as STANDARD RISK, with no other contradicting factors there is no indication to change dose or therapy. Use label recommended dosage and administration. |
Standard RISK High Risk HFS | A patient carries no copies of a no function/decreased function allele, but one or more allele(s) associated with increased risk of HFS | The DPD activity score is 2. The test indicates no increased risk of grade 3/4 toxicity using a standard dose of capecitabine or 5-FU monotherapy in comparison to the Standard Risk. However, there is a high risk of HFS, this risk is at least 2× the risk of the Standard Risk Population. | For patients identified as STANDARD RISK with HIGH RISK HFS there is no indication to change dose or therapy. Use label recommended dosage and administration Advice on how to minimise/prevent HFS according to local guidelines is recommended. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palles, C.; Fotheringham, S.; Chegwidden, L.; Lucas, M.; Kerr, R.; Mozolowski, G.; Rosmarin, D.; Taylor, J.C.; Tomlinson, I.; Kerr, D. An Evaluation of the Diagnostic Accuracy of a Panel of Variants in DPYD and a Single Variant in ENOSF1 for Predicting Common Capecitabine Related Toxicities. Cancers 2021, 13, 1497. https://doi.org/10.3390/cancers13071497
Palles C, Fotheringham S, Chegwidden L, Lucas M, Kerr R, Mozolowski G, Rosmarin D, Taylor JC, Tomlinson I, Kerr D. An Evaluation of the Diagnostic Accuracy of a Panel of Variants in DPYD and a Single Variant in ENOSF1 for Predicting Common Capecitabine Related Toxicities. Cancers. 2021; 13(7):1497. https://doi.org/10.3390/cancers13071497
Chicago/Turabian StylePalles, Claire, Susan Fotheringham, Laura Chegwidden, Marie Lucas, Rachel Kerr, Guy Mozolowski, Dan Rosmarin, Jenny C. Taylor, Ian Tomlinson, and David Kerr. 2021. "An Evaluation of the Diagnostic Accuracy of a Panel of Variants in DPYD and a Single Variant in ENOSF1 for Predicting Common Capecitabine Related Toxicities" Cancers 13, no. 7: 1497. https://doi.org/10.3390/cancers13071497