Heme Biosynthesis mRNA Expression Signature: Towards a Novel Prognostic Biomarker in Patients with Diffusely Infiltrating Gliomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Analysis of the Heme Biosynthesis mRNA Expression Signature
2.2. Analysis of Survival Data
2.3. Statistical Analysis
3. Results
3.1. Heme Biosynthesis mRNA Expression Signature and Subgroups
3.2. Heme Biosynthesis mRNA Expression Signature and Progression-Free Survival
3.3. Heme Biosynthesis mRNA Expression Signature and Overall Survival
3.4. Multivariate Analysis
3.5. Exploratory Data Analysis of mRNA Signature Distribution in Relevant Prognostic Factors
4. Discussion
4.1. Present Study
4.2. Heme Biosynthesis mRNA Expression Signature as Independent Prognostic Factor
4.3. Heme Biosynthesis mRNA Expression Signature and Aggressive Tumor Biology
4.4. Heme Biosynthesis mRNA Expression and 5-ALA Fluorescence
4.5. Clinical Relevance
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ostrom, Q.T.; Gittleman, H.; Liao, P.; Vecchione-Koval, T.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro Oncol. 2017, 19, v1–v88. [Google Scholar] [CrossRef] [Green Version]
- Wöhrer, A.; Waldhör, T.; Heinzl, H.; Hackl, M.; Feichtinger, J.; Gruber-Mösenbacher, U.; Kiefer, A.; Maier, H.; Motz, R.; Reiner-Concin, A.; et al. The Austrian Brain Tumour Registry: A cooperative way to establish a population-based brain tumour registry. J. Neuro Oncol. 2009, 95, 401–411. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; Von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO Classification of Tumours of the Central Nervous System. Acta Neuropathol. 2007, 114, 97–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. New Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Stupp, R.; Taillibert, S.; Kanner, A.A.; Kesari, S.; Steinberg, D.M.; Toms, S.A.; Taylor, L.P.; Lieberman, F.; Silvani, A.; Fink, K.L.; et al. Maintenance Therapy with Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma. JAMA 2015, 314, 2535–2543. [Google Scholar] [CrossRef]
- Yang, P.; Wang, Y.; Peng, X.; You, G.; Zhang, W.; Yan, W.; Bao, Z.; Wang, Y.; Qiu, X.; Jiang, T. Management and survival rates in patients with glioma in China (2004–2010): A retrospective study from a single-institution. J. Neuro Oncol. 2013, 113, 259–266. [Google Scholar] [CrossRef]
- Behnan, J.; Finocchiaro, G.; Hanna, G. The landscape of the mesenchymal signature in brain tumours. Brain 2019, 142, 847–866. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Lv, X.; Lu, C.; Ye, X.; Chen, X.; Fu, J.; Zhao, Y. Prognostic factors of patients with Gliomas – an analysis on 335 patients with Glioblastoma and other forms of Gliomas. BMC Cancer 2020, 20, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, M.; Ma, W.; Chen, Y.; Yu, Y.; Zhu, D.; Shi, J.; Zhang, Y. Impact of gender on the survival of patients with glioblastoma. Biosci. Rep. 2018, 38. [Google Scholar] [CrossRef] [Green Version]
- Layer, G.; Reichelt, J.; Jahn, D.; Heinz, D.W. Structure and function of enzymes in heme biosynthesis. Protein Sci. 2010, 19, 1137–1161. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yu, L.; Ding, J.; Chen, Y. Iron Metabolism in Cancer. Int. J. Mol. Sci. 2018, 20, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mischkulnig, M.; Kiesel, B.; Lötsch-Gojo, D.; Roetzer, T.; Borkovec, M.; Wadiura, L.I.; Mercea, P.A.; Jaklin, F.J.; Hervey-Jumper, S.L.; Roessler, K.; et al. TCGA mRNA Expression Analysis of the Heme Biosynthesis Pathway in Diffusely Infiltrating Gliomas: A Comparison of Typically 5-ALA Fluorescent and Non-Fluorescent Gliomas. Cancers 2020, 12, 2043. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research the Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nat. Cell Biol. 2008, 455, 1061–1068. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. New Engl. J. Med. 2015, 372, 2481–2498. [CrossRef] [PubMed] [Green Version]
- Brennan, C.W.; Verhaak, R.G.W.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.; Chakravarty, D.; Sanborn, J.Z.; Berman, S.H.; et al. The Somatic Genomic Landscape of Glioblastoma. Cell 2013, 155, 462–477. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas (TCGA). TCGA Lower Grade Glioma and Glioblastoma (GBMLGG). 2019. Available online: https://tcga.xenahubs.net/download/TCGA.GBMLGG.sampleMap/GBMLGG_clinicalMatrix (accessed on 7 February 2020).
- The Cancer Genome Atlas (TCGA). TCGA Pan-Caner (PANCAN). 2016. Available online: https://pancanatlas.xenahubs.net/download/EB++AdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.xena.gz (accessed on 7 February 2020).
- The Cancer Genome Atlas (TCGA). TCGA Pan-Cancer (PANCAN). 2018. Available online: https://pancanatlas.xenahubs.net/download/Survival_SupplementalTable_S1_20171025_xena_sp.gz (accessed on 7 February 2020).
- Goldman, M.; Craft, B.; Brooks, A.; Zhu, J.; Haussler, D. The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. bioRxiv 2018, 326470. [Google Scholar] [CrossRef] [Green Version]
- Verhaak, R.G.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; et al. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, C.R.D. The di-heme family of respiratory complex II enzymes. Biochim. Biophys. Acta (BBA) Bioenerg. 2013, 1827, 679–687. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, M.C.; Tran, N.L.; Tillman, D.; Jarodsky, J.M.; Yuan, J.; Kranz, R.G. Structure-Function Analysis of the Bifunctional CcsBA Heme Exporter and CytochromecSynthetase. mBio 2018, 9, e02134-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Möbius, K.; Arias-Cartin, R.; Breckau, D.; Hännig, A.-L.; Riedmann, K.; Biedendieck, R.; Schröder, S.; Becher, D.; Magalon, A.; Moser, J.; et al. Heme biosynthesis is coupled to electron transport chains for energy generation. Proc. Natl. Acad. Sci. USA 2010, 107, 10436–10441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agnihotri, S.; Zadeh, G. Metabolic reprogramming in glioblastoma: The influence of cancer metabolism on epigenetics and unanswered questions. Neuro Oncol. 2016, 18, 160–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, L.; Liu, G.; Wang, J.; Gao, J.; Xu, D. Detecting Cancer Survival Related Gene Markers Based on Rectified Factor Network. Front. Bioeng. Biotechnol. 2020, 8, 349. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liao, J.; Zhang, X.; Zhao, E.; Liang, X.; Luo, S.; Shi, J.; Yu, F.; Xu, J.; Shen, W.; et al. Sex difference of mutation clonality in diffuse glioma evolution. Neuro Oncol. 2019, 21, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Hadjipanayis, C.; Widhalm, G.; Stummer, W. What is the Surgical Benefit of Utilizing 5-Aminolevulinic Acid for Fluorescence-Guided Surgery of Malignant Gliomas? Neurosurgery 2015, 77, 663–673. [Google Scholar] [CrossRef] [Green Version]
- Picart, T.; Berhouma, M.; Dumot, C.; Pallud, J.; Metellus, P.; Armoiry, X.; Guyotat, J. Optimization of high-grade glioma resection using 5-ALA fluorescence-guided surgery: A literature review and practical recommendations from the neuro-oncology club of the French society of neurosurgery. Neurochirurgica 2019, 65, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Stepp, H.; Stummer, W. 5-ALA in the management of malignant glioma. Lasers Surg. Med. 2018, 50, 399–419. [Google Scholar] [CrossRef] [Green Version]
- Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.-J. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial. Lancet Oncol. 2006, 7, 392–401. [Google Scholar] [CrossRef]
- Ponka, P. Cell Biology of Heme. Am. J. Med Sci. 1999, 318, 241–256. [Google Scholar] [CrossRef]
- Magri, S.; Pinton, L.; Masetto, E.; Cassandro, S.; Pozzuoli, A.; Belluzzi, E.; De Puppa, A.; Mandruzzato, S. Role of iron metabolism in the immunosuppression mediated by myeloid cells in glioblastoma patients. Ann. Oncol. 2019, 30, xi56. [Google Scholar] [CrossRef]
- Jones, P.S.; Yekula, A.; Lansbury, E.; Small, J.L.; Ayinon, C.; Mordecai, S.; Hochberg, F.H.; Tigges, J.; Delcuze, B.; Charest, A.; et al. Characterization of plasma-derived protoporphyrin-IX-positive extracellular vesicles following 5-ALA use in patients with malignant glioma. EBioMedicine 2019, 48, 23–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Utsuki, S.; Oka, H.; Kijima, C.; Inukai, M.; Fujii, K.; Ishizuka, M.; Takahashi, K.; Inoue, K. Preoperative Prediction of Whether Intraoperative Fluorescence of Protoporphyrin IX Can Be Achieved by 5-Aminolevulinic Acid Administration. Int. J. Clin. Med. 2012, 3, 132–135. [Google Scholar] [CrossRef] [Green Version]
- Widhalm, G.; Kiesel, B.; Woehrer, A.; Traub-Weidinger, T.; Preusser, M.; Marosi, C.; Prayer, D.; Hainfellner, J.A.; Knosp, E.; Wolfsberger, S. 5-Aminolevulinic Acid Induced Fluorescence Is a Powerful Intraoperative Marker for Precise Histopathological Grading of Gliomas with Non-Significant Contrast-Enhancement. PLoS ONE 2013, 8, e76988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widhalm, G.; Olson, J.; Weller, J.; Bravo, J.; Han, S.J.; Phillips, J.; Hervey-Jumper, S.L.; Chang, S.M.; Roberts, D.W.; Berger, M.S. The value of visible 5-ALA fluorescence and quantitative protoporphyrin IX analysis for improved surgery of suspected low-grade gliomas. J. Neurosurg. 2020, 133, 79–88. [Google Scholar] [CrossRef]
- Senft, C.; Bink, A.; Franz, K.; Vatter, H.; Gasser, T.; Seifert, V. Intraoperative MRI guidance and extent of resection in glioma surgery: A randomised, controlled trial. Lancet Oncol. 2011, 12, 997–1003. [Google Scholar] [CrossRef]
Patient Characteristics | Overall | WHO Grade II | WHO Grade III | WHO Grade IV | |||||
---|---|---|---|---|---|---|---|---|---|
n | (%) | n | (%) | n | (%) | n | (%) | ||
Number of patients | 693 | (100) | 257 | (100) | 270 | (100) | 166 | (100) | |
Age | |||||||||
median (range) | 47 (14–89) | 38 (14–87) | 45 (22–76) | 61 (21–89) | |||||
Sex | |||||||||
female | 396 | (57.3) | 119 | (46.3) | 118 | (43.7) | 59 | (35.5) | |
male | 297 | (42.7) | 138 | (53.7) | 152 | (56.3) | 107 | (64.5) | |
Histopathological subtype | |||||||||
astrocytoma | 197 | (28.4) | 65 | (25.3) | 132 | (48.9) | - | - | |
oligodendroglioma | 197 | (28.4) | 115 | (44.7) | 82 | (30.4) | - | - | |
oligoastrocytoma | 133 | (19.2) | 77 | (30.0) | 56 | (20.7) | - | - | |
missing data | 166 | (24.0) | - | - | 166 | (100) | |||
Verhaak tumor subtype | |||||||||
neural | 28 | (4.0) | - | - | - | - | 28 | (16.9) | |
proneural | 38 | (5.5) | - | - | - | - | 38 | (22.9) | |
classical | 42 | (6.1) | - | - | - | - | 42 | (25.3) | |
mesenchymal | 55 | (7.9) | - | - | - | - | 55 | (33.1) | |
missing data | 530 | (76.5) | 257 | (100) | 270 | (100) | 3 | (1.8) | |
mRNA expression signature subgroup | |||||||||
low | 231 | (33.3) | 143 | (55.7) | 88 | (32.6) | - | - | |
intermediate | 230 | (33.2) | 100 | (38.9) | 111 | (41.1) | 19 | (11.4) | |
high | 232 | (33.5) | 14 | (5.4) | 71 | (26.3) | 147 | (88.6) |
Progression-Free Survival | ||||||||
WHO Grade | mRNA Subgroup | Overall | Progression | Median | ||||
Estimate | Std. Error | 95% CI† | ||||||
n | n | (%) | lower | upper | ||||
II | Low | 143 | 36 | 25.2 | 63.8 | 12.0 | 40.4 | 87.3 |
Intermediate | 100 | 47 | 47.0 | 36.6 | 6.0 | 24.8 | 48.4 | |
High | 14 | 6 | 42.9 | - | - | - | - | |
Overall | 257 | 89 | 34.6 | 51.5 | 9.2 | 33.5 | 69.6 | |
III | Low | 88 | 29 | 33.0 | 65.0 | 23.2 | 19.4 | 110.5 |
Intermediate | 111 | 42 | 37.8 | 38.9 | 5.6 | 28.0 | 49.8 | |
High | 71 | 46 | 64.8 | 14.9 | 1.6 | 11.7 | 18.1 | |
Overall | 270 | 117 | 43.3 | 33.2 | 3.9 | 25.5 | 40.9 | |
IV | Low | 0 | - | - | - | - | - | - |
Intermediate | 19 | 14 | 73.7 | 11.0 | 2.9 | 5.4 | 16.6 | |
High | 147 | 119 | 81.0 | 6.0 | 0.6 | 4.8 | 7.1 | |
Overall | 166 | 133 | 80.1 | 6.3 | 0.6 | 5.1 | 7.5 | |
Overall | 693 | 339 | 48.9 | 27.6 | 2.2 | 23.3 | 31.9 | |
Overall Survival | ||||||||
WHO Grade | mRNA subgroup | Overall | Deaths | Median | ||||
Estimate | Std. Error | 95% CI† | ||||||
n | n | (%) | lower | upper | ||||
II | Low | 143 | 16 | 11.2 | 146.0 | 28.7 | 89.8 | 202.3 |
Intermediate | 100 | 20 | 20.0 | 105.1 | 13.6 | 78.5 | 131.7 | |
High | 14 | 4 | 28.6 | 62.9 | 29.3 | 5.4 | 120.4 | |
Overall | 257 | 40 | 15.6 | 117.3 | 21.1 | 76.0 | 158.6 | |
III | Low | 88 | 20 | 22.7 | 93.1 | 20.3 | 53.3 | 132.9 |
Intermediate | 111 | 34 | 30.6 | 50.1 | 7.5 | 35.3 | 64.9 | |
High | 71 | 39 | 54.9 | 25.5 | 1.3 | 22.9 | 28.0 | |
Overall | 270 | 93 | 34.4 | 50.8 | 4.5 | 42.1 | 59.6 | |
IV | Low | 0 | - | - | - | - | - | - |
Intermediate | 19 | 14 | 73.7 | 17.6 | 3.9 | 10.1 | 25.2 | |
High | 147 | 119 | 81.0 | 13.3 | 0.8 | 11.7 | 14.9 | |
Overall | 166 | 133 | 80.1 | 13.8 | 0.8 | 12.1 | 15.4 | |
Overall | 693 | 266 | 38.4 | 48.7 | 5.3 | 38.2 | 59.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mischkulnig, M.; Kiesel, B.; Lötsch, D.; Roetzer, T.; Borkovec, M.; Wadiura, L.I.; Roessler, K.; Hervey-Jumper, S.; Penninger, J.M.; Berger, M.S.; et al. Heme Biosynthesis mRNA Expression Signature: Towards a Novel Prognostic Biomarker in Patients with Diffusely Infiltrating Gliomas. Cancers 2021, 13, 662. https://doi.org/10.3390/cancers13040662
Mischkulnig M, Kiesel B, Lötsch D, Roetzer T, Borkovec M, Wadiura LI, Roessler K, Hervey-Jumper S, Penninger JM, Berger MS, et al. Heme Biosynthesis mRNA Expression Signature: Towards a Novel Prognostic Biomarker in Patients with Diffusely Infiltrating Gliomas. Cancers. 2021; 13(4):662. https://doi.org/10.3390/cancers13040662
Chicago/Turabian StyleMischkulnig, Mario, Barbara Kiesel, Daniela Lötsch, Thomas Roetzer, Martin Borkovec, Lisa I. Wadiura, Karl Roessler, Shawn Hervey-Jumper, Josef M. Penninger, Mitchel S. Berger, and et al. 2021. "Heme Biosynthesis mRNA Expression Signature: Towards a Novel Prognostic Biomarker in Patients with Diffusely Infiltrating Gliomas" Cancers 13, no. 4: 662. https://doi.org/10.3390/cancers13040662