Research Strategies for Low-Survival Cancers
Abstract
Simple Summary
Abstract
1. Introduction
2. Gaining Insights into Esophageal and Colorectal Cancers Using a Molecular Pathology Epidemiological Approach
3. Lack of Efficacy of Immunotherapy for Colorectal Cancer Patients: Influence of Intestinal Stromal Cells and the Inflammatory Tumor Microenvironment
4. TGF-β Signaling Responsiveness Influences to Therapeutic Response in Head and Neck Squamous Cell Carcinoma (HNSCC)
5. Phosphoinositide 3-Kinase (PI3K)—New Insights into Effective Inhibition for Cancer Treatment
6. Chromatin Reorganization by CTCF and CTCFL in Cancer Influences Aberrant Transcription
7. The Future of Low-Survival Cancer Research in Ireland
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Speaker | Affiliation |
---|---|
Professor Helen Coleman | Cancer Epidemiology Research Group at the Centre for Public Health at Queen’s University Belfast (QUB), UK. |
Dr. Aideen Ryan | The School of Medicine, Pharmacology and Therapeutics at the National University of Ireland-Galway (NUIG), Ireland |
Professor Mary Helen Barcellos-Hoff | Department of Radiation Oncology, The University of California, San Francisco (UCSF), USA. |
Professor Lewis Cantley | Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, USA |
Professor Jane Skok | Department of Pathology at New York University (NYU) Lagone Health, USA. |
References
- Arnold, M.; Rutherford, M.J.; Bardot, A.; Ferlay, J.; Andersson, T.M.-L.; Myklebust, T.Å.; Tervonen, H.; Thursfield, V.; Ransom, D.; Shack, L.; et al. Progress in cancer survival, mortality, and incidence in seven high-income countries 1995–2014 (ICBP SURVMARK-2): A population-based study. Lancet Oncol. 2019, 20, 1493–1505. [Google Scholar] [CrossRef]
- Fallahpour, S.; Navaneelan, T.; De, P.; Borgo, A. Breast cancer survival by molecular subtype: A population-based analysis of cancer registry data. CMAJ Open 2017, 5, E734–E739. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, C.; Cairnduff, V.; Chen, J.J.; Kearney, T.; Fitzpatrick, D.; Fox, C.; Gavin, A. The completeness and timeliness of cancer registration and the implications for measuring cancer burden. Cancer Epidemiol. 2017, 49, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.; McQuaid, S.; Clark, P.; Murray, P.; McGuigan, T.; Greene, C.; Coulter, B.; Mills, K.I.; James, J. The Northern Ireland Biobank: A Cancer Focused Repository of Science. Open J. Bioresour. 2018, 5, 1–6. [Google Scholar] [CrossRef]
- Gray, R.T.; Loughrey, M.B.; Bankhead, P.; Cardwell, C.R.; McQuaid, S.; O’Neill, R.F.; Arthur, K.; Bingham, V.; Mcgready, C.; Gavin, A.T.; et al. Statin use, candidate mevalonate pathway biomarkers, and colon cancer survival in a population-based cohort study. Br. J. Cancer 2017, 116, 1652–1659. [Google Scholar] [CrossRef]
- Gray, R.T.; Cantwell, M.M.; Coleman, H.G.; Loughrey, M.B.; Bankhead, P.; McQuaid, S.; O’Neill, R.F.; Arthur, K.; Bingham, V.; Mcgready, C.; et al. Evaluation of PTGS2 Expression, PIK3CA Mutation, Aspirin Use and Colon Cancer Survival in a Population-Based Cohort Study. Clin. Transl. Gastroenterol. 2017, 8, e91. [Google Scholar] [CrossRef]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Loughrey, M.B.; Bankhead, P.; Coleman, H.G.; Hagan, R.S.; Craig, S.; McCorry, A.M.B.; Gray, R.T.; McQuaid, S.; Dunne, P.D.; Hamilton, P.W.; et al. Validation of the systematic scoring of immunohistochemically stained tumour tissue microarrays using QuPath digital image analysis. Histopathology 2018, 73, 327–338. [Google Scholar] [CrossRef]
- McCain, S.; Trainor, J.; McManus, D.T.; McMenamin, Ú.C.; McQuaid, S.; Bingham, V.; James, J.A.; Salto-Tellez, M.; Turkington, R.C.; Coleman, H.G. Vitamin D receptor as a marker of prognosis in oesophageal adenocarcinoma: A prospective cohort study. Oncotarget 2018, 9, 34347–34356. [Google Scholar] [CrossRef]
- McCain, S.; McManus, D.T.; McQuaid, S.; James, J.A.; Salto-Tellez, M.; Reid, N.B.; Craig, S.; Chisambo, C.; Bingham, V.; McCarron, E.; et al. Alcohol intake, tobacco smoking, and esophageal adenocarcinoma survival: A molecular pathology epidemiology cohort study. Cancer Causes Control. 2019, 31, 1–11. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Cervantes, A.; Adam, R.; Sobrero, A.; Van Krieken, J.H.; Aderka, D.; Aguilar, E.A.; Bardelli, A.; Benson, A.; Bodoky, G.; et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 2016, 27, 1386–1422. [Google Scholar] [CrossRef] [PubMed]
- Ghiringhelli, F.; Fumet, J.-D. Is There a Place for Immunotherapy for Metastatic Microsatellite Stable Colorectal Cancer? Front. Immunol. 2019, 10, 1816. [Google Scholar] [CrossRef] [PubMed]
- Voena, C.; Chiarle, R. Advances in cancer immunology and cancer immunotherapy. Discov. Med. 2016, 21, 125–133. [Google Scholar] [PubMed]
- Pagès, F.; Mlecnik, B.; Marliot, F.; Bindea, G.; Ou, F.-S.; Bifulco, C.; Lugli, A.; Zlobec, I.; Rau, T.T.; Berger, M.D.; et al. International validation of the consensus Immunoscore for the classification of colon cancer: A prognostic and accuracy study. Lancet 2018, 391, 2128–2139. [Google Scholar] [CrossRef]
- Angell, H.K.; Bruni, D.; Herbst, R.; Galon, J. The immunoscore: Colon cancer and beyond. Clin. Cancer Res. 2020, 26, 332–339. [Google Scholar] [CrossRef]
- A Diaz, L.; Le, D.T. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. New Engl. J. Med. 2015, 373, 1979. [Google Scholar] [CrossRef]
- Lee, V.; Le, D.T. Efficacy of PD-1 blockade in tumors with MMR deficiency. Immunotherapy 2016, 8, 1–3. [Google Scholar] [CrossRef]
- Roelands, J.; Kuppen, P.J.K.; Vermeulen, L.; Maccalli, C.; Decock, J.; Wang, E.; Marincola, F.M.; Bedognetti, D.; Hendrickx, W. Immunogenomic classification of colorectal cancer and therapeutic implications. Int. J. Mol. Sci. 2017, 18, 2229. [Google Scholar] [CrossRef]
- Fabrizio, D.; Jr, T.J.G.; Dunne, R.F.; Frampton, G.; Sun, J.; Gowen, K.; Kennedy, M.; Greenbowe, J.; Schrock, A.B.; Hezel, A.F.; et al. Beyond microsatellite testing: Assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition. J. Gastrointest. Oncol. 2018, 9, 610–617. [Google Scholar] [CrossRef]
- O’Malley, G.; Heijltjes, M.; Houston, A.M.; Rani, S.; Ritter, T.; Egan, L.J.; Ryan, A.E. Mesenchymal stromal cells (MSCs) and colorectal cancer: A troublesome twosome for the anti-tumour immune response? Oncotarget 2016, 7, 60752–60774. [Google Scholar] [CrossRef]
- O’Malley, G.; Treacy, O.; Lynch, K.; Naicker, S.D.; Leonard, N.A.; Lohan, P.; Dunne, P.D.; Ritter, T.; Egan, L.J.; Ryan, A.E. Stromal Cell PD-L1 Inhibits CD8(+) T-cell Antitumor Immune Responses and Promotes Colon Cancer. Cancer Immunol. Res. 2018, 6, 1426–1441. [Google Scholar] [CrossRef] [PubMed]
- Lynch, K.; Grace, O.M.; Ryan, A.; Ritter, T.; O’Dwyer, M. Mesenchymal Stromal Cell Sialylation Enhances Immune Suppression in Multiple Myeloma. Blood 2017, 130, 124. [Google Scholar] [CrossRef]
- Egan, H.; Lynch, K.; Leonard, N.; Egan, M.O.L.; Ritter, T.; Treacy, O.; Ryan, A. The role of sialylation in stromal cell mediated immunosuppression in the colorectal tumour microenvironment. J. Immunother. Cancer 2019, 7, 1–237. [Google Scholar] [CrossRef]
- Massagué, J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 2012, 13, 616–630. [Google Scholar] [CrossRef]
- Du, S.; Barcellos-Hoff, M.H. Tumors as Organs: Biologically Augmenting Radiation Therapy by Inhibiting Transforming Growth Factor β Activity in Carcinomas. Semin. Radiat. Oncol. 2013, 23, 242–251. [Google Scholar] [CrossRef]
- Liu, Q.; Ma, L.; Jones, T.; Palomero, L.; Pujana, M.A.; Martinez-Ruiz, H.; Ha, P.K.; Murnane, J.; Cuartas, I.; Seoane, J.; et al. Subjugation of TGFβ Signaling by Human Papilloma Virus in Head and Neck Squamous Cell Carcinoma Shifts DNA Repair from Homologous Recombination to Alternative End Joining. Clin. Cancer Res. 2018, 24, 6001–6014. [Google Scholar] [CrossRef]
- De Felice, F.; Thomas, C.; Barrington, S.F.; Pathmanathan, A.; Lei, M.; Guerrero-Urbano, T. Analysis of loco-regional failures in head and neck cancer after radical radiation therapy. Oral Oncol. 2015, 51, 1051–1055. [Google Scholar] [CrossRef]
- Lohaus, F.; Linge, A.; Tinhofer, I.; Budach, V.; Gkika, E.; Stuschke, M.; Balermpas, P.; Rödel, C.; Avlar, M.; Grosu, A.-L.; et al. HPV16 DNA status is a strong prognosticator of loco-regional control after postoperative radiochemotherapy of locally advanced oropharyngeal carcinoma: Results from a multicentre explorative study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). Radiother. Oncol. 2014, 113, 317–323. [Google Scholar] [CrossRef]
- Moskwa, P.; Buffa, F.M.; Pan, Y.; Panchakshari, R.; Gottipati, P.; Muschel, R.J.; Beech, J.; Kulshrestha, R.; Abdelmohsen, K.; Weinstock, D.M.; et al. miR-182-Mediated Downregulation of BRCA1 Impacts DNA Repair and Sensitivity to PARP Inhibitors. Mol. Cell 2014, 53, 162–163. [Google Scholar] [CrossRef]
- Cantley, L.C.; Whitman, M.; Chahwala, S.; Fleischman, L.; Kaplan, D.R.; Schaffhausen, B.S.; Roberts, T.M. Oncogenes and Phosphatidylinositol Turnover. Ann. N. Y. Acad. Sci. 1986, 488, 481–490. [Google Scholar] [CrossRef]
- Whitman, M.; Downes, C.P.; Keeler, M.; Keller, T.; Cantley, L.C. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nat. Cell Biol. 1988, 332, 644–646. [Google Scholar] [CrossRef] [PubMed]
- Engelman, J.A.; Luo, J.; Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006, 7, 606–619. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.L.; Cantley, L.C. PI3K pathway alterations in cancer: Variations on a theme. Oncogene 2008, 27, 5497–5510. [Google Scholar] [CrossRef] [PubMed]
- Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K Pathway in Human Disease. Cell 2017, 170, 605–635. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, B.D.; Goncalves, M.D.; Cantley, L.C. Obesity and Cancer Mechanisms: Cancer Metabolism. J. Clin. Oncol. 2016, 34, 4277–4283. [Google Scholar] [CrossRef]
- Hopkins, B.D.; Pauli, C.; Du, X.; Wang, D.G.; Li, X.; Wu, D.; Amadiume, S.C.; Goncalves, M.D.; Hodakoski, C.; Lundquist, M.R.; et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nat. Cell Biol. 2018, 560, 499–503. [Google Scholar] [CrossRef]
- Wheless, J.W. History of the ketogenic diet. Epilepsia 2008, 49, 3–5. [Google Scholar] [CrossRef]
- Weber, D.; Aminzadeh-Gohari, S.; Tulipan, J.; Catalano, L.; Feichtinger, R.; Kofler, B. Ketogenic diet in the treatment of cancer—Where do we stand? Mol. Metab. 2020, 33, 102–121. [Google Scholar] [CrossRef]
- Gao, J.; Li, T.; Lu, L. Functional role of CCCTC binding factor in insulin-stimulated cell proliferation. Cell Prolif. 2007, 40, 795–808. [Google Scholar] [CrossRef]
- Manolio, T.A.; Brooks, L.D.; Collins, F.S. A HapMap harvest of insights into the genetics of common disease. J. Clin. Investig. 2008, 118, 1590–1605. [Google Scholar] [CrossRef]
- E Debaugny, R.; Skok, J.A. CTCF and CTCFL in cancer. Curr. Opin. Genet. Dev. 2020, 61, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Nishana, M.; Ha, C.; Hernáez, J.R.; Ranjbaran, A.; Chio, E.; Nora, E.P.; Badri, S.; Kloetgen, A.; Bruneau, B.G.; Tsirigos, A.; et al. Defining the relative and combined contribution of CTCF and CTCFL to genomic regulation. Genome Biol. 2020, 21, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Gullo, G.; De Giorgi, A.; O’Donovan, N.; Fennelly, D.; Walshe, J.; Ballot, J.; McDermott, E.; Evoy, D.; Jordan, E.; Crown, J. Long-Term Outcome of Patients (Pts) with Her2-Positive (Her2+) Metastatic Breast Cancer (Mbc) Who Achieved a Complete Response (Cr) After Antiher2 Therapy (Her2Tx). Ann. Oncol. 2014, 25, iv124–iv125. [Google Scholar] [CrossRef][Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conway, C.; Collins, D.M.; McCann, A.; Dean, K. Research Strategies for Low-Survival Cancers. Cancers 2021, 13, 528. https://doi.org/10.3390/cancers13030528
Conway C, Collins DM, McCann A, Dean K. Research Strategies for Low-Survival Cancers. Cancers. 2021; 13(3):528. https://doi.org/10.3390/cancers13030528
Chicago/Turabian StyleConway, Caroline, Denis M. Collins, Amanda McCann, and Kellie Dean. 2021. "Research Strategies for Low-Survival Cancers" Cancers 13, no. 3: 528. https://doi.org/10.3390/cancers13030528
APA StyleConway, C., Collins, D. M., McCann, A., & Dean, K. (2021). Research Strategies for Low-Survival Cancers. Cancers, 13(3), 528. https://doi.org/10.3390/cancers13030528