Infections of Venetoclax-Based Chemotherapy in Acute Myeloid Leukemia: Rationale for Proper Antimicrobial Prophylaxis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Study Design
2.2. Definitions
2.3. Dosage of VEN-Based Combination Chemotherapy and Antimicrobial Prophylaxis
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Study Patients
3.2. IFIs in VEN-Based Combination Chemotherapy
3.2.1. Characteristics and Incidence
3.2.2. Risk Factors and Outcomes
3.3. BSIs in VEN-Based Combination Chemotherapy
3.3.1. Characteristics and Incidence
3.3.2. Risk Factors and Outcome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Souers, A.J.; Leverson, J.D.; Boghaert, E.R.; Ackler, S.L.; Catron, N.D.; Chen, J.; Dayton, B.D.; Ding, H.; Enschede, S.H.; Fairbrother, W.J.; et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 2013, 19, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Lessene, G.; Czabotar, P.E.; Colman, P.M. BCL-2 family antagonists for cancer therapy. Nat. Rev. Drug Discov. 2008, 7, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Wei, A.H.; Montesinos, P.; Ivanov, V.; Dinardo, C.D.; Novak, J.; Laribi, K.; Kim, I.; Stevens, D.A.; Fiedler, W.; Pagoni, M.; et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: A phase 3 randomized placebo-controlled trial. Blood 2020, 135, 2137–2145. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Guo, Y.; Deng, L.; Qiao, Y.; Jian, J. The Efficacy and Adverse Events of Venetoclax in Combination with Hypomethylating Agents Treatment for Patients with Acute Myeloid Leukemia and Myelodysplastic Syndrome: A Systematic Review and Meta-Analysis. Hematology 2020, 25, 414–423. [Google Scholar]
- DiNardo, C.D.; Maiti, A.; Rausch, C.R.; Pemmaraju, N.; Naqvi, K.; Daver, N.G.; Kadia, T.M.; Borthakur, G.; Ohanian, M.; Alvarado, Y.; et al. 10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: A single-centre, phase 2 trial. Lancet Haematol. 2020, 7, e724–e736. [Google Scholar] [CrossRef]
- Dinardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef]
- Wei, A.H.; Strickland, S.A., Jr.; Hou, J.-Z.; Fiedler, W.; Lin, T.; Walter, R.B.; Enjeti, A.; Tiong, I.S.; Savona, M.; Lee, S.; et al. Venetoclax Combined with Low-Dose Cytarabine for Previously Untreated Patients With Acute Myeloid Leukemia: Results From a Phase Ib/II Study. J. Clin. Oncol. 2019, 37, 1277–1284. [Google Scholar] [CrossRef]
- Dinardo, C.D.; Pratz, K.; Pullarkat, V.; Jonas, B.; Arellano, M.; Becker, P.S.; Frankfurt, O.; Konopleva, M.; Wei, A.H.; Kantarjian, H.M.; et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 2019, 133, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Aldoss, I.; Yang, D.; Aribi, A.; Ali, H.; Sandhu, K.; Al Malki, M.M.; Mei, M.; Salhotra, A.; Khaled, S.; Nakamura, R.; et al. Efficacy of the combination of venetoclax and hypomethylating agents in relapsed/refractory acute myeloid leukemia. Haematologica 2018, 103, e404–e407. [Google Scholar] [CrossRef]
- Biehl, L.M.; Vehreschild, J.J.; Liss, B.; Franke, B.; Markiefka, B.; Persigehl, T.; Bücker, V.; Wisplinghoff, H.; Scheid, C.; Cornely, O.A.; et al. A cohort study on breakthrough invasive fungal infections in high-risk patients receiving antifungal prophylaxis. J. Antimicrob. Chemother. 2016, 71, 2634–2641. [Google Scholar] [CrossRef] [Green Version]
- Cornely, O.A.; Maertens, J.; Winston, D.J.; Perfect, J.; Ullmann, A.J.; Walsh, T.J.; Helfgott, D.; Holowiecki, J.; Stockelberg, D.; Goh, Y.-T.; et al. Posaconazole vs. Fluconazole or Itraconazole Prophylaxis in Patients with Neutropenia. N. Engl. J. Med. 2007, 356, 348–359. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-G.; Kim, S.-H.; Kim, S.Y.; Kim, C.-J.; Park, W.B.; Song, Y.G.; Choi, J.-H. Evidence-Based Guidelines for Empirical Therapy of Neutropenic Fever in Korea. Korean J. Intern. Med. 2011, 26, 220–252. [Google Scholar] [CrossRef]
- Rausch, C.R.; DiNardo, C.D.; Maiti, A.; Jammal, N.J.; Kadia, T.M.; Marx, K.R.; Borthakur, G.; Savoy, J.M.; Pemmaraju, N.; DiPippo, A.J.; et al. Duration of cytopenias with concomitant venetoclax and azole antifungals in acute myeloid leukemia. Cancer 2021, 127, 2489–2499. [Google Scholar] [CrossRef]
- Aldoss, I.; Dadwal, S.; Zhang, J.; Tegtmeier, B.; Mei, M.; Arslan, S.; Al Malki, M.M.; Salhotra, A.; Ali, H.; Aribi, A.; et al. Invasive fungal infections in acute myeloid leukemia treated with venetoclax and hypomethylating agents. Blood Adv. 2019, 3, 4043–4049. [Google Scholar] [CrossRef] [Green Version]
- Reinwald, M.; Silva, J.T.; Mueller, N.J.; Fortún, J.; Garzoni, C.; de Fijter, J.W.; Fernández-Ruiz, M.; Grossi, P.; Aguado, J.M. Escmid Study Group for Infections in Compromised Hosts (Esgich) Consensus Document on the Safety of Targeted and Biological Therapies: An Infectious Diseases Perspective (Intracellular Signaling Pathways: Tyrosine Kinase and Mtor Inhibitors). Clin. Microbiol. Infect. 2018, 24, S53–S70. [Google Scholar] [CrossRef] [Green Version]
- Morsia, E.; McCullough, K.; Joshi, M.; Cook, J.; Alkhateeb, H.B.; Al-Kali, A.; Begna, K.; Elliott, M.; Hogan, W.; Litzow, M.; et al. Venetoclax and hypomethylating agents in acute myeloid leukemia: Mayo Clinic series on 86 patients. Am. J. Hematol. 2020, 95, 1511–1521. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2019, 71, 1367–1376. [Google Scholar] [CrossRef] [Green Version]
- Cornely, O.A.; Hoenigl, M.; Lass-Flörl, C.; Chen, S.C.-A.; Kontoyiannis, D.P.; Morrissey, C.O.; Thompson, G.R., III; Mycoses Study Group Education and Research Consortium (MSG-ERC); European Confederation of Medical Mycology (ECMM). Defining breakthrough invasive fungal infection—Position paper of the mycoses study group education and research consortium and the European Confederation of Medical Mycology. Mycoses 2019, 62, 716–729. [Google Scholar] [CrossRef]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [Green Version]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Cheson, B.D.; Bennett, J.M.; Kopecky, K.J.; Büchner, T.; Willman, C.L.; Estey, E.H.; Schiffer, C.A.; Doehner, H.; Tallman, M.S.; Lister, T.A.; et al. Revised Recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J. Clin. Oncol. 2003, 21, 4642–4649. [Google Scholar] [CrossRef]
- Agarwal, S.; DiNardo, C.D.; Potluri, J.; Dunbar, M.; Kantarjian, H.M.; Humerickhouse, R.A.; Wong, S.L.; Menon, R.M.; Konopleva, M.Y.; Salem, A.H. Management of Venetoclax-Posaconazole Interaction in Acute Myeloid Leukemia Patients: Evaluation of Dose Adjustments. Clin. Ther. 2017, 39, 359–367. [Google Scholar] [CrossRef]
- Prentice, H.G.; Kibbler, C.C.; Prentice, A.G. Towards a targeted, risk-based, antifungal strategy in neutropenic patients. Br. J. Haematol. 2000, 110, 273–284. [Google Scholar] [CrossRef]
- Dinardo, C.D.; Wei, A.H. How I treat acute myeloid leukemia in the era of new drugs. Blood 2020, 135, 85–96. [Google Scholar] [CrossRef]
- Jonas, B.A.; Pollyea, D.A. How we use venetoclax with hypomethylating agents for the treatment of newly diagnosed patients with acute myeloid leukemia. Leukemia 2019, 33, 2795–2804. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Pratz, K.W.; Letai, A.; Jonas, B.; Wei, A.H.; Thirman, M.; Arellano, M.; Frattini, M.G.; Kantarjian, H.; Popovic, R.; et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: A non-randomised, open-label, phase 1b study. Lancet Oncol. 2018, 19, 216–228. [Google Scholar] [CrossRef]
- Roberts, A.W.; Davids, M.S.; Pagel, J.M.; Kahl, B.S.; Puvvada, S.D.; Gerecitano, J.F.; Kipps, T.J.; Anderson, M.A.; Brown, J.R.; Gressick, L.; et al. Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2016, 374, 311–322. [Google Scholar] [CrossRef]
- Byrne, M.; Danielson, N.; Sengsayadeth, S.; Rasche, A.; Culos, K.; Gatwood, K.; Wyatt, H.; Chinratanalab, W.; Dholaria, B.; Ferrell, P.B.; et al. The use of venetoclax-based salvage therapy for post-hematopoietic cell transplantation relapse of acute myeloid leukemia. Am. J. Hematol. 2020, 95, 1006–1014. [Google Scholar] [CrossRef] [PubMed]
- Denning, D.; Marinus, A.; Cohen, J.; Spence, D.; Herbrecht, R.; Pagano, L.; Kibbler, C.; Kermery, V.; Offner, F.; Cordonnier, C.; et al. An EORTC multicentre prospective survey of invasive aspergillosis in haematological patients: Diagnosis and therapeutic outcome. J. Infect. 1998, 37, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Avivi, I.; Gatt, M.E.; Luttwak, E.; Magen, H.; Dally, N.; Cohen, Y.C.; Benyamini, N.; Lavi, N. The impact of anti-bacterial prophylaxis on the outcome of patients treated with venetoclax-based regimens for relapsed/refractory plasma cell dyscrasias: Real-life data. Leuk. Res. 2020, 97, 106429. [Google Scholar] [CrossRef] [PubMed]
- Modi, D.; Jang, H.; Kim, S.; Surapaneni, M.; Sankar, K.; Deol, A.; Ayash, L.; Bhutani, D.; Lum, L.G.; Ratanatharathorn, V.; et al. Fluoroquinolone Prophylaxis in Autologous Hematopoietic Stem Cell Transplant Recipients. Support. Care Cancer 2017, 25, 2593–2601. [Google Scholar] [CrossRef]
- Furtado, G.H.C.; Mendes, R.E.; Pignatari, A.C.C.; Wey, S.B.; Medeiros, E.A.S. Risk factors for vancomycin-resistant Enterococcus faecalis bacteremia in hospitalized patients: An analysis of two case-control studies. Am. J. Infect. Control 2006, 34, 447–451. [Google Scholar] [CrossRef]
- Kwon, J.-C.; Kim, S.-H.; Choi, J.-K.; Cho, S.-Y.; Park, Y.-J.; Park, S.H.; Choi, S.-M.; Lee, D.-G.; Choi, J.-H.; Yoo, J.-H. Epidemiology and Clinical Features of Bloodstream Infections in Hematology Wards: One Year Experience at the Catholic Blood and Marrow Transplantation Center. Infect. Chemother. 2013, 45, 51–61. [Google Scholar] [CrossRef] [Green Version]
Variables | Total = 122 (Number, %) |
---|---|
Sex (male) | 59 (48.4) |
Age, years (median, IQR) | 61 (47–70) |
AML type at diagnosis | |
De novo/MRC | 97 (79.5) |
Secondary | 21 (17.2) |
Therapy-related | 4 (3.3) |
AML status at initiation of VEN-based therapy | |
Newly diagnosed | 39 (32.0) |
Refractory/relapsed | 83 (68.0) |
Prior treatment before VEN-based therapy | |
Naïve | 39 (32.0) |
Intensive chemotherapy | 38 (31.1) |
Hypomethylating agents | 9 (7.4) |
HSCT | 36 (29.5) |
AML risk group | |
Favorable | 25 (20.5) |
Moderate | 46 (37.7) |
Poor | 51 (41.8) |
Combination agents | |
Decitabine | 113 (92.6) |
Azacitidine | 6 (4.9) |
Low-dose cytarabine | 3 (2.5) |
Overall response | |
CR + CRi | 56 (45.9) |
MLFS | 11 (9.0) |
Non response | 51 (41.8) |
Not available | 4 (3.3) |
Completion of VEN-based therapy | 104 (85.3) |
HSCT | 46 (44.2) |
Non response | 24 (23.1) |
Death | 23 (22.1) |
Other reasons | 11 (10.6) |
Total cycle of VEN-based therapy (median, range) | 2 (1–10) |
Cycle of response achievement (median, range) | 1 (1–4) |
Antifungal agents | 122 (100) |
Empirical or targeted | 14 (11.5) |
Antifungal prophylaxis | 108 (88.5) |
Fluconazole | 106 (98.1) |
Posaconazole | 2 (1.9) |
Overall mortality | 53 (43.4) |
Variables | Total = 122 (Number, %) | Without IFIs = 100 (Number, %) | IFIs = 22 (Number, %) | p |
---|---|---|---|---|
Sex (male) | 46 (46.0) | 13 (59.1) | 59 (48.4) | 0.381 |
Age, years (median, IQR) | 61.0 (47.0–70.0) | 58.5 (45.5–69.5) | 62.0 (49.0–71.0) | 0.401 |
AML type at diagnosis | 0.057 | |||
De novo/MRC | 97 (79.5) | 84 (84.0) | 13 (59.1) | |
Secondary | 21 (17.2) | 14 (14.0) | 7 (31.8) | |
Therapy-related | 4 (3.3) | 2 (2.0) | 2 (9.1) | |
AML status at initiation of VEN-based therapy | 0.788 | |||
Newly diagnosed | 39 (32.0) | 33 (33.0) | 6 (27.3) | |
Refractory/relapsed | 83 (68.0) | 67 (67.0) | 16 (72.7) | |
AML risk group | 0.518 | |||
Favorable | 25 (20.5) | 19 (19.0) | 6 (27.3) | |
Moderate | 46 (37.7) | 37 (37.0) | 9 (40.9) | |
Poor | 51 (41.8) | 44 (44.0) | 7 (31.8) | |
Combination agents | 0.463 | |||
Decitabine | 113 (92.6) | 94 (94.0) | 19 (86.4) | |
Azacitidine | 6 (4.9) | 4 (4.0) | 2 (9.1) | |
Low-dose cytarabine | 3 (2.5) | 2 (2.0) | 1 (4.5) | |
Overall response | 0.275 | |||
CR + CRi | 56 (45.9) | 49 (49.0) | 7 (31.8) | |
MLFS | 11 (9.0) | 7 (7.0) | 4 (18.2) | |
Non response | 51 (41.8) | 41 (41.0) | 10 (45.5) | |
Not available | 4 (3.3) | 3 (3.0) | 1 (4.5) | |
Antifungal agents at development of IFIs | 1.000 | |||
Empirical or targeted | 14 (11.6) | 12 (12.1) | 2 (9.1) | |
Antifungal prophylaxis | 108 (88.4) | 88 (87.9) | 20 (90.9) | |
Fluconazole | 106 (97.2) | 87 (97.7) | 19 (95.0) | |
Posaconazole | 2 (1.9) | 1 (1.1) | 1 (5.0) | |
Type of antifungal agents at development of IFIs | 1.000 | |||
Fluconazole | 106 (86.9) | 87 (87.0) | 19 (86.4) | |
Mold active antifungal agents | 16 (13.1) | 13 (13.0) | 3 (13.6) | |
History of IFIs within 3 months | 16 (13.1) | 13 (13.0) | 3 (13.6) | 1.000 |
Steroid use before IFIs developed | 9 (7.4) | 5 (5.0) | 4 (18.2) | 0.091 |
Overall mortality | 53 (43.4) | 39 (39.0) | 14 (63.6) | 0.061 |
A. Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
OR | 95% CI | OR | 95% CI | |
Sex (male vs. female) | 1.695 | 0.665–4.325 | ||
Age, years (over 60 years) | 1.750 | 0.675–4.539 | ||
AML type at diagnosis | ||||
De novo/MRC | Reference | Reference | ||
Secondary/Therapy-related | 3.635 | 1.332–9.920 | 3.859 | 1.344–11.048 |
AML status at initiation of VEN-based therapy | ||||
Newly diagnosed | Reference | Reference | ||
Refractory/relapsed | 1.313 | 0.470–3.667 | 1.228 | 0.405–3.722 |
Prior treatment before VEN-based therapy | ||||
Naïve | Reference | |||
Intensive chemotherapy | 1.467 | 0.456–4.717 | ||
Hypomethylating agents | 1.572 | 0.261–9.470 | ||
HSCT | 1.100 | 0.320–3.782 | ||
AML risk group | ||||
Favorable | Reference | |||
Moderate | 0.770 | 0.239–2.486 | ||
Poor | 0.504 | 0.149–1.700 | ||
Combination agents | ||||
Decitabine | Reference | |||
Azacitidine | 2.474 | 0.422–14.487 | ||
Low-dose cytarabine | 2.474 | 0.213–28.682 | ||
Overall response | ||||
Response group | Reference | |||
Non response group | 1.295 | 0.503–3.340 | ||
Overall antifungal agents | ||||
Fluconazole | Reference | |||
Mold active antifungal agents | 1.057 | 0.274–4.076 | ||
Steroid use before IFIs developed | 4.222 | 1.033–17.260 | 4.266 | 0.941–19.331 |
B. Variables | Univariate Analysis | Multivariate Analysis | ||
OR | 95% CI | OR | 95% CI | |
Sex (male) | 1.012 | 0.462–2.218 | ||
Age, years (over 60 years) | 1.303 | 0.591–2.872 | 1.297 | 0.463–3.631 |
AML type at diagnosis | ||||
De novo/MRC | Reference | Reference | ||
Secondary/Therapy-related | 1.22 | 0.472–3.156 | 1.149 | 0.427–3.090 |
AML status at initiation of VEN-based therapy | ||||
Newly diagnosed | Reference | Reference | ||
Refractory/relapsed | 0.721 | 0.316–1.646 | 0.652 | 0.226–1.878 |
Prior treatment before VEN-based therapy | ||||
Naïve | Reference | |||
Intensive chemotherapy | 0.621 | 0.228–1.689 | ||
Hypomethylating agents | 0.572 | 0.104–3.149 | ||
HSCT | 0.880 | 0.333–2.328 | ||
AML risk group | ||||
Favorable | Reference | |||
Moderate | 0.591 | 0.212–1.648 | ||
Poor | 0.461 | 0.165–1.291 | ||
Combination agents | ||||
Decitabine | Reference | |||
Azacitidine | NA | NA | ||
Low-dose cytarabine | 4.848 | 0.425–55.320 | ||
Overall response | ||||
Response group | Reference | |||
Non response group | 1.029 | 0.463–2.286 | ||
Steroid use before BSIs developed | 5.793 | 1.361–24.665 | 7.474 | 1.661–33.622 |
Variables | Total = 122 (Number, %) | Without BSIs = 87 (Number, %) | BSIs = 35 (Number, %) | p |
---|---|---|---|---|
Sex (male) | 59 (48.4) | 42 (48.3) | 17 (48.6) | 1.000 |
Age, years (median, IQR) | 61.0 (47.0–70.0) | 60.0 (46.0–68.0) | 62.0 (47.5–71.5) | 0.274 |
AML type at diagnosis | 0.011 | |||
De novo/MRC | 97 (79.5) | 70 (80.4) | 27 (77.1) | |
Secondary | 21 (17.2) | 15 (17.2) | 6 (17.1) | |
Therapy-related | 4 (3.3) | 2 (2.3) | 2 (5.7) | |
AML status at initiation of VEN-based therapy | 0.573 | |||
Newly diagnosed | 39 (32.0) | 26 (29.9) | 13 (37.1) | |
Refractory/relapsed | 83 (68.0) | 61 (70.1) | 22 (62.9) | |
AML risk group | 0.328 | |||
Favorable | 25 (20.5) | 15 (17.2) | 10 (28.6) | |
Moderate | 46 (37.7) | 33 (37.9) | 13 (37.1) | |
Poor | 51 (41.8) | 39 (44.8) | 12 (34.3) | |
Combination agents | 0.103 | |||
Decitabine | 113 (92.6) | 80 (92.0) | 33 (94.3) | |
Azacitidine | 6 (4.9) | 6 (6.9) | 0 (0.0) | |
Low-dose cytarabine | 3 (2.5) | 1 (1.1) | 2 (5.7) | |
Overall response | 0.133 | |||
CR + CRi | 56 (45.9) | 42 (48.3) | 14 (40.0) | |
MLFS | 11 (9.0) | 5 (5.7) | 6 (17.1) | |
Non response | 51 (41.8) | 36 (41.4) | 15 (42.9) | |
Not available | 4 (3.3) | 4 (4.6) | 0 (0.0) | |
Steroid use before BSI developed | 9 (7.4) | 3 (3.4) | 6 (17.1) | 0.025 |
Overall mortality | 53 (43.4) | 38 (43.7) | 15 (42.9) | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, R.; Cho, S.-Y.; Lee, D.-G.; Choi, H.; Park, S.; Cho, B.-S.; Kim, Y.-J.; Kim, H.-J. Infections of Venetoclax-Based Chemotherapy in Acute Myeloid Leukemia: Rationale for Proper Antimicrobial Prophylaxis. Cancers 2021, 13, 6285. https://doi.org/10.3390/cancers13246285
Lee R, Cho S-Y, Lee D-G, Choi H, Park S, Cho B-S, Kim Y-J, Kim H-J. Infections of Venetoclax-Based Chemotherapy in Acute Myeloid Leukemia: Rationale for Proper Antimicrobial Prophylaxis. Cancers. 2021; 13(24):6285. https://doi.org/10.3390/cancers13246285
Chicago/Turabian StyleLee, Raeseok, Sung-Yeon Cho, Dong-Gun Lee, Hyeah Choi, Silvia Park, Byung-Sik Cho, Yoo-Jin Kim, and Hee-Je Kim. 2021. "Infections of Venetoclax-Based Chemotherapy in Acute Myeloid Leukemia: Rationale for Proper Antimicrobial Prophylaxis" Cancers 13, no. 24: 6285. https://doi.org/10.3390/cancers13246285
APA StyleLee, R., Cho, S.-Y., Lee, D.-G., Choi, H., Park, S., Cho, B.-S., Kim, Y.-J., & Kim, H.-J. (2021). Infections of Venetoclax-Based Chemotherapy in Acute Myeloid Leukemia: Rationale for Proper Antimicrobial Prophylaxis. Cancers, 13(24), 6285. https://doi.org/10.3390/cancers13246285