Validation of SFRP1 Promoter Hypermethylation in Plasma as a Prognostic Marker for Survival and Gemcitabine Effectiveness in Patients with Stage IV Pancreatic Adenocarcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Analytical Methods
2.3. Statistical Methods
3. Results
3.1. Results of the Discovery Cohort
3.1.1. Patient Characteristics
3.1.2. Survival According to SFRP1 Promoter Hypermethylation
3.1.3. Crude Cox Regression Analysis
3.1.4. Adjusted Cox Regression Analysis
3.1.5. Efficiency of Gem
3.2. Results of the Validation Cohort
3.2.1. Patient Characteristics
3.2.2. Survival According to SFRP1 Promoter Hypermethylation
3.2.3. Crude Cox Regression Analysis
3.2.4. Adjusted Cox Regression Analysis
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, L.S.; Fristrup, C.W.; Jensen, B.V.; Pfeiffer, P.; Weber, B.; Yilmaz, M.K.; Poulsen, L.; Ladekarl, M.; Østerlind, K.; Larsen, J.S.; et al. Initial treatment and survival in 4163 Danish patients with pancreatic cancer: A nationwide unselected real-world register study. Eur. J. Cancer 2020, 129, 50–59. [Google Scholar] [CrossRef]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.-L.; Gourgou-Bourgade, S.; de la Fouchardière, C.; et al. FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [Green Version]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased Survival in Pancreatic Cancer with nab-Paclitaxel plus Gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef] [Green Version]
- Burris, H.A., 3rd; Moore, M.J.; Andersen, J.; Green, M.R.; Rothenberg, M.L.; Modiano, M.R.; Cripps, M.C.; Portenoy, R.K.; Storniolo, A.M.; Tarassoff, P.; et al. Improvements in survival and clinical benefit with gemcitabine as first- line therapy for patients with advanced pancreas cancer: A randomized trial. J. Clin. Oncol. 1997, 15, 2403–2413. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.L.; Chan, S.T.; Chan, E.H.; He, Z.X. Systemic treatment for inoperable pancreatic adenocarcinoma: Review and update. Chin. J. Cancer 2014, 33, 267–276. [Google Scholar] [CrossRef]
- Lee, H.S.; Park, S.W. Systemic chemotherapy in advanced pancreatic cancer. Gut Liver 2016, 10, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Sigel, K.; Zhou, M.; Park, Y.A.; Mutetwa, T.; Nadkarni, G.; Yeh, C.; Polak, P.; Sigel, C.; Conroy, T.; Juzyna, B.; et al. Gemcitabine plus nab-paclitaxel versus FOLFIRINOX for unresected pancreatic cancer: Comparative effectiveness and evaluation of tumor growth in. Semin. Oncol. 2021, 48, 69–75. [Google Scholar] [CrossRef]
- Michl, P.; Gress, T.M. Current concepts and novel targets in advanced pancreatic cancer. Gut 2013, 62, 317–326. [Google Scholar] [CrossRef] [Green Version]
- De Sousa Cavalcante, L.; Monteiro, G. Gemcitabine: Metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur. J. Pharmacol. 2014, 741, 8–16. [Google Scholar] [CrossRef]
- Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet 2020, 395, 2008–2020. [Google Scholar] [CrossRef]
- Natale, F.; Vivo, M.; Falco, G.; Angrisano, T. Deciphering DNA methylation signatures of pancreatic cancer and pancreatitis. Clin. Epigenet. 2019, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Costa, F.F. Epigenomics in cancer management. Cancer Manag. Res. 2010, 2, 255–265. [Google Scholar] [CrossRef]
- Kang, P.; Wan, M.; Huang, P.; Li, C.; Wang, Z.; Zhong, X.; Hu, Z.; Tai, S.; Cui, Y. The Wnt antagonist sFRP1 as a favorable prognosticator in human biliary tract carcinoma. PLoS ONE 2014, 9, e90308. [Google Scholar] [CrossRef]
- Esteve, P.; Bovolenta, P. The Advantages and Disadvantages of Sfrp1 and Sfrp2 Expression in Pathological Events. Tohoku J. Exp. Med. 2010, 221, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Surana, R.; Sikka, S.; Cai, W.; Shin, E.M.; Warrier, S.R.; Tan, H.J.G.; Arfuso, F.; Fox, S.A.; Dharmarajan, A.M.; Kumar, A.P. Secreted frizzled related proteins: Implications in cancers. Biochim. Biophys. Acta Rev. Cancer 2013, 1845, 53–65. [Google Scholar] [CrossRef]
- Ricketts, C.J.; Hill, V.K.; Linehan, W.M. Tumor-specific hypermethylation of epigenetic biomarkers, including SFRP1, predicts for poorer survival in patients from the TCGA kidney renal clear cell carcinoma (KIRC) project. PLoS ONE 2014, 9, e85621. [Google Scholar]
- Veeck, J.; Niederacher, D.; An, H.; Klopocki, E.; Wiesmann, F.; Betz, B.; Galm, O.; Camara, O.; Dürst, M.; Kristiansen, G.; et al. Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene 2006, 25, 3479–3488. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.C.; Chao, Y.J.; Overman, M.J.; Wang, C.Y.; Phan, N.N.; Chen, Y.L.; Wang, T.W.; Hsu, H.P.; Shan, Y.S.; Lai, M.D. Increased expression of secreted frizzled related protein 1 (SFRP1) predicts ampullary adenocarcinoma recurrence. Sci. Rep. 2020, 10, 13255. [Google Scholar]
- Watanabe, H.; Okada, G.; Ohtsubo, K.; Yao, F.; Jiang, P.H.; Mouri, H.; Wakabayashi, T.; Sawabu, N. Aberrant methylation of secreted apoptosis-related protein 2 (SARP2) in pure pancreatic juice in diagnosis of pancreatic neoplasms. Pancreas 2006, 32, 382–389. [Google Scholar] [CrossRef] [Green Version]
- Monin, M.B.; Krause, P.; Stelling, R.; Bocuk, D.; Niebert, S.; Klemm, F.; Pukrop, T.; Koenig, S. ScienceDirect The anthelmintic niclosamide inhibits colorectal cancer cell lines via modulation of the canonical and noncanonical Wnt signaling pathway. J. Surg. Res. 2016, 203, 193–205. [Google Scholar] [CrossRef]
- Jung, D.-B.; Yun, M.; Kim, E.-O.; Kim, J.; Kim, B.; Jung, J.H.; Wang, E.; Mukhopadhyay, D.; Hammond, E.; Dredge, K.; et al. The heparan sulfate mimetic PG545 interferes with Wnt/?-catenin signaling and significantly suppresses pancreatic tumorigenesis alone and in combination with gemcitabine. Oncotarget 2015, 6, 4992–5004. [Google Scholar] [CrossRef] [Green Version]
- Ryu, W.J.; Han, G.; Lee, S.H.; Choi, K.Y. Suppression of Wnt/β-catenin and RAS/ERK pathways provides a therapeutic strategy for gemcitabine-resistant pancreatic cancer. Biochem. Biophys. Res. Commun. 2021, 549, 40–46. [Google Scholar] [CrossRef]
- Dam Henriksen, S.; Henning Madsen, P.; Christian Larsen, A.; Berg Johansen, M.; Søkilde Pedersen, I.; Krarup, H.; Thorlacius-Ussing, O. Cell-free DNA promoter hypermethylation in plasma as a predictive marker for survival of patients with pancreatic adenocarcinoma. Oncotarget 2017, 8, 93942–93956. [Google Scholar] [CrossRef] [Green Version]
- Johansen, J.S.; Vittrup, B.; Nielsen, D.; Bojesen, S.; Chen, I. BIOmarkers in Patients with Pancreatic Cancer (“BIOPAC”). Available online: https://clinicaltrials.gov/ct2/show/NCT03311776 (accessed on 5 July 2021).
- Pedersen, I.S.; Krarup, H.B.; Thorlacius-Ussing, O.; Madsen, P.H. High recovery of cell-free methylated DNA based on a rapid bisulfite-treatment protocol. BMC Mol. Biol. 2012, 13, 12. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, S.D.; Madsen, P.H.; Larsen, A.C.; Johansen, M.B.; Drewes, A.M.; Pedersen, I.S.; Krarup, H.; Thorlacius-Ussing, O. Cell-free DNA promoter hypermethylation in plasma as a diagnostic marker for pancreatic adenocarcinoma. Clin. Epigenet. 2016, 8, 117. [Google Scholar] [CrossRef] [Green Version]
- Snapinn, S.M.; Jiang, Q.; Iglewicz, B. Illustrating the impact of a time-varying covariate with an extended Kaplan-Meier estimator. Am. Stat. 2005, 59, 301–307. [Google Scholar] [CrossRef]
- Kamarudin, A.N.; Cox, T.; Kolamunnage-Dona, R. Time-dependent ROC curve analysis in medical research: Current methods and applications. BMC Med. Res. Methodol. 2017, 17, 53. [Google Scholar] [CrossRef] [Green Version]
- Heagerty, P.J.; Zheng, Y. Survival model predictive accuracy and ROC curves. Biometrics 2005, 61, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Meng, X.K.; Wang, W.X.; Zhang, R.M.; Zhang, T.; Ren, J.J. The Wnt/β-catenin signaling pathway mechanism for pancreatic cancer chemoresistance in a three-dimensional cancer microenvironment. Am. J. Transl. Res. 2016, 8, 4490–4498. [Google Scholar]
- Manegold, P.; Lai, K.K.Y.; Wu, Y.; Teo, J.L.; Lenz, H.J.; Genyk, Y.S.; Pandol, S.J.; Wu, K.; Lin, D.P.; Chen, Y.; et al. Differentiation therapy targeting the β-catenin/CBP interaction in pancreatic cancer. Cancers 2018, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Toyota, M.; Caraway, H.; Gabrielson, E.; Ohmura, T.; Fujikane, T.; Nishikawa, N.; Sogabe, Y.; Nojima, M.; Sonoda, T.; et al. Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer. Br. J. Cancer 2008, 98, 1147–1156. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, Y.; Schlange, T.; Oakeley, E.J.; Boulay, A.; Hynes, N.E. WNT signaling enhances breast cancer cell motility and blockade of the WNT pathway by sFRP1 suppresses MDA-MB-231 xenograft growth. Breast Cancer Res. 2009, 11, R32. [Google Scholar] [CrossRef] [Green Version]
- Shih, Y.L.; Hsieh, C.B.; Lai, H.C.; Yan, M.D.; Hsieh, T.Y.; Chao, Y.C.; Lin, Y.W. SFRP1 suppressed hepatoma cells growth through Wnt canonical signaling pathway. Int. J. Cancer 2007, 121, 1028–1035. [Google Scholar] [CrossRef]
- Jiang, G.-X.; Liu, W.; Cui, Y.-F.; Zhong, X.-Y.; Tai, S.; Wang, Z.-D.; Shi, Y.-G.; Li, C.-L.; Zhao, S.-Y. Reconstitution of Secreted Frizzled-Related Protein 1 Suppresses Tumor Growth and Lung Metastasis in an Orthotopic Model of Hepatocellular Carcinoma. Dig. Dis. Sci. 2009, 55, 2838–2843. [Google Scholar] [CrossRef]
- Lodygin, D.; Epanchintsev, A.; Menssen, A.; Diebold, J.; Hermeking, H. Functional Epigenomics Identifies Genes Frequently Silenced in Prostate Cancer. Cancer Res. 2005, 65, 4218–4227. [Google Scholar] [CrossRef] [Green Version]
- Chung, M.T.; Lai, H.C.; Sytwu, H.K.; Yan, M.D.; Shih, Y.L.; Chang, C.C.; Yu, M.H.; Liu, H.S.; Chu, D.W.; Lin, Y.W. SFRP1 and SFRP2 suppress the transformation and invasion abilities of cervical cancer cells through Wnt signal pathway. Gynecol. Oncol. 2009, 112, 646–653. [Google Scholar] [CrossRef]
- Trevant, B.; Gaur, T.; Hussain, S.; Symons, J.; Komm, B.S.; Bodine, P.V.N.; Stein, G.S.; Lian, J.B. Expression of Secreted Frizzled Related Protein 1, A Wnt Antagonist, in Brain, Kidney, and Skeleton is Dispensable for Normal Embryonic Development. J. Cell. Physiol 2008, 217, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Baharudin, R.; Tieng, F.Y.F.; Lee, L.H.; Mutalib, N.S.A. Epigenetics of SFRP1: The dual roles in human cancers. Cancers 2020, 12, 445. [Google Scholar] [CrossRef] [Green Version]
- Shang, D.; Xie, C.; Hu, J.; Tan, J.; Yuan, Y.; Liu, Z.; Yang, Z. Pancreatic cancer cell–derived exosomal microRNA-27a promotes angiogenesis of human microvascular endothelial cells in pancreatic cancer via BTG2. J. Cell. Mol. Med. 2020, 24, 588–604. [Google Scholar] [CrossRef] [Green Version]
- Solimando, A.G.; De Summa, S.; Vacca, A.; Ribatti, D. Cancer-associated angiogenesis: The endothelial cell as a checkpoint for immunological patrolling. Cancers 2020, 12, 3380. [Google Scholar] [CrossRef]
- Zhou, W.; Li, Y.; Gou, S.; Xiong, J.; Wu, H.; Wang, C.; Yan, H.; Liu, T. MiR-744 increases tumorigenicity of pancreatic cancer by activating Wnt/β-catenin pathway. Oncotarget 2015, 6, 37557–37569. [Google Scholar] [CrossRef]
- Yang, H.W.; Liu, G.H.; Liu, Y.Q.; Zhao, H.C.; Yang, Z.; Zhao, C.L.; Zhang, X.F.; Ye, H. Over-expression of microRNA-940 promotes cell proliferation by targeting GSK3β and sFRP1 in human pancreatic carcinoma. Biomed. Pharmacother. 2016, 83, 593–601. [Google Scholar] [CrossRef]
- Wattenberg, M.M.; Asch, D.; Yu, S.; O’Dwyer, P.J.; Domchek, S.M.; Nathanson, K.L.; Rosen, M.A.; Beatty, G.L.; Siegelman, E.S.; Reiss, K.A. Platinum response characteristics of patients with pancreatic ductal adenocarcinoma and a germline BRCA1, BRCA2 or PALB2 mutation. Br. J. Cancer 2020, 122, 333–339. [Google Scholar] [CrossRef]
- Javadrashid, D.; Baghbanzadeh, A.; Derakhshani, A.; Leone, P.; Silvestris, N.; Racanelli, V.; Solimando, A.G.; Baradaran, B. Pancreatic cancer signaling pathways, genetic alterations, and tumor microenvironment: The barriers affecting the method of treatment. Biomedicines 2021, 9, 373. [Google Scholar] [CrossRef]
Characteristics | BSC, umSFRP | BSC, phSFRP1 | Gem, umSFRP1 | Gem, phSFRP1 | All | p-Value |
---|---|---|---|---|---|---|
(n = 3) | (n = 12) | (n = 16) | (n = 9) | (n = 40) | ||
Age, years (mean and range) | 62 (52–71) | 67 (50–85) | 66 (52–74) | 63 (45–78) | 65 (45–85) | 0.87 a |
Time to palliative chemo, months (mean and range) | - | - | 0.98 (0.1–2.6) | 0.73 (0–1.2) | 0.89 (0–2.6) | 0.65 a |
Sex | ||||||
Male | 1 (33%) | 6 (50%) | 8 (53%) | 5 (56%) | 20 (51%) | 0.93 b |
Female | 2 (67%) | 6 (50%) | 7 (47%) | 4 (44%) | 19 (49%) | |
Curative surgery attempted | 0 (%) | 0 (%) | 1 (7%) | 0 (%) | 1 (3%) | 0.65 b |
Location of primary tumor | ||||||
Caput | 1 (33%) | 4 (33%) | 8 (53%) | 5 (56%) | 18 (46%) | 0.43 b |
Corpus | 0 (%) | 3 (25%) | 0 (%) | 0 (%) | 3 (8%) | |
Cauda | 1 (33%) | 3 (25%) | 3 (20%) | 1 (11%) | 8 (21%) | |
Unknown | 1 (33%) | 2 (17%) | 4 (27%) | 3 (33%) | 10 (26%) | |
Location of metastasis | ||||||
Liver | 2 (67%) | 11 (92%) | 8 (53%) | 7 (78%) | 28 (72%) | 0.53 b |
Lung | 0 (%) | 0 (%) | 0 (%) | 1 (11%) | 1 (3%) | |
Carcinosis | 1 (33%) | 1 (8%) | 2 (13%) | 1 (11%) | 5 (13%) | |
Lymph nodes | 0 (%) | 0 (%) | 1 (7%) | 0 (%) | 1 (3%) | |
Other | 0 (%) | 0 (%) | 1 (7%) | 0 (%) | 1 (3%) | |
Unknown | 0 (%) | 0 (%) | 3 (20%) | 0 (%) | 3 (8%) | |
WHO Performance Status | ||||||
0 | 0 (%) | 2 (17%) | 8 (53%) | 7 (78%) | 17 (44%) | 0.01 b |
1 | 3 (100%) | 6 (50%) | 2 (13%) | 1 (11%) | 12 (31%) | |
2 | 0 (%) | 4 (33%) | 5 (33%) | 1 (11%) | 10 (26%) |
Variable | Univariate HR (95% CI) | p-Value | Multivariate HR (95% CI) | p-Value |
---|---|---|---|---|
SFRP1 promoter hypermethylation | ||||
umSFRP1 | 1 | p < 0.01 | 1 | p < 0.01 |
phSFRP1 | 3.99 (1.8–8.85) | 3.48 (1.39–8.70) | ||
Treatment | ||||
BSC | 1 | p < 0.01 | 1 | 0.03 |
Gem | 0.16 (0.06–0.45) | 0.29 (0.09–0.92) | ||
Age above 65 | ||||
No | 1 | 0.24 | 1 | 0.6 |
Yes | 0.68 (0.36–1.29) | 0.83 (0.40–1.70) | ||
WHO Performance Status | ||||
0 | 1 | p < 0.01 | 1 | p < 0.01 |
1 | 4.15 (1.76–9.8) | 4.67 (1.80–12.13) | ||
2 | 2.01 (0.85–4.79) | 1.80 (0.65–5.01) | ||
Sex | ||||
Male | 1 | 0.43 | 1 | 0.04 |
Female | 1.30 (0.68–2.49) | 2.16 (1.02–4.56) |
Characteristics | Gem, umSFRP1 | Gem, phSFRP1 | All | p-Value |
---|---|---|---|---|
(n = 29) | (n = 29) | (n = 58) | ||
Age, years (mean and range) | 68 (53–78) | 67 (46–84) | 68 (46–84) | 0.46 a |
Sex | ||||
Male | 13 (45%) | 16 (55%) | 29 (50%) | 0.50 b |
Female | 16 (55%) | 13 (45%) | 29 (50%) | |
Curative surgery attempted | 1 (3%) | 0 (%) | 1 (2%) | 0.31 b |
Location of primary tumor | ||||
Caput | 20 (69%) | 18 (62%) | 38 (66%) | 0.53 b |
Corpus | 4 (14%) | 4 (14%) | 8 (14%) | |
Cauda | 4 (14%) | 4 (14%) | 8 (14%) | |
Diffuse | 1 (3%) | 0 (%) | 1 (2%) | |
Papilla | 0 (%) | 1 (3%) | 1 (2%) | |
Unknown | 0 (%) | 2 (7%) | 2 (3%) | |
Location of metastasis | ||||
Liver | 10 (34%) | 25 (86%) | 35 (60%) | p < 0.01 b |
Lung | 4 (14%) | 0 (%) | 4 (7%) | |
Liver and lung | 4 (14%) | 3 (10%) | 7 (12%) | |
Carcinosis | 6 (21%) | 0 (%) | 6 (10%) | |
Other | 3 (10%) | 1 (3%) | 4 (7%) | |
Unknown | 2 (7%) | 0 (%) | 2 (3%) | |
WHO Performance Status | ||||
0 | 10 (34%) | 4 (14%) | 14 (24%) | 0.18 b |
1 | 15 (52%) | 20 (69%) | 35 (60%) | |
2 | 4 (14%) | 5 (17%) | 9 (16%) |
Variable | Univariate HR (95% CI) | p-Value | Multivariate HR (95% CI) | p-Value |
---|---|---|---|---|
SFRP1 promoter hypermethylation | ||||
umSFRP1 | 1 | p < 0.01 | 1 | p < 0.01 |
phSFRP1 | 3.35 (1.82–6.17) | 3.53 (1.85–6.74) | ||
Age above 65 | ||||
No | 1 | 0.55 | 1 | 0.96 |
Yes | 0.84 (0.47–1.49) | 0.98 (0.55–1.77) | ||
WHO Performance Status | ||||
0 | 1 | 0.13 | 1 | 0.13 |
1 | 1.46 (0.77–2.77) | 1.03 (0.52–2.05) | ||
2 | 2.44 (1.02–5.83) | 2.24 (0.92–5.46) | ||
Sex | ||||
Male | 1 | 0.91 | 1 | 0.89 |
Female | 1.03 (0.61–1.75) | 1.04 (0.60–1.79) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stubbe, B.E.; Henriksen, S.D.; Madsen, P.H.; Larsen, A.C.; Krarup, H.B.; Pedersen, I.S.; Johansen, M.N.; Thorlacius-Ussing, O. Validation of SFRP1 Promoter Hypermethylation in Plasma as a Prognostic Marker for Survival and Gemcitabine Effectiveness in Patients with Stage IV Pancreatic Adenocarcinoma. Cancers 2021, 13, 5717. https://doi.org/10.3390/cancers13225717
Stubbe BE, Henriksen SD, Madsen PH, Larsen AC, Krarup HB, Pedersen IS, Johansen MN, Thorlacius-Ussing O. Validation of SFRP1 Promoter Hypermethylation in Plasma as a Prognostic Marker for Survival and Gemcitabine Effectiveness in Patients with Stage IV Pancreatic Adenocarcinoma. Cancers. 2021; 13(22):5717. https://doi.org/10.3390/cancers13225717
Chicago/Turabian StyleStubbe, Benjamin Emil, Stine Dam Henriksen, Poul Henning Madsen, Anders Christian Larsen, Henrik Bygum Krarup, Inge Søkilde Pedersen, Martin Nygård Johansen, and Ole Thorlacius-Ussing. 2021. "Validation of SFRP1 Promoter Hypermethylation in Plasma as a Prognostic Marker for Survival and Gemcitabine Effectiveness in Patients with Stage IV Pancreatic Adenocarcinoma" Cancers 13, no. 22: 5717. https://doi.org/10.3390/cancers13225717
APA StyleStubbe, B. E., Henriksen, S. D., Madsen, P. H., Larsen, A. C., Krarup, H. B., Pedersen, I. S., Johansen, M. N., & Thorlacius-Ussing, O. (2021). Validation of SFRP1 Promoter Hypermethylation in Plasma as a Prognostic Marker for Survival and Gemcitabine Effectiveness in Patients with Stage IV Pancreatic Adenocarcinoma. Cancers, 13(22), 5717. https://doi.org/10.3390/cancers13225717