Nationwide Survival Benefit after Implementation of First-Line Immunotherapy for Patients with Advanced NSCLC—Real World Efficacy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Patients
2.1.1. Cohorts from the Danish Lung Cancer Registry (DLCR)
2.1.2. ICI Cohort Identified from Electronic Health Records (EHRs)
2.1.3. Matching of the DLCR Post-Approval Cohort and the EHR-Identified ICI Cohort
2.2. Data Management of the EHR-Identified ICI Cohort
2.3. Statistical Methods
2.3.1. The DLCR Cohorts
2.3.2. The EHR-Identified ICI Cohort
3. Results
3.1. The DLCR Cohorts
3.1.1. Baseline Characteristics
3.1.2. OS before and after the Implementation of ICIs
3.2. The EHR-Identified ICI Cohort
3.2.1. ICI Efficacy
3.2.2. Clinical Outcomes
3.2.3. Prognostic Clinical Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GLOBOCAN. Cancer Statistics Denmark 2020. 2020. Available online: https://gco.iarc.fr/today/fact-sheets-populations (accessed on 18 May 2021).
- DLCR Annual Report 2018. Available online: https://www.lungecancer.dk/rapporter/aarsrapporter/ (accessed on 18 May 2021).
- Brahmer, J.R.; Reckamp, K.; Baas, P.; Crinò, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Perez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Reck, M. WCLC 2019: KEYNOTE-024 Survival Update Shows Benefit with Pembrolizumab vs. Chemotherapy in Advanced NSCLC. Available online: https://ascopost.com/news/september-2019/keynote-024-survival-update/ (accessed on 18 May 2021).
- Mok, T.S.K.; Wu, Y.-L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.; Castro, G., Jr.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- Singal, A.G.; Higgins, P.D.R.; Waljee, A.K. A primer on effectiveness and efficacy trials. Clin. Transl. Gastroenterol. 2014, 5, e45. [Google Scholar] [CrossRef]
- der Welle, C.M.C.-V.; The Santeon NSCLC Study Group; Verschueren, M.V.; Tonn, M.; Peters, B.J.M.; Schramel, F.M.N.H.; Klungel, O.H.; Groen, H.J.M.; van de Garde, E.M.W. Real-world outcomes versus clinical trial results of immunotherapy in stage IV non-small cell lung cancer (NSCLC) in the Netherlands. Sci. Rep. 2021, 11, 6306. [Google Scholar] [CrossRef] [PubMed]
- Passaro, A.; Attili, I.; Morganti, S.; Del Signore, E.; Gianoncelli, L.; Spitaleri, G.; Stati, V.; Catania, C.; Curigliano, G.; de Marinis, F. Clinical features affecting survival in metastatic NSCLC treated with immunotherapy: A critical review of published data. Cancer Treat. Rev. 2020, 89, 102085. [Google Scholar] [CrossRef]
- Luciani, A.; Marra, A.; Toschi, L.; Cortinovis, D.; Fava, S.; Filipazzi, V.; Tuzi, A.; Cerea, G.; Rossi, S.; Perfetti, V.; et al. Efficacy and safety of anti-PD-1 immunotherapy in patients aged ≥ 75 years with non-small-cell lung cancer (NSCLC): An Italian, multicenter, retrospective study. Clin. Lung Cancer 2020, 21, e567–e571. [Google Scholar] [CrossRef] [PubMed]
- Bjørnhart, B.; Hansen, K.H.; Jørgensen, T.L.; Herrstedt, J.; Schytte, T. Efficacy and safety of immune checkpoint inhibitors in a Danish real life non-small cell lung cancer population: A retrospective cohort study. Acta Oncol. 2019, 58, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, L.E.; Henon, C.; Auclin, E.; Mezquita, L.; Ferrara, R.; Audigier-Valette, C.; Mazieres, J.; Lefebvre, C.; Rabeau, A.; Le Moulec, S.; et al. Outcome of patients with non–small cell lung cancer and brain metastases treated with checkpoint inhibitors. J. Thorac. Oncol. 2019, 14, 1244–1254. [Google Scholar] [CrossRef]
- Alessi, J.V.; Ricciuti, B.; Jiménez-Aguilar, E.; Hong, F.; Wei, Z.; Nishino, M.; Plodkowski, A.J.; Sawan, P.; Luo, J.; Rizvi, H.; et al. Outcomes to first-line pembrolizumab in patients with PD-L1-high (≥50%) non-small cell lung cancer and a poor performance status. J. Immunother. Cancer 2020, 8, e001007. [Google Scholar] [CrossRef] [PubMed]
- Dall’Olio, F.G.; Maggio, I.; Massucci, M.; Mollica, V.; Fragomeno, B.; Ardizzoni, A. ECOG performance status ≥2 as a prognostic factor in patients with advanced non small cell lung cancer treated with immune checkpoint inhibitors-A systematic review and meta-analysis of real world data. Lung Cancer 2020, 145, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Landi, L.; D’Incà, F.; Gelibter, A.; Chiari, R.; Grossi, F.; Delmonte, A.; Passaro, A.; Signorelli, D.; Gelsomino, F.; Galetta, D.; et al. Bone metastases and immunotherapy in patients with advanced non-small-cell lung cancer. J. Immunother. Cancer 2019, 7, 316. [Google Scholar] [CrossRef] [PubMed]
- Cortellini, A.; Tiseo, M.; Banna, G.L.; Cappuzzo, F.; Aerts, J.G.J.V.; Barbieri, F.; Giusti, R.; Bria, E.; Cortinovis, D.; Grossi, F.; et al. Clinicopathologic correlates of first-line pembrolizumab effectiveness in patients with advanced NSCLC and a PD-L1 expression of ≥50. Cancer Immunol. Immunother. 2020, 69, 2209–2221. [Google Scholar] [CrossRef] [PubMed]
- Wallrabenstein, T.; Del Rio, J.; Templeton, A.J.; Buess, M. Much has changed in the last decade except overall survival: A Swiss single center analysis of treatment and survival in patients with stage IV non-small cell lung cancer. PLoS ONE 2020, 15, e0233768. [Google Scholar] [CrossRef] [PubMed]
- La, J.; Cheng, D.; Brophy, M.T.; Do, N.V.; Lee, J.S.; Tuck, D.; Fillmore, N.R. Real-world outcomes for patients treated with immune checkpoint inhibitors in the Veterans Affairs system. JCO Clin. Cancer Inform. 2020, 4, 918–928. [Google Scholar] [CrossRef]
- Jakobsen, E.; Rasmussen, T.R. The Danish Lung Cancer Registry. Clin. Epidemiol. 2016, 8, 537–541. [Google Scholar] [CrossRef] [Green Version]
- Danish Lung Cancer Registry (DLCR). Available online: https://www.rkkp.dk/kvalitetsdatabaser/databaser/dansk-lunge-cancer-register/ (accessed on 19 May 2021).
- Freshwater, T.; Kondic, A.; Ahamadi, M.; Li, C.H.; De Greef, R.; De Alwis, D.; Stone, J.A. Evaluation of dosing strategy for pembrolizumab for oncology indications. J. Immunother. Cancer 2017, 5, 43. [Google Scholar] [CrossRef]
- Schemper, M.; Wakounig, S.; Heinze, G. The estimation of average hazard ratios by weighted Cox regression. Stat. Med. 2009, 28, 2473–2489. [Google Scholar] [CrossRef]
- RCR Team. A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 19 May 2021).
- Lortet-Tieulent, J.; Soerjomataram, I.; Ferlay, J.; Rutherford, M.; Weiderpass, E.; Bray, F. International trends in lung cancer incidence by histological subtype: Adenocarcinoma stabilizing in men but still increasing in women. Lung Cancer 2014, 84, 13–22. [Google Scholar] [CrossRef]
- Sagerup, C.M.T.; Smastuen, M.; Johannesen, T.B.; Helland, Å.; Brustugun, O.T. Sex-specific trends in lung cancer incidence and survival: A population study of 40,118 cases. Thorax 2011, 66, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Botticelli, A.; Cirillo, A.; Scagnoli, S.; Cerbelli, B.; Strigari, L.; Cortellini, A.; Pizzuti, L.; Vici, P.; De Galitiis, F.; Di Pietro, F.R.; et al. The agnostic role of site of metastasis in predicting outcomes in cancer patients treated with immunotherapy. Vaccines 2020, 8, 203. [Google Scholar] [CrossRef] [PubMed]
- Facchinetti, F.; Mazzaschi, G.; Barbieri, F.; Passiglia, F.; Mazzoni, F.; Berardi, R.; Proto, C.; Cecere, F.L.; Pilotto, S.; Scotti, V.; et al. First-line pembrolizumab in advanced non-small cell lung cancer patients with poor performance status. Eur. J. Cancer 2020, 130, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.H.; Nakashima, T.; Sanchez, O.H.; Kozieradzki, I.; Komarova, S.V.; Sarosi, I.; Morony, S.; Rubin, E.; Sarao, R.; Hojilla, C.V.; et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 2006, 440, 692–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahern, E.; Smyth, M.J.; Dougall, W.C.; Teng, M.W.L. Roles of the RANKL-RANK axis in antitumour immunity—Implications for therapy. Nat. Rev. Clin. Oncol. 2018, 15, 676–693. [Google Scholar] [CrossRef] [PubMed]
- Denosumab and Nivolumab Combination as 2d-Line Therapy in Stage IV NSC Lung Cancer with Bone Metastases (DENIVOS). Available online: https://clinicaltrials.gov/ct2/show/NCT03669523?term=denosumab&cond=Lung+Cancer%2C+Nonsmall+Cell&draw=2&rank=4 (accessed on 19 May 2021).
- Evaluation of Denosumab in Combination with Immune Checkpoint Inhibitors in Patients with Unresectable or Metastatic Melanoma (CHARLI). Available online: https://clinicaltrials.gov/ct2/show/NCT03161756?term=denosumab&cond=Melanoma+Stage&draw=2&rank=1 (accessed on 19 May 2021).
- Yang, F.; Markovic, S.N.; Molina, J.R.; Halfdanarson, T.R.; Pagliaro, L.C.; Chintakuntlawar, A.V.; Li, R.; Wei, J.; Wang, L.; Liu, B.; et al. Association of sex, age, and Eastern Cooperative Oncology Group performance status with survival benefit of cancer immunotherapy in randomized clinical trials: A systematic review and meta-analysis. JAMA Netw. Open 2020, 3, e2012534. [Google Scholar] [CrossRef]
- OECD. Smoking among Adults. Available online: http://dx.doi.org/10.1787/health_glance_eur-2016-22-en (accessed on 19 May 2021).
- Aguilar, E.; Ricciuti, B.; Gainor, J.; Kehl, K.; Kravets, S.; Dahlberg, S.; Nishino, M.; Sholl, L.; Adeni, A.; Subegdjo, S.; et al. Outcomes to first-line pembrolizumab in patients with non-small-cell lung cancer and very high PD-L1 expression. Ann. Oncol. 2019, 30, 1653–1659. [Google Scholar] [CrossRef] [Green Version]
- Boyero, L.; Sánchez-Gastaldo, A.; Alonso, M.; Noguera-Uclés, J.F.; Molina-Pinelo, S.; Bernabé-Caro, R. Primary and acquired resistance to immunotherapy in lung cancer: Unveiling the mechanisms underlying of immune checkpoint blockade therapy. Cancers 2020, 12, 3729. [Google Scholar] [CrossRef]
- Papillon-Cavanagh, S.; Doshi, P.; Dobrin, R.; Szustakowski, J.; Walsh, A.M. STK11 and KEAP1 mutations as prognostic biomarkers in an observational real-world lung adenocarcinoma cohort. ESMO Open 2020, 5, e000706. [Google Scholar] [CrossRef] [Green Version]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef] [Green Version]
DLCR Cohorts | n (%) | mOS (Months) (95% CI) | 1-Year OS (%) (95% CI) | 2-Year OS (%) (95% CI) | 3-Year OS (%) (95% CI) |
---|---|---|---|---|---|
Pre-approval cohort | 1658 (100) | 7.8 (7.4–8.2) | 31 (29–33) | 12 (10–14) | 6 (5–7) |
Post-approval cohort | 2055 (100) | 11.0 (10.2–11.9) | 48 (46–50) | 27 (25–29) | 18 (16–20) |
CTx | 1573 (77) | 9.5 (8.9–10.3) | 43 (40–45) | 22 (21–25) | 14 (12–17) |
ICI | 482 (23) | 19.0 (16.0–22.0) | 64 (60–68) | 42 (38–47) | 29 (24–35) |
Baseline Characteristics | n (%) |
---|---|
All patients | 579 |
Age, median years (range) | 70 (45–88) |
<75 | 441 (76) |
≥75 | 138 (24) |
Sex | |
Male | 246 (42) |
Female | 333 (58) |
ECOG performance status | |
0 | 194 (34) |
1 | 295 (51) |
≥2 | 90 (15) |
CCIS | |
0 (none) | 217 (37) |
1 (mild) | 169 (29) |
2 (moderate) | 103 (18) |
3+ (severe) | 90 (16) |
Smoking status | |
Current | 189 (33) |
Former | 343 (59) |
Never | 26 (4) |
Unknown | 21 (4) |
TNM stage and metastatic sites | |
III | 109 (19) |
IV a | 470 (81) |
Brain | 38 (7) |
Bone | 162 (28) |
Liver | 63 (11) |
Adrenal | 86 (15) |
Distant lymph nodes | 174 (30) |
NSCLC histopathology | |
Adenocarcinoma | 409 (71) |
Squamous cell carcinoma | 135 (23) |
Other b | 35 (6) |
PD-L1 | |
Negative ≥1% and <50% | 3 (0.5) 20 (3.5) |
≥50% | 552 (95.3) |
Unknown | 4 (0.7) |
Prior treatment with curative intention | |
Surgery ± adj. CTx | 39 (7) |
CRT | 46 (8) |
Surgery and CRT | 16 (3) |
None | 478 (82) |
Prior palliative RT c | |
Yes | 71 (12) |
No | 508 (88) |
Treatment Characteristics | n (%) |
---|---|
All patients | 579 |
Median number of cycles (range) | 7 (1–41) |
Median days on treatment a (range) | 127 (1–826) |
Ongoing ICI treatment b | 38 (7) |
ICI discontinuation | 541 (93) |
ICI discontinuation due to c: | |
PD | 250 (46) |
Poor performance status | 62 (11) |
Two years of ICI d | 39 (7) |
IrAEs e | 170 (31) |
Pneumonitis | 41 (8) |
Hepatitis | 31 (6) |
Skin | 10 (2) |
Endocrinopathy | 18 (3) |
Diarrhea/colitis | 37 (7) |
Other f | 52 (10) |
IrAE only g | 150 (28) |
Other reasons | 51 (9) |
Hospitalization due to irAE | 135 (23) |
Grade 5 toxicity (death) | 12 (2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mouritzen, M.T.; Carus, A.; Ladekarl, M.; Meldgaard, P.; Nielsen, A.W.M.; Livbjerg, A.; Larsen, J.W.; Skuladottir, H.; Kristiansen, C.; Wedervang, K.; et al. Nationwide Survival Benefit after Implementation of First-Line Immunotherapy for Patients with Advanced NSCLC—Real World Efficacy. Cancers 2021, 13, 4846. https://doi.org/10.3390/cancers13194846
Mouritzen MT, Carus A, Ladekarl M, Meldgaard P, Nielsen AWM, Livbjerg A, Larsen JW, Skuladottir H, Kristiansen C, Wedervang K, et al. Nationwide Survival Benefit after Implementation of First-Line Immunotherapy for Patients with Advanced NSCLC—Real World Efficacy. Cancers. 2021; 13(19):4846. https://doi.org/10.3390/cancers13194846
Chicago/Turabian StyleMouritzen, Mette T., Andreas Carus, Morten Ladekarl, Peter Meldgaard, Anders W. M. Nielsen, Anna Livbjerg, Jacob W. Larsen, Halla Skuladottir, Charlotte Kristiansen, Kim Wedervang, and et al. 2021. "Nationwide Survival Benefit after Implementation of First-Line Immunotherapy for Patients with Advanced NSCLC—Real World Efficacy" Cancers 13, no. 19: 4846. https://doi.org/10.3390/cancers13194846
APA StyleMouritzen, M. T., Carus, A., Ladekarl, M., Meldgaard, P., Nielsen, A. W. M., Livbjerg, A., Larsen, J. W., Skuladottir, H., Kristiansen, C., Wedervang, K., Schytte, T., Hansen, K. H., Østby, A.-C., Frank, M. S., Lauritsen, J., Sørensen, J. B., Langer, S. W., Persson, G. F., Andersen, J. L., ... Pøhl, M. (2021). Nationwide Survival Benefit after Implementation of First-Line Immunotherapy for Patients with Advanced NSCLC—Real World Efficacy. Cancers, 13(19), 4846. https://doi.org/10.3390/cancers13194846