RET Inhibitors in Non-Small-Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
RET Rearrangements in NSCLC
2. Non-Selective RET Inhibitors
2.1. Cabozantinib
2.2. Vandetanib
2.3. Lenvatinib
Author | Regimen | Setting | Pts | ORR (%) | Median PFS (Months) | Median OS (Months) |
---|---|---|---|---|---|---|
Drilon, A. et al., 2016 [24] | Cabozantinib 60 mg/day | Pretreated or untreated | 26 | 28 | 5.5 | 9.9 |
Neal, J.W. et al., 2016 [27] | Cabozantinib 60 mg/day vs. cabozantinib 40 mg/day + erlotinib 150 mg/day Vs. erlotinib 150 mg/day | Pretreated | 125 | 11 vs. 3 vs. 3 | 4.3 vs. 4.7 vs. 1.8 | 9.2 vs. 13.3 vs. 5.1 |
Lee, S.H. et al., 2017 [33] | Vandetanib 300 mg/day | Pretreated | 18 (17 evaluable) | 18 | 4.5 | 11.6 |
Yoh, K, et al., 2017 [34] | Vandetanib 300 mg/day | Pretreated | 19 | 47 | 4.7 | 11.1 |
Hida, T, et al., 2019 [37] | Lenvatinib 24 mg/day | Pretreated | 25 | 16% | 7.3 | - |
3. Selective RET Inhibitors
3.1. Selpercatinib
3.2. Pralsetinib
Author | Phase | Regimen | Setting | Pts | ORR (%) | Median PFS (Months) |
---|---|---|---|---|---|---|
Drilon, A. et al., 2020 [41] | I–II | Selpercatinib 160 mg twice daily | Platinum pretreated | 105 | 64 (95% CI: 54–73%) | 16.5 (95% CI: 17.7–n.r.) |
II | Selpercatinib 160 mg twice daily | Untreated | 39 | 85 (95% CI: 70–94%) | n.r. (95% CI: 13.8–n.r.) | |
Gainor, J.F. et al., 2020 [47] | I–II | Pralsetinib 400 mg daily | Pretreated | 80 | 61 (95% CI: 50–72) | - |
II | Pralsetinib 400 mg daily | Untreated | 26 | 73 (95% CI: 52–88) | - |
4. Discussion
Trial | Phase | Setting | Stage | Pts | Treatment | Primary End Points |
---|---|---|---|---|---|---|
NCT04194944 (LIBRETTO-431) [49] | Phase III | First line | Stage IV or IIIB-C * | 250 | Selpercatinib vs. platinum + pemetrexed with or without pembrolizumab | PFS |
NCT04222972(ACCELE-RET) [50] | Phase III | First line | Stage IV or IIIB-C * | 250 | Pralsetinib vs. platinum + pemetrexed with or without pembrolizumab (if non squamous) or platinum + gemcitabine | PFS |
NCT03178552 (B-FAST) [51] | Phase I/II | First line | Stage IV or stage III * | 50 | Alectinib | ORR |
NCT04591431ROME [52] | Phase II | Second line | Stage IV | 384 | Alectinib or brigatinib | ORR |
NCT04268550 (LUNG-MAP) [53] | Phase II | Second or subsequent lines | Stage IV or stage III * | 124 | Selpercetinib | ORR |
NCT04131543 (CRETA) [54] | Phase II | Second or subsequent lines | Stage IV or stage III * | 25 | Cabozantinib | ORR |
NCT03445000 (ALERT-LUNG) [55] | Phase II | Second or subsequent lines | Stage IV or stage III * | 44 | Alectinib | ORR |
NCT03468985 [56] | Phase II | Pretreated | Stage IV | 169 | Nivolumab + cabozantinib | PFS |
NCT04161391 [64] | Phase I-II | Naive or pretreated | Stage IV | 362 | TPX-0046 | ORR |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Amoresano, A.; Incoronato, M.; Monti, G.; Pucci, P.; de Franciscis, V.; Cerchia, L. Direct Interactions among Ret, GDNF and GFRα1 Molecules Reveal New Insights into the Assembly of a Functional Three-Protein Complex. Cell Signal 2005, 17, 717–727. [Google Scholar] [CrossRef][Green Version]
- Li, A.Y.; McCusker, M.G.; Russo, A.; Scilla, K.A.; Gittens, A.; Arensmeyer, K.; Mehra, R.; Adamo, V.; Rolfo, C. RET Fusions in Solid Tumors. Cancer Treat. Rev. 2019, 81. [Google Scholar] [CrossRef]
- Belli, C.; Anand, S.; Gainor, J.F.; Penault-Llorca, F.; Subbiah, V.; Drilon, A.; Andrè, F.; Curigliano, G. Progresses Toward Precision Medicine in RET-Altered Solid Tumors. Clin. Cancer Res. 2020, 26, 6102–6111. [Google Scholar] [CrossRef]
- Song, Z.; Yu, X.; Zhang, Y. Clinicopathologic Characteristics, Genetic Variability and Therapeutic Options of RET Rearrangements Patients in Lung Adenocarcinoma. Lung Cancer 2016, 101, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Michels, S.; Scheel, A.H.; Scheffler, M.; Schultheis, A.M.; Gautschi, O.; Aebersold, F.; Diebold, J.; Pall, G.; Rothschild, S.; Bubendorf, L.; et al. Clinicopathological Characteristics of RET Rearranged Lung Cancer in European Patients. J. Thorac. Oncol. 2016, 11, 122–127. [Google Scholar] [CrossRef][Green Version]
- Kato, S.; Subbiah, V.; Marchlik, E.; Elkin, S.K.; Carter, J.L.; Kurzrock, R. RET Aberrations in Diverse Cancers: Next-Generation Sequencing of 4,871 Patients. Clin. Cancer Res. 2017, 23, 1988–1997. [Google Scholar] [CrossRef][Green Version]
- Piotrowska, Z.; Isozaki, H.; Lennerz, J.K.; Gainor, J.F.; Lennes, I.T.; Zhu, V.W.; Marcoux, N.; Banwait, M.K.; Digumarthy, S.R.; Su, W.; et al. Landscape of Acquired Resistance to Osimertinib in EGFR-Mutant NSCLC and Clinical Validation of Combined EGFR and RET Inhibition with Osimertinib and BLU-667 for Acquired RET Fusion. Cancer Discov. 2018, 8, 1529–1539. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Klempner, S.J.; Bazhenova, L.A.; Braiteh, F.S.; Nikolinakos, P.G.; Gowen, K.; Cervantes, C.M.; Chmielecki, J.; Greenbowe, J.R.; Ross, J.S.; Stephens, P.J.; et al. Emergence of RET Rearrangement Co-Existing with Activated EGFR Mutation in EGFR-Mutated NSCLC Patients Who Had Progressed on First- or Second-Generation EGFR TKI. Lung Cancer 2015, 89, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, R.; Auger, N.; Auclin, E.; Besse, B. Clinical and Translational Implications of RET Rearrangements in Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, 27–45. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Esagian, S.M.; Grigoriadou, G.I.; Nikas, I.P.; Boikou, V.; Sadow, P.M.; Won, J.-K.; Economopoulos, K.P. Comparison of Liquid-Based to Tissue-Based Biopsy Analysis by Targeted next Generation Sequencing in Advanced Non-Small Cell Lung Cancer: A Comprehensive Systematic Review. J. Cancer Res. Clin. Oncol. 2020, 146, 2051–2066. [Google Scholar] [CrossRef] [PubMed]
- Go, H.; Jung, Y.J.; Kang, H.W.; Park, I.-K.; Kang, C.-H.; Lee, J.W.; Ju, Y.S.; Seo, J.-S.; Chung, D.H.; Kim, Y.T. Diagnostic Method for the Detection of KIF5B-RET Transformation in Lung Adenocarcinoma. Lung Cancer 2013, 82, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Hu, H.; Pan, Y.; Li, Y.; Ye, T.; Li, C.; Luo, X.; Wang, L.; Li, H.; Zhang, Y.; et al. RET Fusions Define a Unique Molecular and Clinicopathologic Subtype of Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2012, 30, 4352–4359. [Google Scholar] [CrossRef]
- Dugay, F.; Llamas-Gutierrez, F.; Gournay, M.; Medane, S.; Mazet, F.; Chiforeanu, D.C.; Becker, E.; Lamy, R.; Léna, H.; Rioux-Leclercq, N.; et al. Clinicopathological Characteristics of ROS1 - and RET -Rearranged NSCLC in Caucasian Patients: Data from a Cohort of 713 Non-Squamous NSCLC Lacking KRAS/EGFR/HER2/BRAF/PIK3CA/ALK Alterations. Oncotarget 2017, 8, 53336–53351. [Google Scholar] [CrossRef][Green Version]
- Hess, L.M.; Han, Y.; Zhu, Y.E.; Bhandari, N.R.; Sireci, A. Characteristics and Outcomes of Patients with RET-Fusion Positive Non-Small Lung Cancer in Real-World Practice in the United States. BMC Cancer 2021, 21, 28. [Google Scholar] [CrossRef] [PubMed]
- Dacic, S.; Luvison, A.; Evdokimova, V.; Kelly, L.; Siegfried, J.M.; Villaruz, L.C.; Socinski, M.A.; Nikiforov, Y.E. RET Rearrangements in Lung Adenocarcinoma and Radiation. J. Thorac. Oncol. 2014, 9, 118–120. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tsuta, K.; Kohno, T.; Yoshida, A.; Shimada, Y.; Asamura, H.; Furuta, K.; Kushima, R. RET-Rearranged Non-Small-Cell Lung Carcinoma: A Clinicopathological and Molecular Analysis. Br. J. Cancer 2014, 110, 1571–1578. [Google Scholar] [CrossRef][Green Version]
- Mukhopadhyay, S.; Pennell, N.A.; Ali, S.M.; Ross, J.S.; Ma, P.C.; Velcheti, V. RET-Rearranged Lung Adenocarcinomas with Lymphangitic Spread, Psammoma Bodies, and Clinical Responses to Cabozantinib. J. Thorac. Oncol. 2014, 9, 1714–1719. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Digumarthy, S.R.; Mendoza, D.P.; Lin, J.J.; Rooney, M.; Do, A.; Chin, E.; Yeap, B.Y.; Shaw, A.T.; Gainor, J.F. Imaging Features and Patterns of Metastasis in Non-Small Cell Lung Cancer with RET Rearrangements. Cancers 2020, 12, 693. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, H.; Wang, Z.; Zhang, G.; Zhang, M.; Zhang, X.; Li, H.; Zheng, X.; Ma, Z. Driver Genes as Predictive Indicators of Brain Metastasis in Patients with Advanced NSCLC: EGFR, ALK, and RET Gene Mutations. Cancer Med. 2020, 9, 487–495. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Offin, M.; Guo, R.; Wu, S.L.; Sabari, J.; Land, J.D.; Ni, A.; Montecalvo, J.; Halpenny, D.F.; Buie, L.W.; Pak, T.; et al. Immunophenotype and Response to Immunotherapy of RET-Rearranged Lung Cancers. JCO Precis. Oncol. 2019, 3, PO.18.00386. [Google Scholar] [CrossRef]
- Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; et al. Cabozantinib (XL184), a Novel MET and VEGFR2 Inhibitor, Simultaneously Suppresses Metastasis, Angiogenesis, and Tumor Growth. Mol. Cancer Ther. 2011, 10, 2298–2308. [Google Scholar] [CrossRef][Green Version]
- Ju, Y.S.; Lee, W.-C.; Shin, J.-Y.; Lee, S.; Bleazard, T.; Won, J.-K.; Kim, Y.T.; Kim, J.-I.; Kang, J.-H.; Seo, J.-S. A Transforming KIF5B and RET Gene Fusion in Lung Adenocarcinoma Revealed from Whole-Genome and Transcriptome Sequencing. Genome Res. 2012, 22, 436–445. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Drilon, A.; Wang, L.; Hasanovic, A.; Suehara, Y.; Lipson, D.; Stephens, P.; Ross, J.; Miller, V.; Ginsberg, M.; Zakowski, M.F.; et al. Response to Cabozantinib in Patients with RET Fusion-Positive Lung Adenocarcinomas. Cancer Discov. 2013, 3, 630–635. [Google Scholar] [CrossRef][Green Version]
- Drilon, A.; Rekhtman, N.; Arcila, M.; Wang, L.; Ni, A.; Albano, M.; Van Voorthuysen, M.; Somwar, R.; Smith, R.S.; Montecalvo, J.; et al. A Phase 2 Single Arm Trial of Cabozantinib in Patients with Advanced RET-Rearranged Lung Cancers. Lancet Oncol 2016, 17, 1653–1660. [Google Scholar] [CrossRef][Green Version]
- Vaishnavi, A.; Schubert, L.; Rix, U.; Marek, L.A.; Le, A.T.; Keysar, S.B.; Glogowska, M.J.; Smith, M.A.; Kako, S.; Sumi, N.J.; et al. EGFR Mediates Responses to Small Molecule Drugs Targeting Oncogenic Fusion Kinases. Cancer Res. 2017, 77, 3551–3563. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wakelee, H.A.; Gettinger, S.; Engelman, J.; Jänne, P.A.; West, H.; Subramaniam, D.S.; Leach, J.; Wax, M.; Yaron, Y.; Miles, D.R.; et al. A Phase Ib/II Study of Cabozantinib (XL184) with or without Erlotinib in Patients with Non-Small Cell Lung Cancer. Cancer Chemother. Pharmacol. 2017, 79, 923–932. [Google Scholar] [CrossRef][Green Version]
- Neal, J.W.; Dahlberg, S.E.; Wakelee, H.A.; Aisner, S.C.; Bowden, M.; Huang, Y.; Carbone, D.P.; Gerstner, G.J.; Lerner, R.E.; Rubin, J.L.; et al. Erlotinib, Cabozantinib, or Erlotinib plus Cabozantinib as Second- or Third-Line Treatment of Patients with EGFR Wild-Type Advanced Non-Small Cell Lung Cancer (ECOG-ACRIN 1512): A Phase 2 Randomised Controlled Trial. Lancet Oncol. 2016, 17, 1661–1671. [Google Scholar] [CrossRef][Green Version]
- Carlomagno, F.; Vitagliano, D.; Guida, T.; Ciardiello, F.; Tortora, G.; Vecchio, G.; Ryan, A.J.; Fontanini, G.; Fusco, A.; Santoro, M. ZD6474, an Orally Available Inhibitor of KDR Tyrosine Kinase Activity, Efficiently Blocks Oncogenic RET Kinases. Cancer Res. 2002, 62, 7284–7290. [Google Scholar]
- Natale, R.B.; Thongprasert, S.; Greco, F.A.; Thomas, M.; Tsai, C.-M.; Sunpaweravong, P.; Ferry, D.; Mulatero, C.; Whorf, R.; Thompson, J.; et al. Phase III Trial of Vandetanib Compared with Erlotinib in Patients with Previously Treated Advanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2011, 29, 1059–1066. [Google Scholar] [CrossRef]
- Lee, J.S.; Hirsh, V.; Park, K.; Qin, S.; Blajman, C.R.; Perng, R.-P.; Chen, Y.-M.; Emerson, L.; Langmuir, P.; Manegold, C. Vandetanib Versus Placebo in Patients with Advanced Non-Small-Cell Lung Cancer after Prior Therapy with an Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor: A Randomized, Double-Blind Phase III Trial (ZEPHYR). J. Clin. Oncol. 2012, 30, 1114–1121. [Google Scholar] [CrossRef]
- Herbst, R.S.; Sun, Y.; Eberhardt, W.E.; Germonpré, P.; Saijo, N.; Zhou, C.; Wang, J.; Li, L.; Kabbinavar, F.; Ichinose, Y.; et al. Vandetanib plus Docetaxel versus Docetaxel as Second-Line Treatment for Patients with Advanced Non-Small-Cell Lung Cancer (ZODIAC): A Double-Blind, Randomised, Phase 3 Trial. Lancet Oncol. 2010, 11, 619–626. [Google Scholar] [CrossRef][Green Version]
- De Boer, R.H.; Arrieta, Ó.; Yang, C.-H.; Gottfried, M.; Chan, V.; Raats, J.; de Marinis, F.; Abratt, R.P.; Wolf, J.; Blackhall, F.H.; et al. Vandetanib plus Pemetrexed for the Second-Line Treatment of Advanced Non-Small-Cell Lung Cancer: A Randomized, Double-Blind Phase III Trial. J. Clin. Oncol. 2011, 29, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Lee, J.-K.; Ahn, M.-J.; Kim, D.-W.; Sun, J.-M.; Keam, B.; Kim, T.M.; Heo, D.S.; Ahn, J.S.; Choi, Y.-L.; et al. Vandetanib in Pretreated Patients with Advanced Non-Small Cell Lung Cancer-Harboring RET Rearrangement: A Phase II Clinical Trial. Ann. Oncol. 2017, 28, 292–297. [Google Scholar] [CrossRef]
- Yoh, K.; Seto, T.; Satouchi, M.; Nishio, M.; Yamamoto, N.; Murakami, H.; Nogami, N.; Matsumoto, S.; Kohno, T.; Tsuta, K.; et al. Vandetanib in Patients with Previously Treated RET-Rearranged Advanced Non-Small-Cell Lung Cancer (LURET): An Open-Label, Multicentre Phase 2 Trial. Lancet Respir. Med. 2017, 5, 42–50. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, P. Lenvatinib in Management of Solid Tumors. Oncologist 2020, 25, e302–e310. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Havel, L.; Lee, J.-S.; Lee, K.H.; Bidoli, P.; Kim, J.-H.; Ferry, D.; Kim, Y.-C.; Losonczy, G.; Steele, N.; Woo, I.S.; et al. E7080 (Lenvatinib) in Addition to Best Supportive Care (BSC) versus BSC Alone in Third-Line or Greater Nonsquamous, Non-Small Cell Lung Cancer (NSCLC). J. Clin. Oncol. 2014, 32, 8043. [Google Scholar] [CrossRef]
- Hida, T.; Velcheti, V.; Reckamp, K.L.; Nokihara, H.; Sachdev, P.; Kubota, T.; Nakada, T.; Dutcus, C.E.; Ren, M.; Tamura, T. A Phase 2 Study of Lenvatinib in Patients with RET Fusion-Positive Lung Adenocarcinoma. Lung Cancer 2019, 138, 124–130. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Taylor, M.H.; Lee, C.-H.; Makker, V.; Rasco, D.; Dutcus, C.E.; Wu, J.; Stepan, D.E.; Shumaker, R.C.; Motzer, R.J. Phase IB/II Trial of Lenvatinib Plus Pembrolizumab in Patients With Advanced Renal Cell Carcinoma, Endometrial Cancer, and Other Selected Advanced Solid Tumors. J. Clin. Oncol. 2020, 38, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Velcheti, V.; Tuch, B.B.; Ebata, K.; Busaidy, N.L.; Cabanillas, M.E.; Wirth, L.J.; Stock, S.; Smith, S.; Lauriault, V.; et al. Selective RET Kinase Inhibition for Patients with RET-Altered Cancers. Ann. Oncol. 2018, 29, 1869–1876. [Google Scholar] [CrossRef]
- Gautschi, O.; Milia, J.; Filleron, T.; Wolf, J.; Carbone, D.P.; Owen, D.; Camidge, R.; Narayanan, V.; Doebele, R.C.; Besse, B.; et al. Targeting RET in Patients With RET-Rearranged Lung Cancers: Results From the Global, Multicenter RET Registry. J. Clin. Oncol. 2017, 35, 1403–1410. [Google Scholar] [CrossRef][Green Version]
- Drilon, A.; Oxnard, G.R.; Tan, D.S.W.; Loong, H.H.F.; Johnson, M.; Gainor, J.; McCoach, C.E.; Gautschi, O.; Besse, B.; Cho, B.C.; et al. Efficacy of Selpercatinib in RET Fusion–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Drilon, A.E.; Subbiah, V.; Oxnard, G.R.; Bauer, T.M.; Velcheti, V.; Lakhani, N.J.; Besse, B.; Park, K.; Patel, J.D.; Cabanillas, M.E.; et al. A Phase 1 Study of LOXO-292, a Potent and Highly Selective RET Inhibitor, in Patients with RET-Altered Cancers. J. Clin. Oncol. 2018, 36, 102. [Google Scholar] [CrossRef]
- Drilon, A.; Lin, J.J.; Filleron, T.; Ni, A.; Milia, J.; Bergagnini, I.; Hatzoglou, V.; Velcheti, V.; Offin, M.; Li, B.; et al. Brief Report: Frequency of Brain Metastases and Multikinase Inhibitor Outcomes in Patients with RET-Rearranged Lung Cancers. J. Thorac. Oncol. 2018, 13, 1595–1601. [Google Scholar] [CrossRef][Green Version]
- Subbiah, V.; Gainor, J.F.; Rahal, R.; Brubaker, J.D.; Kim, J.L.; Maynard, M.; Hu, W.; Cao, Q.; Sheets, M.P.; Wilson, D.; et al. Precision Targeted Therapy with BLU-667 for RET-Driven Cancers. Cancer Discov. 2018, 8, 836–849. [Google Scholar] [CrossRef][Green Version]
- Gainor, J.F.; Lee, D.H.; Curigliano, G.; Doebele, R.C.; Kim, D.-W.; Baik, C.S.; Tan, D.S.-W.; Lopes, G.; Gadgeel, S.M.; Cassier, P.A.; et al. Clinical Activity and Tolerability of BLU-667, a Highly Potent and Selective RET Inhibitor, in Patients (Pts) with Advanced RET-Fusion+ Non-Small Cell Lung Cancer (NSCLC). J. Clin. Oncol. 2019, 37, 9008. [Google Scholar] [CrossRef]
- Lee, D.H.; Subbiah, V.; Gainor, J.F.; Taylor, M.H.; Zhu, V.W.; Doebele, R.C.; Lopes, G.; Baik, C.; Garralda, E.; Gadgeel, S.M.; et al. Treatment with Pralsetinib (Formerly BLU-667), a Potent and Selective RET Inhibitor, Provides Rapid Clearance of CtDNA in Patients with RET-Altered Non-Small Cell Lung Cancer (NSCLC) and Medullary Thyroid Cancer (MTC). Ann. Oncol. 2019, 30, ix122. [Google Scholar] [CrossRef]
- Gainor, J.F.; Curigliano, G.; Kim, D.-W.; Lee, D.H.; Besse, B.; Baik, C.S.; Doebele, R.C.; Cassier, P.A.; Lopes, G.; Tan, D.S.-W.; et al. Registrational Dataset from the Phase I/II ARROW Trial of Pralsetinib (BLU-667) in Patients (Pts) with Advanced RET Fusion+ Non-Small Cell Lung Cancer (NSCLC). J. Clin. Oncol. 2020, 38, 9515. [Google Scholar] [CrossRef]
- Markham, A. Pralsetinib: First Approval. Drugs 2020, 80, 1865–1870. [Google Scholar] [CrossRef]
- Solomon, B.J.; Zhou, C.C.; Drilon, A.; Park, K.; Wolf, J.; Elamin, Y.; Davis, H.M.; Soldatenkova, V.; Sashegyi, A.; Lin, A.B.; et al. Phase III Study of Selpercatinib versus Chemotherapy ± Pembrolizumab in Untreated RET Positive Non-Small-Cell Lung Cancer. Futur. Oncol. 2021, 17, 763–773. [Google Scholar] [CrossRef]
- Hoffmann-La Roche. A Phase III, Randomized, Open-Label Study of Pralsetinib Versus Standard of Care for First-Line Treatment of RET Fusion-Positive, Metastatic Non-Small Cell Lung Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT04222972 (accessed on 29 August 2021).
- Hoffmann-La Roche. A Phase II/III Multicenter Study Evaluating the Efficacy and Safety of Multiple Targeted Therapies as Treatments for Patients With Advanced or Metastatic Non-Small Cell Lung Cancer (NSCLC) Harboring Actionable Somatic Mutations Detected in Blood (B-FAST: Blood-First Assay Screening Trial). Available online: https://www.clinicaltrials.gov/ct2/show/NCT03178552 (accessed on 29 August 2021).
- Fondazione per la Medicina Personalizzata. The Rome Trial from Histology to Target: The Road to Personalize Target Therapy and Immunotherapy. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04591431 (accessed on 29 August 2021).
- Southwest Oncology Group. A Phase II Study of LOXO-292 in Patients With RET Fusion-Positive Stage IV or Recurrent Non-Small Cell Lung Cancer (LUNG-MAP Sub-Study). Available online: https://clinicaltrials.gov/ct2/show/NCT04268550 (accessed on 29 August 2021).
- Ardizzoni, A. Phase II Study to Evaluate the Activity and Safety of Cabozantinib in Pretreated, Advanced RET-Rearranged Non-Small Cell Lung Cancer Patients: CRETA Trial. Available online: https://clinicaltrials.gov/ct2/show/NCT04131543 (accessed on 29 August 2021).
- European Thoracic Oncology Platform. A Single Arm Phase II Trial Evaluating the Activity of Alectinib for the Treatment of Pretreated RET-Rearranged Advanced NSCLC. Available online: https://clinicaltrials.gov/ct2/show/NCT03445000 (accessed on 29 August 2021).
- National Cancer Institute (NCI). A Randomized Phase II Trial of Nivolumab, Cabozantinib Plus Nivolumab, and Cabozantinib Plus Nivolumab Plus Ipilimumab in Patients With Previously Treated Non-Squamous NSCLC. Available online: https://clinicaltrials.gov/ct2/show/NCT03468985 (accessed on 29 August 2021).
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd. A Randomized, Double-Blind, Multicenter, Phase III Study of Anlotinib Hydrochloride Capsule Combined With Chemotherapy Versus Placebo Combined With Chemotherapy in Subjects With Squamous Non-Small Cell Lung Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT04439890 (accessed on 31 August 2021).
- Merck Sharp & Dohme Corp. A Phase 3, Randomized, Double-Blind Trial of Pembrolizumab (MK-3475) With or Without Lenvatinib (E7080/MK-7902) in Participants With Treatment-Naïve, Metastatic Non-Small Cell Lung Cancer (NSCLC) Whose Tumors Have a Tumor Proportion Score (TPS) Greater Than or Equal to 1% (LEAP-007). Available online: https://clinicaltrials.gov/ct2/show/NCT03829332 (accessed on 29 August 2021).
- Fujimura, T.; Furugaki, K.; Harada, N.; Yoshimura, Y. Enhanced Antitumor Effect of Alectinib in Combination with Cyclin-Dependent Kinase 4/6 Inhibitor against RET-Fusion–Positive Non–Small Cell Lung Cancer Cells. Cancer Biol. Ther. 2020, 21, 863–870. [Google Scholar] [CrossRef]
- Subbiah, V.; Cascone, T.; Hess, K.R.; Subbiah, I.M.; Nelson, S.; Morikawa, N.; Nilsson, M.B.; Bhatt, T.; Ali, S.; William, W.N.; et al. Multi-Kinase RET Inhibitor Vandetanib Combined with MTOR Inhibitor Everolimus in Patients with RET Rearranged Non-Small Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 9035. [Google Scholar] [CrossRef]
- Solomon, B.J.; Tan, L.; Lin, J.J.; Wong, S.Q.; Hollizeck, S.; Ebata, K.; Tuch, B.B.; Yoda, S.; Gainor, J.F.; Sequist, L.V.; et al. RET Solvent Front Mutations Mediate Acquired Resistance to Selective RET Inhibition in RET-Driven Malignancies. J. Thorac. Oncol. 2020, 15, 541–549. [Google Scholar] [CrossRef][Green Version]
- Lin, J.J.; Liu, S.V.; McCoach, C.E.; Zhu, V.W.; Tan, A.C.; Yoda, S.; Peterson, J.; Do, A.; Prutisto-Chang, K.; Dagogo-Jack, I.; et al. Mechanisms of Resistance to Selective RET Tyrosine Kinase Inhibitors in RET Fusion-Positive Non-Small-Cell Lung Cancer. Ann. Oncol. 2020, 31, 1725–1733. [Google Scholar] [CrossRef]
- Rosen, E.Y.; Johnson, M.L.; Clifford, S.E.; Somwar, R.; Kherani, J.F.; Son, J.; Bertram, A.A.; Davare, M.A.; Gladstone, E.; Ivanova, E.V.; et al. Overcoming MET-Dependent Resistance to Selective RET Inhibition in Patients with RET Fusion–Positive Lung Cancer by Combining Selpercatinib with Crizotinib. Clin. Cancer Res. 2021, 27, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.E.; Zhai, D.; Rogers, E.; Deng, W.; Zhang, X.; Ung, J.; Lee, D.; Rodon, L.; Graber, A.; Zimmerman, Z.F.; et al. The Next-Generation RET Inhibitor TPX-0046 Is Active in Drug-Resistant and Naïve RET-Driven Cancer Models. J. Clin. Oncol. 2020, 38, 3616. [Google Scholar] [CrossRef]
- Choudhury, N.J.; Drilon, A. Decade in Review: A New Era for RET-Rearranged Lung Cancers. Transl. Lung Cancer Res. 2020, 9, 2571–2580. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cascetta, P.; Sforza, V.; Manzo, A.; Carillio, G.; Palumbo, G.; Esposito, G.; Montanino, A.; Costanzo, R.; Sandomenico, C.; De Cecio, R.; et al. RET Inhibitors in Non-Small-Cell Lung Cancer. Cancers 2021, 13, 4415. https://doi.org/10.3390/cancers13174415
Cascetta P, Sforza V, Manzo A, Carillio G, Palumbo G, Esposito G, Montanino A, Costanzo R, Sandomenico C, De Cecio R, et al. RET Inhibitors in Non-Small-Cell Lung Cancer. Cancers. 2021; 13(17):4415. https://doi.org/10.3390/cancers13174415
Chicago/Turabian StyleCascetta, Priscilla, Vincenzo Sforza, Anna Manzo, Guido Carillio, Giuliano Palumbo, Giovanna Esposito, Agnese Montanino, Raffaele Costanzo, Claudia Sandomenico, Rossella De Cecio, and et al. 2021. "RET Inhibitors in Non-Small-Cell Lung Cancer" Cancers 13, no. 17: 4415. https://doi.org/10.3390/cancers13174415