Immunotherapy in Non-Small Cell Lung Cancer Patients with Brain Metastases: Clinical Challenges and Future Directions
Abstract
:Simple Summary
Abstract
1. Introduction
2. BM Inflammatory Microenvironment and Rationale for ICI-Based Treatment
3. Safety and Efficacy of ICIs in Patients with NSCLC BMs
3.1. Untreated BMs
3.1.1. ICI Monotherapy
3.1.2. Concurrent ICI and RT
3.2. Pretreated BMs
3.2.1. ICI Monotherapy
3.2.2. ICIs Combined with Chemotherapy
3.2.3. Dual ICI Therapy
4. Current Clinical Challenges
4.1. New Untreated (Systemic Therapy Naïve) BMs
4.1.1. Small Asymptomatic BMs
4.1.2. Large or Symptomatic BMs
4.2. Treated BMs
4.3. New BMs in Patients Receiving ICIs
5. Special Considerations in the Treatment of BM with ICIs
5.1. Timing of ICI with RT
5.2. Risk of Radiation Necrosis with ICI and RT
5.3. Leptomeningeal Disease
5.4. Pseudoprogression
5.5. CNS Toxicities with ICI Therapy for BMs
5.6. Future Risk of New CNS BM Development
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cagney, D.N.; Martin, A.M.; Catalano, P.J.; Redig, A.J.; Lin, N.U.; Lee, E.Q.; Wen, P.Y.; Dunn, I.F.; Bi, W.L.; Weiss, S.E.; et al. Incidence and Prognosis of Patients with Brain Metastases at Diagnosis of Systemic Malignancy: A Population-Based Study. Neuro-Oncology 2017, 19, 1511–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, D.-Y.; Na, I.I.; Kim, C.H.; Park, S.; Baek, H.; Yang, S.H. EGFR Mutation and Brain Metastasis in Pulmonary Adenocarcinomas. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2014, 9, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Zhang, I.; Zaorsky, N.G.; Palmer, J.D.; Mehra, R.; Lu, B. Targeting Brain Metastases in ALK-Rearranged Non-Small-Cell Lung Cancer. Lancet Oncol. 2015, 16, e510–521. [Google Scholar] [CrossRef]
- Peters, S.; Bexelius, C.; Munk, V.; Leighl, N. The Impact of Brain Metastasis on Quality of Life, Resource Utilization and Survival in Patients with Non-Small-Cell Lung Cancer. Cancer Treat. Rev. 2016, 45, 139–162. [Google Scholar] [CrossRef] [PubMed]
- El Rassy, E.; Botticella, A.; Kattan, J.; Le Péchoux, C.; Besse, B.; Hendriks, L. Non-Small Cell Lung Cancer Brain Metastases and the Immune System: From Brain Metastases Development to Treatment. Cancer Treat. Rev. 2018, 68, 69–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parvez, K.; Parvez, A.; Zadeh, G. The Diagnosis and Treatment of Pseudoprogression, Radiation Necrosis and Brain Tumor Recurrence. Int. J. Mol. Sci. 2014, 15, 11832–11846. [Google Scholar] [CrossRef] [Green Version]
- Kurman, J.S.; Murgu, S.D. Hyperprogressive Disease in Patients with Non-Small Cell Lung Cancer on Immunotherapy. J. Thorac. Dis. 2018, 10, 1124–1128. [Google Scholar] [CrossRef] [Green Version]
- Quail, D.F.; Joyce, J.A. The Microenvironmental Landscape of Brain Tumors. Cancer Cell 2017, 31, 326–341. [Google Scholar] [CrossRef] [Green Version]
- Berghoff, A.S.; Venur, V.A.; Preusser, M.; Ahluwalia, M.S. Immune Checkpoint Inhibitors in Brain Metastases: From Biology to Treatment. Am. Soc. Clin. Oncol. Educ. Book 2016, e116–e122. [Google Scholar] [CrossRef]
- Fridman, W.H.; Pagès, F.; Sautès-Fridman, C.; Galon, J. The Immune Contexture in Human Tumours: Impact on Clinical Outcome. Nat. Rev. Cancer 2012, 12, 298–306. [Google Scholar] [CrossRef]
- Berghoff, A.S.; Lassmann, H.; Preusser, M.; Höftberger, R. Characterization of the Inflammatory Response to Solid Cancer Metastases in the Human Brain. Clin. Exp. Metastasis 2013, 30, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Berghoff, A.S.; Inan, C.; Ricken, G.; Widhalm, G.; Dieckmann, K.; Birner, P.; Oberndorfer, F.; Dome, B.; Bartsch, R.; Zielinski, C.; et al. 1324P - Tumor-Infiltrating Lymphocytes (Tils) and Pd-L1 Expression in Non- Small Cell Lung Cancer Brain Metastases (Bm) and Matched Primary Tumors (Pt). Ann. Oncol. 2014, 25, iv465. [Google Scholar] [CrossRef]
- Berghoff, A.S.; Fuchs, E.; Ricken, G.; Mlecnik, B.; Bindea, G.; Spanberger, T.; Hackl, M.; Widhalm, G.; Dieckmann, K.; Prayer, D.; et al. Density of Tumor-Infiltrating Lymphocytes Correlates with Extent of Brain Edema and Overall Survival Time in Patients with Brain Metastases. Oncoimmunology 2016, 5, e1057388. [Google Scholar] [CrossRef]
- Portnow, J.; Wang, D.; Blanchard, M.S.; Tran, V.; Alizadeh, D.; Starr, R.; Dodia, R.; Chiu, V.; Brito, A.; Kilpatrick, J.; et al. Systemic Anti-PD-1 Immunotherapy Results in PD-1 Blockade on T Cells in the Cerebrospinal Fluid. JAMA Oncol. 2020, 6, 1947–1951. [Google Scholar] [CrossRef]
- Louveau, A.; Smirnov, I.; Keyes, T.J.; Eccles, J.D.; Rouhani, S.J.; Peske, J.D.; Derecki, N.C.; Castle, D.; Mandell, J.W.; Kevin, S.L.; et al. Structural and Functional Features of Central Nervous System Lymphatics. Nature 2015, 523, 337–341. [Google Scholar] [CrossRef]
- Engelhardt, B.; Vajkoczy, P.; Weller, R.O. The Movers and Shapers in Immune Privilege of the CNS. Nat. Immunol. 2017, 18, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.D.; Rizvi, N.A.; Goldman, J.W.; Gettinger, S.N.; Borghaei, H.; Brahmer, J.R.; Ready, N.E.; Gerber, D.E.; Chow, L.Q.; Juergens, R.A.; et al. Nivolumab plus Ipilimumab as First-Line Treatment for Advanced Non-Small-Cell Lung Cancer (CheckMate 012): Results of an Open-Label, Phase 1, Multicohort Study. Lancet Oncol. 2017, 18, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, S.B.; Schalper, K.A.; Gettinger, S.N.; Mahajan, A.; Herbst, R.S.; Chiang, A.C.; Lilenbaum, R.; Wilson, F.H.; Omay, S.B.; Yu, J.B.; et al. Pembrolizumab for Management of Patients with NSCLC and Brain Metastases: Long-Term Results and Biomarker Analysis from a Non-Randomised, Open-Label, Phase 2 Trial. Lancet Oncol. 2020, 21, 655–663. [Google Scholar] [CrossRef]
- Crinò, L.; Bronte, G.; Bidoli, P.; Cravero, P.; Minenza, E.; Cortesi, E.; Garassino, M.C.; Proto, C.; Cappuzzo, F.; Grossi, F.; et al. Nivolumab and Brain Metastases in Patients with Advanced Non-Squamous Non-Small Cell Lung Cancer. Lung Cancer 2019, 129, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Molinier, O.; Audigier-Valette, C.; Cadranel, J.; Monnet, I.; Hureaux, J.; Hilgers, W.; Fauchon, E.; Fabre, E.; Besse, B.; Brun, P.; et al. OA 17.05 IFCT-1502 CLINIVO: Real-Life Experience with Nivolumab in 600 Patients (Pts) with Advanced Non-Small Cell Lung Cancer (NSCLC). J. Thorac. Oncol. 2017, 12, S1793. [Google Scholar] [CrossRef] [Green Version]
- Cortinovis, D.; Chiari, R.; Catino, A.; Grossi, F.; DE Marinis, F.; Sperandi, F.; Piantedosi, F.; Vitali, M.; Parra, H.J.S.; Migliorino, M.R.; et al. Italian Cohort of the Nivolumab EAP in Squamous NSCLC: Efficacy and Safety in Patients With CNS Metastases. Anticancer Res. 2019, 39, 4265–4271. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, A.S.; Herbst, R.S.; Castro, G.; Hui, R.; Peled, N.; Kim, D.-W.; Novello, S.; Satouchi, M.; Wu, Y.-L.; Garon, E.B.; et al. 1482O - Outcomes with Pembrolizumab (Pembro) Monotherapy in Patients (Pts) with PD-L1–Positive NSCLC with Brain Metastases: Pooled Analysis of KEYNOTE-001, -010, -024, and -042. Ann. Oncol. 2019, 30, v604–v606. [Google Scholar] [CrossRef]
- Powell, S.F.; Abreu, D.R.; Langer, C.J.; Tafreshi, A.; Paz-Ares, L.; Kopp, H.-G.; Rodríguez-Cid, J.; Kowalski, D.; Cheng, Y.; Kurata, T.; et al. 1483PD - Pembrolizumab (Pembro) plus Platinum-Based Chemotherapy (Chemo) in NSCLC with Brain Metastases: Pooled Analysis of KEYNOTE-021, 189, and 407. Ann. Oncol. 2019, 30, v606–v607. [Google Scholar] [CrossRef]
- Goldman, J.W.; Crino, L.; Vokes, E.E.; Holgado, E.; Reckamp, K.; Pluzanski, A.; Spigel, D.; Kohlhaeufl, M.; Garassino, M.; Chow, L.Q.; et al. P2.36: Nivolumab (Nivo) in Patients (Pts) With Advanced (Adv) NSCLC and Central Nervous System (CNS) Metastases (Mets): Track: Immunotherapy. J. Thorac. Oncol. 2016, 11, S238–S239. [Google Scholar] [CrossRef] [Green Version]
- Lukas, R.V.; Gandhi, M.; O’Hear, C.; Hu, S.; Lai, C.; Patel, J.D. 81O - Safety and Efficacy Analyses of Atezolizumab in Advanced Non-Small Cell Lung Cancer (NSCLC) Patients with or without Baseline Brain Metastases. Ann. Oncol. 2017, 28, ii28. [Google Scholar] [CrossRef] [Green Version]
- Gadgeel, S.M.; Lukas, R.V.; Goldschmidt, J.; Conkling, P.; Park, K.; Cortinovis, D.; de Marinis, F.; Rittmeyer, A.; Patel, J.D.; von Pawel, J.; et al. Atezolizumab in Patients with Advanced Non-Small Cell Lung Cancer and History of Asymptomatic, Treated Brain Metastases: Exploratory Analyses of the Phase III OAK Study. Lung Cancer 2019, 128, 105–112. [Google Scholar] [CrossRef]
- Borghaei, H.; Pluzanski, A.; Caro, R.B.; Provencio, M.; Burgers, S.; Carcereny, E.; Park, K.; Alexandru, A.; Lupinacci, L.; Sangha, R.; et al. Nivolumab (Nivo) + Ipilimumab (Ipi) as First-Line (1L) Treatment for Patients with Advanced Non-Small Cell Lung Cancer (NSCLC) with Brain Metastases: Results from the CheckMate 227. Presented at the AACR Virtual Annual Meeting II, Philadelphia, PA, USA, 22–24 June 2020. [Google Scholar]
- Hendriks, L.E.L.; Henon, C.; Auclin, E.; Mezquita, L.; Ferrara, R.; Audigier-Valette, C.; Mazieres, J.; Lefebvre, C.; Rabeau, A.; Le Moulec, S.; et al. Outcome of Patients with Non-Small Cell Lung Cancer and Brain Metastases Treated with Checkpoint Inhibitors. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2019, 14, 1244–1254. [Google Scholar] [CrossRef]
- Gauvain, C.; Vauléon, E.; Chouaid, C.; Le Rhun, E.; Jabot, L.; Scherpereel, A.; Vinas, F.; Cortot, A.B.; Monnet, I. Intracerebral Efficacy and Tolerance of Nivolumab in Non-Small-Cell Lung Cancer Patients with Brain Metastases. Lung Cancer Amst. Neth. 2018, 116, 62–66. [Google Scholar] [CrossRef]
- Watanabe, H.; Kubo, T.; Ninomiya, T.; Ohashi, K.; Ichihara, E.; Sato, A.; Hotta, K.; Tabata, M.; Kiura, K. The Effect of Nivolumab Treatment for Central Nervous System Metastases in Non-Small Cell Lung Cancer. J. Clin. Oncol. 2017, 35, e20601. [Google Scholar] [CrossRef]
- Dudnik, E.; Yust-Katz, S.; Nechushtan, H.; Goldstein, D.A.; Zer, A.; Flex, D.; Siegal, T.; Peled, N. Intracranial Response to Nivolumab in NSCLC Patients with Untreated or Progressing CNS Metastases. Lung Cancer 2016, 98, 114–117. [Google Scholar] [CrossRef]
- Bjørnhart, B.; Hansen, K.H.; Jørgensen, T.L.; Herrstedt, J.; Schytte, T. Efficacy and Safety of Immune Checkpoint Inhibitors in a Danish Real Life Non-Small Cell Lung Cancer Population: A Retrospective Cohort Study. Acta Oncol. 2019, 58, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Dumenil, C.; Massiani, M.-A.; Dumoulin, J.; Giraud, V.; Labrune, S.; Chinet, T.; Leprieur, E.G. Clinical Factors Associated with Early Progression and Grade 3–4 Toxicity in Patients with Advanced Non-Small-Cell Lung Cancers Treated with Nivolumab. PLOS ONE 2018, 13, e0195945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garde-Noguera, J.; Martin-Martorell, P.; De Julián, M.; Perez-Altozano, J.; Salvador-Coloma, C.; García-Sanchez, J.; Insa-Molla, A.; Martín, M.; Mielgo-Rubio, X.; Marin-Liebana, S.; et al. Predictive and Prognostic Clinical and Pathological Factors of Nivolumab Efficacy in Non-Small-Cell Lung Cancer Patients. Clin. Transl. Oncol. 2018, 20, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Davis, C.; Marmarelis, M.E.; Jeffries, S.; Sulyok, L.F.; Hwang, W.-T.; Singh, A.P.; Berman, A.T.; Feigenberg, S.J.; Levin, W.C.; et al. Outcomes in Patients with Metastatic Non-Small Cell Lung Cancer (MNSCLC) with Brain Metastases Treated with Pembrolizumab-Based Therapy. J. Clin. Oncol. 2020, 38, 9599. [Google Scholar] [CrossRef]
- Lin, N.U.; Lee, E.Q.; Aoyama, H.; Barani, I.J.; Barboriak, D.P.; Baumert, B.G.; Bendszus, M.; Brown, P.D.; Camidge, D.R.; Chang, S.M.; et al. Response Assessment Criteria for Brain Metastases: Proposal from the RANO Group. Lancet Oncol. 2015, 16, e270–e278. [Google Scholar] [CrossRef]
- Twyman-Saint Victor, C.; Rech, A.J.; Maity, A.; Rengan, R.; Pauken, K.E.; Stelekati, E.; Benci, J.L.; Xu, B.; Dada, H.; Odorizzi, P.M.; et al. Radiation and Dual Checkpoint Blockade Activate Non-Redundant Immune Mechanisms in Cancer. Nature 2015, 520, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Ngwa, W.; Irabor, O.C.; Schoenfeld, J.D.; Hesser, J.; Demaria, S.; Formenti, S.C. Using Immunotherapy to Boost the Abscopal Effect. Nat. Rev. Cancer 2018, 18, 313–322. [Google Scholar] [CrossRef]
- Demaria, S.; Golden, E.B.; Formenti, S.C. Role of Local Radiation Therapy in Cancer Immunotherapy. JAMA Oncol. 2015, 1, 1325–1332. [Google Scholar] [CrossRef]
- Dovedi, S.J.; Adlard, A.L.; Lipowska-Bhalla, G.; McKenna, C.; Jones, S.; Cheadle, E.J.; Stratford, I.J.; Poon, E.; Morrow, M.; Stewart, R.; et al. Acquired Resistance to Fractionated Radiotherapy Can Be Overcome by Concurrent PD-L1 Blockade. Cancer Res. 2014, 74, 5458–5468. [Google Scholar] [CrossRef] [Green Version]
- Petrelli, F.; De Stefani, A.; Trevisan, F.; Parati, C.; Inno, A.; Merelli, B.; Ghidini, M.; Bruschieri, L.; Vitali, E.; Cabiddu, M.; et al. Combination of Radiotherapy and Immunotherapy for Brain Metastases: A Systematic Review and Meta-Analysis. Crit. Rev. Oncol. Hematol. 2019, 144, 102830. [Google Scholar] [CrossRef]
- Lehrer, E.J.; Peterson, J.; Brown, P.D.; Sheehan, J.P.; Quiñones-Hinojosa, A.; Zaorsky, N.G.; Trifiletti, D.M. Treatment of Brain Metastases with Stereotactic Radiosurgery and Immune Checkpoint Inhibitors: An International Meta-Analysis of Individual Patient Data. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2019, 130, 104–112. [Google Scholar] [CrossRef]
- Ahmed, K.A.; Kim, S.; Arrington, J.; Naghavi, A.O.; Dilling, T.J.; Creelan, B.C.; Antonia, S.J.; Caudell, J.J.; Harrison, L.B.; Sahebjam, S.; et al. Outcomes Targeting the PD-1/PD-L1 Axis in Conjunction with Stereotactic Radiation for Patients with Non-Small Cell Lung Cancer Brain Metastases. J. Neurooncol. 2017, 133, 331–338. [Google Scholar] [CrossRef]
- Goldberg, S.B.; Herbst, R.S. Should Chemotherapy plus Immune Checkpoint Inhibition Be the Standard Front-Line Therapy for Patients with Metastatic Non-Small Cell Lung Cancer? Cancer 2018, 124, 4592–4596. [Google Scholar] [CrossRef] [Green Version]
- Afzal, M.Z.; Dragnev, K.; Shirai, K. A Tertiary Care Cancer Center Experience with Carboplatin and Pemetrexed in Combination with Pembrolizumab in Comparison with Carboplatin and Pemetrexed Alone in Non-Squamous Non-Small Cell Lung Cancer. J. Thorac. Dis. 2018, 10. [Google Scholar] [CrossRef]
- Verhaak, E.; Gehring, K.; Hanssens, P.E.J.; Aaronson, N.K.; Sitskoorn, M.M. Health-Related Quality of Life in Adult Patients with Brain Metastases after Stereotactic Radiosurgery: A Systematic, Narrative Review. Support. Care Cancer 2020, 28, 473–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moravan, M.J.; Fecci, P.E.; Anders, C.K.; Clarke, J.M.; Salama, A.K.S.; Adamson, J.D.; Floyd, S.R.; Torok, J.A.; Salama, J.K.; Sampson, J.H.; et al. Current Multidisciplinary Management of Brain Metastases. Cancer 2020, 126, 1390–1406. [Google Scholar] [CrossRef] [PubMed]
- Arbour, K.C.; Mezquita, L.; Long, N.; Rizvi, H.; Auclin, E.; Ni, A.; Martínez-Bernal, G.; Ferrara, R.; Lai, W.V.; Hendriks, L.E.L.; et al. Impact of Baseline Steroids on Efficacy of Programmed Cell Death-1 and Programmed Death-Ligand 1 Blockade in Patients With Non-Small-Cell Lung Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 2872–2878. [Google Scholar] [CrossRef] [PubMed]
- Hubbeling, H.G.; Schapira, E.F.; Horick, N.K.; Goodwin, K.E.H.; Lin, J.J.; Oh, K.S.; Shaw, A.T.; Mehan, W.A.; Shih, H.A.; Gainor, J.F. Safety of Combined PD-1 Pathway Inhibition and Intracranial Radiation Therapy in Non-Small Cell Lung Cancer. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2018, 13, 550–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Rhun, E.; Dhermain, F.; Vogin, G.; Reyns, N.; Metellus, P. Radionecrosis after Stereotactic Radiotherapy for Brain Metastases. Expert Rev. Neurother. 2016, 16, 903–914. [Google Scholar] [CrossRef]
- Ruben, J.D.; Dally, M.; Bailey, M.; Smith, R.; McLean, C.A.; Fedele, P. Cerebral Radiation Necrosis: Incidence, Outcomes, and Risk Factors with Emphasis on Radiation Parameters and Chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 499–508. [Google Scholar] [CrossRef]
- Chao, S.T.; Ahluwalia, M.S.; Barnett, G.H.; Stevens, G.H.J.; Murphy, E.S.; Stockham, A.L.; Shiue, K.; Suh, J.H. Challenges with the Diagnosis and Treatment of Cerebral Radiation Necrosis. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 449–457. [Google Scholar] [CrossRef]
- Colaco, R.J.; Martin, P.; Kluger, H.M.; Yu, J.B.; Chiang, V.L. Does Immunotherapy Increase the Rate of Radiation Necrosis after Radiosurgical Treatment of Brain Metastases? J. Neurosurg. 2016, 125, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Petrelli, F.; Signorelli, D.; Ghidini, M.; Ghidini, A.; Pizzutilo, E.G.; Ruggieri, L.; Cabiddu, M.; Borgonovo, K.; Dognini, G.; Brighenti, M.; et al. Association of Steroids Use with Survival in Patients Treated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Cancers 2020, 12, 546. [Google Scholar] [CrossRef] [Green Version]
- Glitza, I.C.; Guha-Thakurta, N.; D’Souza, N.M.; Amaria, R.N.; McGovern, S.L.; Rao, G.; Li, J. Bevacizumab as an Effective Treatment for Radiation Necrosis after Radiotherapy for Melanoma Brain Metastases. Melanoma Res. 2017, 27, 580–584. [Google Scholar] [CrossRef]
- McPherson, C.M.; Warnick, R.E. Results of Contemporary Surgical Management of Radiation Necrosis Using Frameless Stereotaxis and Intraoperative Magnetic Resonance Imaging. J. Neurooncol. 2004, 68, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Borcoman, E.; Nandikolla, A.; Long, G.; Goel, S.; Le Tourneau, C. Patterns of Response and Progression to Immunotherapy. Am. Soc. Clin. Oncol. Educ. Book 2018, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Melian, M.; Lorente, D.; Aparici, F.; Juan, O. Lung Brain Metastasis Pseudoprogression after Nivolumab and Ipilimumab Combination Treatment. Thorac. Cancer 2018, 9, 1770–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, T.T.; Jilaveanu, L.B.; Omuro, A.; Chiang, V.L.; Huttner, A.; Kluger, H.M. Complications Associated with Immunotherapy for Brain Metastases. Curr. Opin. Neurol. 2019, 32, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Cappuzzo, F.; Reck, M.; Socinski, M.A.; Mok, T.S.K.; Jotte, R.M.; Finley, G.G.; Rodriguez-Abreu, D.; Aerts, J.; West, H.; Nishio, M.; et al. IMpower150: Exploratory Analysis of Brain Metastases Development. J. Clin. Oncol. 2020, 38, 9587. [Google Scholar] [CrossRef]
- Kim, S.; Koh, J.; Kwon, D.; Keam, B.; Go, H.; Kim, Y.A.; Jeon, Y.K.; Chung, D.H. Comparative Analysis of PD-L1 Expression between Primary and Metastatic Pulmonary Adenocarcinomas. Eur. J. Cancer 2017, 75, 141–149. [Google Scholar] [CrossRef]
Author, Year | Trial | Phase | LOT | N | Histology | PD-L1 | CNS Disease | ICI Arm | Comparator Arm, If Present | F/u | CNS ORR | Median CNS PFS | Extracranial ORR | DOR | Median PFS (mo) or PFS HR | Median OS (mo) or OS HR | Notes | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mansfield, 2019 [22] | Pooled Analysis of KEYNOTE-001, −010, −024, and −042 | Ib to III | ≥1 | 293/3170 | Squamous + non-squamous | PD-L1 TPS ≥1% | Treated and stable | Pembro | Chemo | 18.4 | - | - | 26.1% (20.2–32.8) vs. 25.8% (23.7–27.9) | NR (IQR 3.3 to 46.2+) vs. 30.4 (IQR 1.4+ to 49.3+) | 0.96 (0.73–1.25) vs. 0.91 (0.84–0.99) | 13.4 vs. 10.3; 0.83 (0.62–1.10) [vs. 14.8 vs. 11.3; 0.78 (0.71–0.85)] | TRAEs occurred similarly with pembro vs. chemo both in pts with BM (66% vs. 84%) and without (67% vs. 88%) | |
Goldberg, 2020 [18] | NCT02085070 | II | ≥1 | 42 | Squamous + non-squamous | PD-L1 TPS ≥1% (n = 37) or 0% (n = 5) | Untreated and asymptomatic (5 mm to 20 mm) | Pembro | - | 8.3 | 29.7% (15.9–47.0) | 2.3 (1.9-not reached) | - | 6.9 (IQR 3.7–22.4) | 1.9 (1.8–3.7) | 9.9 (7.5–29.8) | 6/27 patients had discordant response. | |
Goldman, 2016 [24] | Pooled Analysis of Checkmate 063, 017 and 057 | II to III | ≥2 | 46 | Squamous + non-squamous | NA | Treated and stable | Nivo | Docetaxel | 8.4 | - | - | - | - | - | Checkmate 017: 4.99 vs. 3.86 (nivo vs. docetaxel) (HR not reported); Checkmate 057: 7.61 vs. 7.33; 1.04 (0.62–1.76) | CNS TRAEs occurred in 5 pts (11%) and were all gr 1–2 (paresthesia, n = 2; dizziness, somnolence, and tremor, n = 1 each) | |
Hellman, 2017 [17] | Checkmate 012, Arm M | I | ≥2 | 12 | - | - | Untreated and asymptomatic (≤3 cm and ≤4 in number) | Nivo | - | - | 16.7 (2.1–48.4) | - | - | - | 1.6 (0.92–2.50) | 8.0 (1.38–15.50) | 2 out of 12 patients achieved intracranial responses, including a patient with leptomeningeal disease | |
Lukas, 2017 [25] | Pooled analysis of PCD4989g, BIRCH, FIR, POPLAR, and OAK | I to III | ≥2 | 79/1452 | Squamous + non-squamous | Unselected | Treated and stable | Atezo | Chemo | - | - | - | - | - | - | 20.1 vs. 11.9; 0.54 (0.31–0.94) vs. 13.0 vs. 9.4; 0.75 (0.63–0.89) | Incidence of all AEs and SAEs was similar in pts with or without BMs. The most common treatment + R8-related neurological AE was headache in 6 (8%) pts with and 42 (3%) pts without BM. | |
Gagdeel, 2018 [26] | OAK | III | ≥2 | 123/850 | Squamous + non-squamous | Unselected | Treated and stable | Atezo | Docetaxel | 28 | - | Time to radiographic identification of new symptomatic BM: NR vs. 9.5; 0.38 (0.16–0.91) | - | - | - | 16.0 vs. 11.9; 0.74 (0.49–1.13) [vs. 13.2 vs. 9.3; 0.74 (0.63–0.88)] | No treatment-related grade 4–5 neurologic AEs or SAEs were observed in patients with a history of asymptomatic, treated BM, and there was a low incidence of treatment-related grade 3 neurologic AEs (5%). | |
Hendriks, 2019 [28] | Retrospective study that included patients on routine clinical care, EAPs, compassionate use programs, and clinical trials | 1 | 255/1025 | Squamous + non-squamous | Unselected | Untreated and asymptomatic or treated and stable (stable or decreasing symptoms allowed) | Anti-PD-1 or anti-PD-L1 monotherapy | - | 15.8 | 27.3 (PD-L1 positive patients (n = 14): 35.7%; PD-L1 negative (n = 9): 11.1%) | - | 20.6% vs. 22.7% | - | 1.7 (1.5–2.1) vs. 2.1 (1.9–2.5) (with and without BM) | 8.6 (6.8–12.0) vs. 11.0 (8.6–13.8) | Multivariable analysis showed that steroid use (HR, 2.37) was associated with poorer OS, whereas stable BMs (HR, 0.62) and higher ds-GPA classification (HR, 0.48–0.52) were associated with improved OS. | ||
Crino, 2017 [19] | Retrospective (Italian EAP) | ≥2 | 409/1588 | Non-squamous | - | Asymptomatic | Nivo | - | 6.1 | - | - | - | - | - | - | - | ||
Molinier, 2017 [20] | Retrospective (French EAP) | ≥2 | 130/600 | Squamous + non-squamous | Unselected | NR | Nivo | 12% partial response | 6.6 | 7 patients had all-grade neurological symptoms, 1 (0.1%) grade 3, not specified whether it was BM patient or not. | ||||||||
Gauvain, 2018 [29] | Retrospective | ≥2 | 43/191 | Squamous + non-squamous | unselected | Included all patients whether treated or not, symptomatic or asymptomatic | Nivo | - | 5.8 | 9.0 (3.0–23.0) | 3.9 (2.8–11.1) | 11% (4–26) | - | - | - | Five neurological events occurred, including 1 grade-4 transient ischemic attack of uncertain imputability and 1 grade-3 neurological deficit; neither required nivo discontinuation. | ||
Cortinovis, 2017 [21] | Retrospective (EAP Italy) | ≥2 | 38/372 | Squamous | unselected | Treated and stable | Nivo | - | 4.5 | - | - | - | - | 5.5 | 6.5 | Disease control rate was 47.3%, including 1 complete response, 6 partial responses, and 11 stable diseases. Out of the 38 patients included, only 1 discontinued treatment due to AE (2.6%), whereas 21 pts (55.3%) discontinued treatment for non-toxicity related reasons. | ||
Watanabe, 2017 [30] | Retrospective | ≥2 | 4 out of 48 | - | - | Untreated | Nivo | - | - | - | - | - | - | 1.8 | - | None of the BM patients treated with nivolumab achieved intracranial response. | ||
Dudnik, 2016 [31] | Retrospective | ≥2 | 5 | Squamous + non-squamous | NA | Untreated but asymptomatic | Nivo | - | - | - | - | - | - | - | - | Two intracranial responses were observed, including one complete response of parenchymal brain metastases and one partial response of leptomeningeal carcinomatosis. All of the responses were rapid and durable. Importantly, no grade 3/4 adverse events were seen. Systemic responses and intracranial responses were largely concordant | ||
Bjørnhart, 2019 [32] | Retrospective | - | 21 | - | - | - | Nivo or pembro | - | - | 4.8 | - | - | - | 4.2 (2.5–5.9) | 8.2 (1.0–15.5) | - | ||
Dumenil, 2018 [33] | Retrospective | - | 10 | - | - | Nivo | - | - | - | - | - | - | - | 3.1 | - | |||
Garde-Noguera, 2018 [34] | Retrospective | - | 38 | - | - | Nivo | - | - | - | - | 17.2 | - | 1.6 | 3.1 | - | |||
Sun, 2020 [35] | Retrospective | ≥1 | 66 | Squamous + non-squamous | Treated and stable or received RT within 30 days of starting pembro or untreated | - | - | 15 | - | - | - | - | 9.0 vs. 7.9 (with or without BM) | 18.0 vs. 21.0 (with or without BMs) | 13 treated with pembro alone, intracranial responses included 2 CR, 2 PR, 3 SD, and 4 PD. On multivariable analysis, female sex, ECOG 0–1, adenocarcinoma histology, and P as first line therapy were associated with improved PFS and OS. Presence of BM, baseline steroid use, and timing of local RT (before vs. after P) were not associated with inferior survival |
Clinicaltrials.Gov Identifier | Phase | Disease | Major Inclusion Criteria | Steroids | Intervention | Estimated Enrollment |
---|---|---|---|---|---|---|
NCT02681549 | II | NSCLC and melanoma | At least one untreated BM 5–20 mm, asymptomatic, and not requiring steroids, PD-L1 positive | Steroids not permitted | Pembrolizumab plus bevacizumab | 53 |
NCT02886585 | II | NSCLC and melanoma | Untreated asymptomatic BM or progressive asymptomatic BM measuring ≥10 mm or cytology positive neoplastic meningitis | Stable dose of dexamethasone 2 mg/day or less for 7 days prior to initiation of treatment | Pembrolizumab | 102 |
NCT03526900 | II | NSCLC | Untreated BM, asymptomatic, and ≤4 mg dexamethasone/day | Up to ≤4 mg dexamethasone/day allowed as long as patients are asymptomatic or minimally symptomatic | Atezolizumab plus carboplatin plus pemetrexed, followed by maintenance atezolizumab plus pemetrexed | 40 |
Author, Year | Trial | Phase | LOT | N | Histology | PD-L1 | CNS Disease | ICI Arm | Comparator Arm, If Present | F/u | Extracranial ORR, % | DOR, mo | Median PFS (mo) or HR for PFS | Median OS (mo) or HR for OS | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chemoimmunotherapy | |||||||||||||||
Powell, 2019 [23] | Pooled analysis of KEYNOTE-021, 189, and 407 | II, III | 1 | 171/1298 | Squamous + non-squamous | Unselected | Treated and stable | Pembro + chemo | Chemo | 10.9 | 39 vs. 19.7 [vs. 54.6 vs. 31.8] | 11.3 vs. 6.8 [vs. 12.2 vs. 6.0] | 6.9 vs. 4.1; 0.44 (0.31–0.62) [vs. 8.8 vs. 5.3; 0.55 (0.48–0.63)] | 18.8 vs. 7.6; 0.48 (0.32–0.70) [vs. 22.5 vs. 13.5; 0.63 (0.53–0.75)] | All-cause grade 3–5 AEs with Pembro + chemo vs. chemo alone occurred in 81.4% vs. 70.3% of pts with BM and 68.3% vs. 65.6% without BM. |
Afzal, 2018 [45] | Retrospective | ≥1 | 18/54 | Non-squamous | Unselected | Treated and stable | Pembro + chemo | 30 | 80 | 6.5 | 13.7 | - | |||
Dual ICI | |||||||||||||||
Borghaei, 2020 [27] | Checkmate 227 | III | 1 | 135/1739 | Squamous + non-squamous | Unselected | Treated and stable | Ipi + nivo | Chemo | 29.3 (minimum follow-up) | 33 vs. 26 [vs. 33 vs. 28] | 24.9 (11.3–NR) vs. 8.4 (4.2–13.9) [vs. 19.6 (15.5–28.6) vs. 5.8 (4.8–6.9)] | 5.4 vs. 5.8; 0.79 (0.52–1.19) 4.9 [vs. 5.4; 0.81 (0.70–0.93)] | 18.8 vs. 13.7; 0.57 (0.38–0.85) [vs. 17.1 vs. 13.9; 0.76 (0.66–0.88)] | Any-grade nervous system adverse events were reported in 46% of pts with BM treated with ipi + nivo and 42% of those treated with chemo, most were grade 1–2. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pathak, R.; Amini, A.; Hill, A.; Massarelli, E.; Salgia, R. Immunotherapy in Non-Small Cell Lung Cancer Patients with Brain Metastases: Clinical Challenges and Future Directions. Cancers 2021, 13, 3407. https://doi.org/10.3390/cancers13143407
Pathak R, Amini A, Hill A, Massarelli E, Salgia R. Immunotherapy in Non-Small Cell Lung Cancer Patients with Brain Metastases: Clinical Challenges and Future Directions. Cancers. 2021; 13(14):3407. https://doi.org/10.3390/cancers13143407
Chicago/Turabian StylePathak, Ranjan, Arya Amini, Addie Hill, Erminia Massarelli, and Ravi Salgia. 2021. "Immunotherapy in Non-Small Cell Lung Cancer Patients with Brain Metastases: Clinical Challenges and Future Directions" Cancers 13, no. 14: 3407. https://doi.org/10.3390/cancers13143407