Comprehensive Profiling of Hypoxia-Related miRNAs Identifies miR-23a-3p Overexpression as a Marker of Platinum Resistance and Poor Prognosis in High-Grade Serous Ovarian Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection of Candidate Hypoxia-Related miRNAs
2.2. Patient Sample Cohorts
2.3. Tissue Sample Collection and RNA Extraction
2.4. miRNA and Gene Expression Profiles
2.5. Validation by RT-qPCR
2.6. miRNA Normalization Strategy
2.7. Cell Line Transfection and Apoptotic Cell Death Detection
2.8. Statistical Analysis
2.8.1. Pre-Processing and Differential Expression Analysis
2.8.2. RT-qPCR Data and Equivalence Analysis
2.8.3. Survival Analysis
2.8.4. Over-Representation Analysis
3. Results
3.1. Patient Cohort Description
3.2. Selection of Hypoxia-Related miRNAs
3.3. Evaluation of HRMs in HGSOC Datasets
3.4. Validation of miR-23a-3p and miR-181c-5p Expression by RT-qPCR
3.5. miR-23a-3p Expression in Ovarian Carcinoma Stem-Like Cells
3.6. In Silico miR-23a-3p Target Prediction and Comparative Pathway Analysis
3.7. The miR-23a-3p/APAF1 Axis and Carboplatin Sensitivity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Bowtell, D.D.; Böhm, S.; Ahmed, A.A.; Aspuria, P.-J.; Bast, R.C.; Beral, V.; Berek, J.S.; Birrer, M.J.; Blagden, S.; Bookman, M.A.; et al. Rethinking ovarian cancer II: Reducing mortality from high-grade serous ovarian cancer. Nat. Rev. Cancer 2015, 15, 668–679. [Google Scholar] [CrossRef]
- Eales, K.L.; Hollinshead, K.E.; Tennant, D.A. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis 2016, 5, e190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Raposo, C.; Mendiola, M.; Barriuso, J.; Casado, E.; Hardisson, D.; Redondo, A. Angiogenesis and ovarian cancer. Clin. Transl. Oncol. 2009, 11, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Paolicchi, E.; Gemignani, F.; Krstic-Demonacos, M.; Dedhar, S.; Mutti, L.; Landi, S. Targeting hypoxic response for cancer therapy. Oncotarget 2016, 7, 13464–13478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.J.; Armaiz Pena, G.N.; Pradeep, S.; Cho, M.S.; Coleman, R.L.; Sood, A.K. Anti-vascular therapies in ovarian cancer: Moving beyond anti-VEGF approaches. Cancer Metastasis Rev. 2015, 34, 19–40. [Google Scholar] [CrossRef] [Green Version]
- Sennino, B.; McDonald, D.M. Controlling escape from angiogenesis inhibitors. Nat. Rev. Cancer 2012, 12, 699–709. [Google Scholar] [CrossRef]
- Aghajanian, C.; Blank, S.V.; Goff, B.A.; Judson, P.L.; Teneriello, M.G.; Husain, A.; Sovak, M.A.; Yi, J.; Nycum, L.R. OCEANS: A Randomized, Double-Blind, Placebo-Controlled Phase III Trial of Chemotherapy With or Without Bevacizumab in Patients With Platinum-Sensitive Recurrent Epithelial Ovarian, Primary Peritoneal, or Fallopian Tube Cancer. J. Clin. Oncol. 2012, 30, 2039–2045. [Google Scholar] [CrossRef] [Green Version]
- Kulshreshtha, R.; Ferracin, M.; Wojcik, S.E.; Garzon, R.; Alder, H.; Agosto-Perez, F.J.; Davuluri, R.; Liu, C.-G.; Croce, C.M.; Negrini, M.; et al. A MicroRNA Signature of Hypoxia. Mol. Cell. Biol. 2007, 27, 1859–1867. [Google Scholar] [CrossRef] [Green Version]
- Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [Google Scholar] [CrossRef]
- Giannakakis, A.; Sandaltzopoulos, R.; Greshock, J.; Liang, S.; Huang, J.; Hasegawa, K.; Li, C.; O’Brien-Jenkins, A.; Katsaros, D.; Weber, B.L.; et al. miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol. Ther. 2008, 7, 255–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polytarchou, C.; Iliopoulos, D.; Hatziapostolou, M.; Kottakis, F.; Maroulakou, I.; Struhl, K.; Tsichlis, P.N. Akt2 Regulates All Akt Isoforms and Promotes Resistance to Hypoxia through Induction of miR-21 upon Oxygen Deprivation. Cancer Res. 2011, 71, 4720–4731. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Liu, L.-Z.; Qian, X.; Chen, Q.; Jiang, Y.; Li, D.; Lai, L.; Jiang, B.-H. MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucleic Acids Res. 2011, 40, 761–774. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Jing, Y.; Li, W.; Qian, X.; Xu, Q.; Li, F.-S.; Liu, L.-Z.; Jiang, B.-H.; Jiang, Y. Roles and Mechanism of miR-199a and miR-125b in Tumor Angiogenesis. PLoS ONE 2013, 8, e56647. [Google Scholar]
- Yeh, Y.-M.; Chuang, C.-M.; Chao, K.-C.; Wang, L.-H. MicroRNA-138 suppresses ovarian cancer cell invasion and metastasis by targeting SOX4 and HIF-1α. Int. J. Cancer 2013, 133, 867–878. [Google Scholar] [CrossRef]
- Joshi, H.P.; Subramanian, I.V.; Schnettler, E.K.; Ghosh, G.; Rupaimoole, R.; Evans, C.; Saluja, M.; Jing, Y.; Cristina, I.; Roy, S.; et al. Dynamin 2 along with microRNA-199a reciprocally regulate hypoxia-inducible factors and ovarian cancer metastasis. Proc. Natl. Acad. Sci. USA 2014, 111, 5331–5336. [Google Scholar] [CrossRef] [Green Version]
- Kinose, Y.; Sawada, K.; Nakamura, K.; Sawada, I.; Toda, A.; Nakatsuka, E.; Hashimoto, K.; Mabuchi, S.; Takahashi, K.; Kurachi, H.; et al. The hypoxia-related microRNA miR-199a-3p displays tumor suppressor functions in ovarian carcinoma. Oncotarget 2015, 6, 11342–11356. [Google Scholar] [CrossRef] [Green Version]
- Rupaimoole, R.; Ivan, C.; Yang, D.; Gharpure, K.M.; Wu, S.Y.; Pecot, C.V.; Previs, R.A.; Nagaraja, A.; Armaiz-Pena, G.N.; McGuire, M.; et al. Hypoxia-upregulated microRNA-630 targets Dicer, leading to increased tumor progression. Oncogene 2016, 35, 4312–4320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfisterer, J.; Ledermann, J.A. Management of Platinum-Sensitive Recurrent Ovarian Cancer. Semin. Oncol. 2006, 33, 12–16. [Google Scholar] [CrossRef]
- Todeschini, P.; Salviato, E.; Paracchini, L.; Ferracin, M.; Petrillo, M.; Zanotti, L.; Tognon, G.; Gambino, A.; Calura, E.; Caratti, G.; et al. Circulating miRNA landscape identifies miR-1246 as promising diagnostic biomarker in high-grade serous ovarian carcinoma: A validation across two independent cohorts. Cancer Lett. 2017, 388, 320–327. [Google Scholar] [CrossRef]
- Benvenuto, G.; Todeschini, P.; Paracchini, L.; Calura, E.; Fruscio, R.; Romani, C.; Beltrame, L.; Martini, P.; Ravaggi, A.; Ceppi, L.; et al. Expression profiles of PRKG1, SDF2L1 and PPP1R12A are predictive and prognostic factors for therapy response and survival in high-grade serous ovarian cancer. Int. J. Cancer 2020, 147, 565–574. [Google Scholar] [CrossRef]
- Bignotti, E.; Calza, S.; Tassi, R.A.; Zanotti, L.; Bandiera, E.; Sartori, E.; Odicino, F.E.; Ravaggi, A.; Todeschini, P.; Romani, C. Identification of stably expressed reference small non-coding RNA s for micro RNA quantification in high-grade serous ovarian carcinoma tissues. J. Cell. Mol. Med. 2016, 20, 2341–2348. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, H.; Silva, A.M.; Calin, G.; Pantel, K. Data Normalization Strategies for MicroRNA Quantification. Clin. Chem. 2015, 61, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritchie, M.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Zanotti, L.; Romani, C.; Tassone, L.; Todeschini, P.; Tassi, R.A.; Bandiera, E.; Damia, G.; Ricci, F.; Ardighieri, L.; Calza, S.; et al. MAL gene overexpression as a marker of high-grade serous ovarian carcinoma stem-like cells that predicts chemoresistance and poor prognosis. BMC Cancer 2017, 17, 366. [Google Scholar] [CrossRef] [Green Version]
- Hauck, W.W.; Anderson, S. A new statistical procedure for testing equivalence in two-group comparative bioavailability trials. J. Pharmacokinet. Biopharm. 1984, 12, 83–91. [Google Scholar] [CrossRef]
- Wellek, S. Testing Statistical Hypotheses of Equivalence and Noninferiority; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Paraskevopoulou, M.D.; Georgakilas, G.; Kostoulas, N.; Vlachos, I.; Vergoulis, T.; Reczko, M.; Filippidis, C.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-microT web server v5.0: Service integration into miRNA functional analysis workflows. Nucleic Acids Res. 2013, 41, W169–W173. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, V.; Bell, G.W.; Nam, J.-W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015, 4, e05005. [Google Scholar] [CrossRef]
- Backes, C.; Keller, A.; Kuentzer, J.; Kneissl, B.; Comtesse, N.; Elnakady, Y.A.; Muller, R.; Meese, E.; Lenhof, H.-P. GeneTrail--advanced gene set enrichment analysis. Nucleic Acids Res. 2007, 35, W186–W192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sales, G.; Calura, E.; Cavalieri, D.; Romualdi, C. Graphite—A Bioconductor package to convert pathway topology to gene network. BMC Bioinform. 2012, 13, 20. [Google Scholar] [CrossRef] [Green Version]
- Karagkouni, D.; Paraskevopoulou, M.D.; Chatzopoulos, S.; Vlachos, I.S.; Tastsoglou, S.; Kanellos, I.; Papadimitriou, D.; Kavakiotis, I.; Maniou, S.; Skoufos, G.; et al. DIANA-TarBase v8: A decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res. 2018, 46, D239–D245. [Google Scholar] [CrossRef] [Green Version]
- Burger, R.A.; Brady, M.F.; Bookman, M.A.; Fleming, G.F.; Monk, B.J.; Huang, H.; Mannel, R.S.; Homesley, H.D.; Fowler, J.; Greer, B.E.; et al. Incorporation of Bevacizumab in the Primary Treatment of Ovarian Cancer. N. Engl. J. Med. 2011, 365, 2473–2483. [Google Scholar] [CrossRef] [Green Version]
- Tewari, K.S.; Burger, R.A.; Enserro, D.; Norquist, B.M.; Swisher, E.M.; Brady, M.F.; Bookman, M.A.; Fleming, G.F.; Huang, H.; Homesley, H.D.; et al. Final Overall Survival of a Randomized Trial of Bevacizumab for Primary Treatment of Ovarian Cancer. J. Clin. Oncol. 2019, 37, 2317–2328. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yong, F.L.; Wang, C.W.; Roslani, A.C.; Law, C.W. The Involvement of miR-23a/APAF1 Regulation Axis in Colorectal Cancer. Int. J. Mol. Sci. 2014, 15, 11713–11729. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Liu, M. Correlation analysis on the expression levels of microRNA-23a and microRNA-23b and the incidence and prognosis of ovarian cancer. Oncol. Lett. 2018, 16, 262–266. [Google Scholar] [CrossRef]
- Vaksman, O.; Stavnes, H.T.; Kaern, J.; Trope, C.G.; Davidson, B.; Reich, R. miRNA profiling along tumour progression in ovarian carcinoma. J. Cell. Mol. Med. 2011, 15, 1593–1602. [Google Scholar] [CrossRef] [Green Version]
- Jin, A.-H.; Wei, Z.-L. Molecular mechanism of increased sensitivity of cisplatin to ovarian cancer by inhibition of microRNA-23a expression. Int. J. Clin. Exp. Med. 2015, 8, 13329–13334. [Google Scholar] [PubMed]
- Yang, Z.; Wang, X.-L.; Bai, R.; Liu, W.-Y.; Li, X.; Liu, M.; Tang, H. miR-23a promotes IKKα expression but suppresses ST7L expression to contribute to the malignancy of epithelial ovarian cancer cells. Br. J. Cancer 2016, 115, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Prahm, K.P.; Høgdall, C.; Karlsen, M.A.; Christensen, I.J.; Novotny, G.W.; Høgdall, E. Identification and validation of potential prognostic and predictive miRNAs of epithelial ovarian cancer. PLoS ONE 2018, 13, e0207319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, R.-J.; Bai, X.-X.; Liu, W. MicroRNA-23a depletion promotes apoptosis of ovarian cancer stem cell and inhibits cell migration by targeting DLG2. Cancer Biol. Ther. 2019, 20, 897–911. [Google Scholar] [CrossRef] [PubMed]
- Yeung, C.L.A.; Co, N.-N.; Tsuruga, T.; Yeung, T.-L.; Kwan, S.-Y.; Leung, C.S.; Li, Y.; Lu, E.S.; Kwan, K.; Wong, K.-K.; et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat. Commun. 2016, 7, 11150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eoh, K.J.; Lee, S.H.; Kim, H.J.; Lee, J.-Y.; Kim, S.; Kim, S.W.; Kim, Y.T.; Nam, E.J. MicroRNA-630 inhibitor sensitizes chemoresistant ovarian cancer to chemotherapy by enhancing apoptosis. Biochem. Biophys. Res. Commun. 2018, 497, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Tan, H.-Y.; Feng, Y.-G.; Zhang, C.; Chen, F.; Feng, Y. microRNA-23a in Human Cancer: Its Roles, Mechanisms and Therapeutic Relevance. Cancers 2018, 11, 7. [Google Scholar] [CrossRef] [Green Version]
Clinical Annotations | Brescia Cohort | TCGA Cohort |
---|---|---|
No. of Patients | ||
Total No. of patients | 145 | 178 |
Age | ||
Median (range) years | 62 (36–85) | 60 (35–88) |
Histotype | ||
Serous | 145 (100%) | 178 (100%) |
FIGO Classification | ||
III | 112 (77%) | 159 (89%) |
IV | 33 (23%) | 19 (11%) |
Residual Tumor (RT) | ||
RT = 0 | 41 (28%) | 44 (25%) |
RT > 0 | 104 (72%) | 134 (75%) |
Treatment | ||
Carboplatin + Paclitaxel | 123 (85%) | 169 (95%) |
Carboplatin + Paclitaxel + Bevacizumab | 22 (15%) | 9 (5%) |
Platinum Status | ||
Carboplatin + Paclitaxel | ||
Sensitive | 48 (33%) | 60 (34%) |
Partially Sensitive | 23 (16%) | 41 (23%) |
Resistant | 48 (33%) | 68 (38%) |
NA | 4 (3%) | - |
Carboplatin + Paclitaxel + Bevacizumab | ||
Sensitive | 7 (5%) | 1 (0.5%) |
Partially Sensitive | 6 (4%) | 1 (0.5%) |
Resistant | 9 (6%) | 7 (4%) |
Median follow-up, years (range) | 3.6 (0–15) | 2.62 (0–12.7) |
Median PFS, months (range) | 23.7 (1.7–172.6) | 15.3 (0.8–111.7) |
Median OS, months (range) | 43.7 (1.2–177.3) | 33.3 (0.8–152.9) |
miRNA Name | Brescia Cohort—Microarray 73 Samples (39 Pt-r, 34 Pt-s) | TCGA Cohort—RNA-seq 136 Samples (75 Pt-r, 61 Pt-s) | ||||
---|---|---|---|---|---|---|
Log 2(FC) | AveExpr | Adj. p-Value | Log 2(FC) | Mean | Adj. p-Value | |
hsa-miR-103a-3p | 0.125 | 9.956 | 0.358 | 0.174 | 44316 | 0.324 |
hsa-miR-107 | 0.058 | 9.317 | 0.682 | 0.131 | 152.4 | 0.323 |
hsa-miR-125b-5p | 0.493 | 10.508 | 0.040 ** | −0.195 | 10786.2 | 0.327 |
hsa-miR-145-5p | 0.602 | 7.031 | 0.032 ** | −0.169 | 3572.4 | 0.314 |
hsa-miR-181a-5p | 0.403 | 7.724 | 0.034 ** | −0.019 | 11434.2 | 0.915 |
hsa-miR-181b-5p | 0.174 | 5.776 | 0.309 | 0.208 | 1374.8 | 0.228 |
hsa-miR-181c-5p | 0.547 | 4.896 | 0.036 ** | 0.650 | 223.2 | 0.004 *** |
hsa-miR-192-5p | −0.082 | 4.712 | 0.740 | 0.241 | 223.4 | 0.230 |
hsa-miR-195-5p | −0.173 | 7.756 | 0.475 | 0.187 | 6.7 | 0.351 |
hsa-miR-199a-3p | 0.684 | 9.412 | 0.027 ** | −0.064 | 618.8 | 0.740 |
hsa-miR-199a-5p | 0.856 | 7.786 | 0.012 ** | −0.308 | 770.8 | 0.161 |
hsa-miR-21-5p | 0.065 | 13.243 | 0.759 | 0.221 | 11189.6 | 0.268 |
hsa-miR-21-3p | 0.091 | 7.215 | 0.703 | −0.182 | 2141.6 | 0.305 |
hsa-miR-210 | 0.023 | 8.001 | 0.910 | −0.035 | 1574.9 | 0.866 |
hsa-miR-23a-3p | 0.363 | 10.310 | 0.007 *** | 0.286 | 6830.0 | 0.033 ** |
hsa-miR-23b-3p | −0.177 | 9.554 | 0.389 | 0.183 | 4070.9 | 0.266 |
hsa-miR-24-3p | −0.008 | 10.460 | 0.945 | 0.252 | 3371.5 | 0.058 * |
hsa-miR-26a-5p | 0.188 | 10.206 | 0.138 | −0.081 | 1902.6 | 0.572 |
hsa-miR-26b-5p | 0.106 | 9.162 | 0.480 | −0.015 | 265.4 | 0.917 |
hsa-miR-27a-3p | 0.440 | 10.151 | 0.002 *** | 0.193 | 1397.1 | 0.208 |
hsa-miR-30b-5p | −0.313 | 9.202 | 0.089 * | 0.140 | 186.4 | 0.429 |
hsa-miR-93-5p | −0.238 | 8.468 | 0.109 | 0.051 | 16511.6 | 0.750 |
miRNA Name | Univariate | Multivariate (1) | ||||
---|---|---|---|---|---|---|
Hazard | SE | p-Value | Hazard | SE | p-Value | |
Brescia Cohort—95 samples | ||||||
hsa-mir-23a-3p | 1.819 | 0.250 | 0.017 ** | 2.003 | 0.257 | 0.007 *** |
hsa-mir-181c-5p | 1.349 | 0.111 | 0.007 ** | 1.268 | 0.113 | 0.037 ** |
TCGA Cohort—178 samples | ||||||
hsa-mir-23a-3p | 1.072 | 0.112 | 0.539 | 1.076 | 0.113 | 0.517 |
hsa-mir-181c-5p | 1.026 | 0.070 | 0.715 | 1.036 | 0.072 | 0.627 |
miRNA Name | Mean (sd) Cq | Mean (sd) −ΔCq (1) | Cq | −ΔCq (1) | ||||
---|---|---|---|---|---|---|---|---|
Pt-r | Pt-s | Pt-r | Pt-s | Stat (95%CI) | p-Value | Stat (95%CI) | p-Value | |
hsa-miR-23a-3p | 24.82 (1.3) | 25.39 (1.3) | −0.56 (1.0) | −1.04 (1.1) | −2.140 (−Inf, −0.128) | 0.017 ** | 1.910 (0.063, Inf) | 0.030 ** |
hsa-miR-181c-5p | 30.61 (2.3) | 31.09 (2.5) | −6.35 (2.1) | −6.73 (2.6) | −0.965 (−Inf, 0.345) | 0.169 | 0.812 (0.404, Inf) | 0.209 |
miRNA Name | Univariate-ΔCq (1) | Multivariate (2)-ΔCq (1) | ||||
---|---|---|---|---|---|---|
Hazard (95% CI) | SE | p-Value | Hazard (95% CI) | SE | p-Value | |
Overall Survival (OS) | ||||||
hsa-miR-23a-3p | 1.149 (0.977–1.352) | 0.083 | 0.092 * | 1.195 (1.027,1.390) | 0.077 | 0.021 ** |
hsa-miR-181c-5p | 1.026 (0.940–1.121) | 0.045 | 0.561 | 1.025 (0.938,1.119) | 0.045 | 0.587 |
Progression-Free Survival (PFS) | ||||||
hsa-miR-23a-3p | 1.178 (1.016–1.366) | 0.075 | 0.030 ** | 1.244 (1.071,1.446) | 0.077 | 0.004 *** |
hsa-miR-181c-5p | 1.034 (0.957–1.118) | 0.040 | 0.399 | 1.040 (0.960,1.127) | 0.041 | 0.346 |
Pathway | No. Genes | No. Targets | −log10 (adj. p-Value) (1) | Target | |
---|---|---|---|---|---|
1 | Renal cell carcinoma | 56 | 13 | 15.32 | ARNT; ARNT2; CREBBP; CRK; EGLN2; GAB1; MET; PIK3CB; PIK3R3; PAK3; PAK6; TGFA; RAP1A |
2 | Platinum drug resistance | 39 | 8 | 10 | APAF1; BCL2; FAS; PDPK1; PIK3CB; PIK3R3; XIAP; MAP3K5 |
3 | Hedgehog signalling pathway | 47 | 8 | 8.21 | CSNK1G1; CSNK1G3; CUL3; HHIP; SMURF2; SPOPL; BCL2; GSK3B |
4 | EGFR tyrosine kinase inhibitor resistance | 79 | 11 | 7.41 | BCL2; FGF2; GAB1; IL6R; JAK1; MET; PIK3CB; PIK3R3; PTEN; TGFA; GSK3B |
5 | ErbB signalling pathway | 85 | 11 | 6.59 | CRK; ERBB4; GAB1; PAK3; PAK6; PIK3CB; PIK3R3; TGFA; GSK3B; CBLB; STAT5B |
6 | Bacterial invasion of epithelial cells | 53 | 7 | 5.57 | CRK; GAB1; MET; PIK3CB; PIK3R3; WASL; DNM3 |
7 | Non-small cell lung cancer | 65 | 8 | 5.34 | EML4; PDPK1; PIK3CB; PIK3R3; RXRG; TGFA; STAT5B; STK4 |
8 | Glycosphingolipid biosynthesis—lacto and neolacto series | 27 | 4 | 4.72 | FUT4; FUT9; GCNT2; ST8SIA1 |
9 | p53 signalling pathway | 71 | 8 | 4.61 | APAF1; BCL2; CCNG1; FAS; PTEN; RCHY1; SESN2; SESN3 |
10 | mTOR signalling pathway | 142 | 15 | 4.51 | ATP6V1B2; ATP6V1C1; ATP6V1E1; FNIP2; FZD4; FZD5; GSK3B; LRP5; PDPK1; PIK3CB; PIK3R3; PTEN; SEH1L; SESN2; CHUK |
11 | Prostate cancer | 85 | 9 | 4.25 | CHUK; CREBBP; GSK3B; PDPK1; PIK3CB; PIK3R3; PTEN; TGFA; BCL2 |
12 | Aldosterone-regulated sodium reabsorption | 30 | 4 | 4.2 | NEDD4L; PDPK1; PIK3CB; PIK3R3 |
13 | Measles | 107 | 11 | 4.14 | CBLB; CHUK; JAK1; PIK3CB; PIK3R3; RCHY1; TNFAIP3; GSK3B; FAS; IL12B; STAT5B |
14 | Fc gamma R-mediated phagocytosis | 91 | 9 | 3.66 | ASAP1; CRK; PIK3CB; PIK3R3; PRKCE; WASL; CFL2; MARCKS; MARCKSL1 |
15 | Adherens junction | 69 | 7 | 3.62 | CSNK2A2; MET; TGFBR2; WASL; YES1; TJP1; NLK |
16 | Small cell lung cancer | 92 | 9 | 3.57 | APAF1; BCL2; CHUK; COL4A4; PIK3CB; PIK3R3; PTEN; RXRG; XIAP |
17 | Mannose type O-glycan biosynthesis | 23 | 3 | 3.49 | CHST10; FUT4; FUT9 |
18 | Non-alcoholic fatty liver disease (NAFLD) | 71 | 7 | 3.42 | FAS; IL6R; MAP3K5; PIK3CB; PIK3R3; GSK3B; CASP7 |
19 | Phosphatidylinositol signalling system | 86 | 8 | 3.1 | DGKE; INPP5A; IPMK; PIK3C2A; PIK3CB; PIK3R3; PIP4K2B; PTEN |
20 | IL-17 signalling pathway | 14 | 2 | 3.08 | FOSB; TAB3 |
Symbol | Target Scan | microT−CDS | Tarbase | Pearson Correlation | |
---|---|---|---|---|---|
Context Score | miTGscore | Experimentally Validated | Brescia Cohort Microarray | OVA−BS4 Cell Line Microarray | |
APAF1 | −0.54 | 0.96 | Yes | −0.227 | −0.790 |
BCL2 | −0.36 | 0.73 | No | 0.250 | 0.893 |
FAS | −0.51 | 0.84 | No | 0.124 | −0.783 |
PDPK1 | −0.15 | 0.92 | Yes | −0.159 | −0.002 |
PIK3CB | −0.17 | 0.91 | Yes | 0.040 | −0.201 |
PIK3R3 | −0.17 | 0.95 | Yes | −0.126 | 0.927 |
XIAP | −0.28 | 0.95 | No | 0.052 | −0.907 |
MAP3K5 | −0.08 | 0.81 | No | −0.038 | 0.816 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todeschini, P.; Salviato, E.; Romani, C.; Raimondi, V.; Ciccarese, F.; Ferrari, F.; Tognon, G.; Marchini, S.; D’Incalci, M.; Zanotti, L.; et al. Comprehensive Profiling of Hypoxia-Related miRNAs Identifies miR-23a-3p Overexpression as a Marker of Platinum Resistance and Poor Prognosis in High-Grade Serous Ovarian Cancer. Cancers 2021, 13, 3358. https://doi.org/10.3390/cancers13133358
Todeschini P, Salviato E, Romani C, Raimondi V, Ciccarese F, Ferrari F, Tognon G, Marchini S, D’Incalci M, Zanotti L, et al. Comprehensive Profiling of Hypoxia-Related miRNAs Identifies miR-23a-3p Overexpression as a Marker of Platinum Resistance and Poor Prognosis in High-Grade Serous Ovarian Cancer. Cancers. 2021; 13(13):3358. https://doi.org/10.3390/cancers13133358
Chicago/Turabian StyleTodeschini, Paola, Elisa Salviato, Chiara Romani, Vittoria Raimondi, Francesco Ciccarese, Federico Ferrari, Germana Tognon, Sergio Marchini, Maurizio D’Incalci, Laura Zanotti, and et al. 2021. "Comprehensive Profiling of Hypoxia-Related miRNAs Identifies miR-23a-3p Overexpression as a Marker of Platinum Resistance and Poor Prognosis in High-Grade Serous Ovarian Cancer" Cancers 13, no. 13: 3358. https://doi.org/10.3390/cancers13133358
APA StyleTodeschini, P., Salviato, E., Romani, C., Raimondi, V., Ciccarese, F., Ferrari, F., Tognon, G., Marchini, S., D’Incalci, M., Zanotti, L., Ravaggi, A., Odicino, F., Sartori, E., D’Agostino, D. M., Samaja, M., Romualdi, C., & Bignotti, E. (2021). Comprehensive Profiling of Hypoxia-Related miRNAs Identifies miR-23a-3p Overexpression as a Marker of Platinum Resistance and Poor Prognosis in High-Grade Serous Ovarian Cancer. Cancers, 13(13), 3358. https://doi.org/10.3390/cancers13133358