MiR-139 Modulates Cancer Stem Cell Function of Human Breast Cancer through Targeting CXCR4
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Decreased Levels of miR-139 in Metastatic Breast Cancer Cell Lines
2.2. CXCR4 Gene as a Direct Target of miR-139
2.3. miR-139 Inhibited Breast Cancer Invasiveness by Suppressing CXCR4/p-Akt Signaling
2.4. miR-139 Decreased the Stemness of Breast Cancer Cells
2.5. miR-139 Reduced BCSC Through Down-Modulation of CXCR4/p-Akt Signaling
2.6. Prognostic Significance of miR-139 in Patients with Breast Cancer
3. Discussion
4. Materials and Methods
4.1. Cell Lines and Cell Culture
4.2. Cancer Stem Cell Sorting
4.3. Cultivation and Characterization of CSCs
4.4. Construction of miR-139-Transfected Breast Tumor Cells
4.5. Dual Luciferase Reporter Assay
4.6. Wound Healing Assay and Matrigel Invasion Assay
4.7. Western Blotting Analysis
4.8. Mouse Xenotransplantation Assay
4.9. Patients and Tissue Samples
4.10. Laser Capture Microdissection and Quantitative Real-Time PCR
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
miRNA | MicroRNA |
CXCR4 | Chemokine receptor 4 |
CSC | Cancer stem cell |
3′-UTR | 3′-untrnasltaed region |
HER2/neu | Human epidermal growth factor receptor 2 |
Akt | Protein kinase B |
EMT | Epithelial mesenchymal transition |
FACS | Fluorescence-activated cell sorting |
IDC | Invasive ductal carcinoma |
LNM | Lymph node metastasis |
LCM | Laser capture microdissection |
qRT-PCR | Quantitative real-time PCR |
References
- DeSantis, C.E.; Ma, J.; Goding Sauer, A.; Newman, L.A.; Jemal, A. Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J. Clin. 2017, 67, 439–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akyay, O.Z.; Gov, E.; Kenar, H.; Arga, K.Y.; Selek, A.; Tarkun, I.; Canturk, Z.; Cetinarslan, B.; Gurbuz, Y.; Sahin, B. Mapping the Molecular Basis and Markers of Papillary Thyroid Carcinoma Progression and Metastasis Using Global Transcriptome and microRNA Profiling. OMICS 2020, 24, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Chiang, A.C.; Massague, J. Molecular basis of metastasis. N. Engl. J. Med. 2008, 359, 2814–2823. [Google Scholar] [CrossRef] [Green Version]
- Lathia, J.D.; Liu, H. Overview of Cancer Stem Cells and Stemness for Community Oncologists. Target. Oncol. 2017, 12, 387–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, E.K.; Lee, J.C.; Park, J.W.; Bang, S.Y.; Yi, S.A.; Kim, B.K.; Park, J.H.; Kwon, S.H.; You, J.S.; Nam, S.W.; et al. Transcriptional repression of cancer stem cell marker CD133 by tumor suppressor p53. Cell Death Dis. 2015, 6, e1964. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, M.K.; Shao, C.; Wang, J.; Wei, Q.; Wang, X.; Collier, Z.; Tang, S.; Liu, H.; Zhang, F.; Huang, J.; et al. Wnt/beta-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis. 2016, 3, 11–40. [Google Scholar] [CrossRef] [Green Version]
- Sari, I.N.; Phi, L.T.H.; Jun, N.; Wijaya, Y.T.; Lee, S.; Kwon, H.Y. Hedgehog Signaling in Cancer: A Prospective Therapeutic Target for Eradicating Cancer Stem Cells. Cells 2018, 7, 208. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Wang, P.; Wang, R.; Wang, J.; Liu, M.; Xiong, S.; Li, Y.; Cheng, B. The Notch pathway promotes the cancer stem cell characteristics of CD90+ cells in hepatocellular carcinoma. Oncotarget 2016, 7, 9525–9537. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, T.; Pramanik, K.K.; Nath, N.; Mishra, P.; Singh, A.K.; Nagini, S.; Rana, A.; Mishra, R. Crosstalk between Raf-MEK-ERK and PI3K-Akt-GSK3beta signaling networks promotes chemoresistance, invasion/migration and stemness via expression of CD44 variants (v4 and v6) in oral cancer. Oral Oncol. 2018, 86, 234–243. [Google Scholar] [CrossRef]
- Chatterjee, S.; Behnam Azad, B.; Nimmagadda, S. The intricate role of CXCR4 in cancer. Adv. Cancer Res. 2014, 124, 31–82. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Huang, R.; Zhong, Y.; Cui, N.; Wang, Y.; Weng, J.; Chen, L.; Zang, M. CTHRC1 promotes gastric cancer metastasis via HIF-1alpha/CXCR4 signaling pathway. Biomed. Pharmacother. 2020, 123, 109742. [Google Scholar] [CrossRef]
- Li, R.H.; Huang, W.H.; Wu, J.D.; Du, C.W.; Zhang, G.J. EGFR expression is associated with cytoplasmic staining of CXCR4 and predicts poor prognosis in triple-negative breast carcinomas. Oncol. Lett. 2017, 13, 695–703. [Google Scholar] [CrossRef] [Green Version]
- Mitsui, Y.; Shiina, H.; Kato, T.; Maekawa, S.; Hashimoto, Y.; Shiina, M.; Imai-Sumida, M.; Kulkarni, P.; Dasgupta, P.; Wong, R.K.; et al. Versican Promotes Tumor Progression, Metastasis and Predicts Poor Prognosis in Renal Carcinoma. Mol. Cancer Res. 2017, 15, 884–895. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Jiang, X.; Yan, W.; Dou, X. Transgelin 2 overexpression inhibits cervical cancer cell invasion and migration. Mol. Med. Rep. 2019, 19, 4919–4926. [Google Scholar] [CrossRef]
- Jiang, Q.; Sun, Y.; Liu, X. CXCR4 as a prognostic biomarker in gastrointestinal cancer: A meta-analysis. Biomarkers 2019, 24, 510–516. [Google Scholar] [CrossRef]
- Xu, T.P.; Shen, H.; Liu, L.X.; Shu, Y.Q. The impact of chemokine receptor CXCR4 on breast cancer prognosis: A meta-analysis. Cancer Epidemiol. 2013, 37, 725–731. [Google Scholar] [CrossRef]
- Martinez-Ordonez, A.; Seoane, S.; Cabezas, P.; Eiro, N.; Sendon-Lago, J.; Macia, M.; Garcia-Caballero, T.; Gonzalez, L.O.; Sanchez, L.; Vizoso, F.; et al. Breast cancer metastasis to liver and lung is facilitated by Pit-1-CXCL12-CXCR4 axis. Oncogene 2018, 37, 1430–1444. [Google Scholar] [CrossRef]
- Zielinska, K.A.; Katanaev, V.L. The Signaling Duo CXCL12 and CXCR4: Chemokine Fuel for Breast Cancer Tumorigenesis. Cancers 2020, 12, 3071. [Google Scholar] [CrossRef]
- Teicher, B.A.; Fricker, S.P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Cancer Res. 2010, 16, 2927–2931. [Google Scholar] [CrossRef] [Green Version]
- Domanska, U.M.; Kruizinga, R.C.; Nagengast, W.B.; Timmer-Bosscha, H.; Huls, G.; de Vries, E.G.; Walenkamp, A.M. A review on CXCR4/CXCL12 axis in oncology: No place to hide. Eur. J. Cancer 2013, 49, 219–230. [Google Scholar] [CrossRef]
- Greco, S.J.; Patel, S.A.; Bryan, M.; Pliner, L.F.; Banerjee, D.; Rameshwar, P. AMD3100-mediated production of interleukin-1 from mesenchymal stem cells is key to chemosensitivity of breast cancer cells. Am. J. Cancer Res. 2011, 1, 701–715. [Google Scholar] [PubMed]
- Bao, B.; Azmi, A.S.; Ali, S.; Ahmad, A.; Li, Y.; Banerjee, S.; Kong, D.; Sarkar, F.H. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochim. Biophys. Acta 2012, 1826, 272–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopatina, T.; Gai, C.; Deregibus, M.C.; Kholia, S.; Camussi, G. Cross Talk between Cancer and Mesenchymal Stem Cells through Extracellular Vesicles Carrying Nucleic Acids. Front. Oncol. 2016, 6, 125. [Google Scholar] [CrossRef] [PubMed]
- Papadaki, M.A.; Stoupis, G.; Theodoropoulos, P.A.; Mavroudis, D.; Georgoulias, V.; Agelaki, S. Circulating Tumor Cells with Stemness and Epithelial-to-Mesenchymal Transition Features Are Chemoresistant and Predictive of Poor Outcome in Metastatic Breast Cancer. Mol. Cancer Ther. 2019, 18, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Tan, W.; Chen, K.; You, N.; Zhu, S.; Liang, G.; Xie, X.; Li, Q.; Zeng, Y.; Ouyang, N.; et al. Prognostic Value of a BCSC-associated MicroRNA Signature in Hormone Receptor-Positive HER2-Negative Breast Cancer. EBioMedicine 2016, 11, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.W.; Wang, H.W.; Chang, C.W.; Chu, H.W.; Chen, C.Y.; Yu, J.C.; Chao, J.I.; Liu, H.F.; Ding, S.L.; Shen, C.Y. MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res. Treat. 2012, 134, 1081–1093. [Google Scholar] [CrossRef]
- Chakravarthi, B.; Chandrashekar, D.S.; Agarwal, S.; Balasubramanya, S.A.H.; Pathi, S.S.; Goswami, M.T.; Jing, X.; Wang, R.; Mehra, R.; Asangani, I.A.; et al. miR-34a Regulates Expression of the Stathmin-1 Oncoprotein and Prostate Cancer Progression. Mol. Cancer Res. 2018, 16, 1125–1137. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Tang, Y.; Cheng, Y.S. miR-34a inhibits pancreatic cancer progression through Snail1-mediated epithelial-mesenchymal transition and the Notch signaling pathway. Sci. Rep. 2017, 7, 38232. [Google Scholar] [CrossRef]
- Gao, J.; Li, N.; Dong, Y.; Li, S.; Xu, L.; Li, X.; Li, Y.; Li, Z.; Ng, S.S.; Sung, J.J.; et al. miR-34a-5p suppresses colorectal cancer metastasis and predicts recurrence in patients with stage II/III colorectal cancer. Oncogene 2015, 34, 4142–4152. [Google Scholar] [CrossRef] [Green Version]
- Adams, B.D.; Wali, V.B.; Cheng, C.J.; Inukai, S.; Booth, C.J.; Agarwal, S.; Rimm, D.L.; Győrffy, B.; Santarpia, L.; Pusztai, L.; et al. miR-34a Silences c-SRC to Attenuate Tumor Growth in Triple-Negative Breast Cancer. Cancer Res. 2016, 76, 927–939. [Google Scholar] [CrossRef] [Green Version]
- Lv, B.; Yang, X.; Lv, S.; Wang, L.; Fan, K.; Shi, R.; Wang, F.; Song, H.; Ma, X.; Tan, X.; et al. CXCR4 Signaling Induced Epithelial-Mesenchymal Transition by PI3K/AKT and ERK Pathways in Glioblastoma. Mol. Neurobiol. 2015, 52, 1263–1268. [Google Scholar] [CrossRef]
- Mimeault, M.; Batra, S.K. Altered gene products involved in the malignant reprogramming of cancer stem/progenitor cells and multitargeted therapies. Mol. Asp. Med. 2014, 39, 3–32. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.W.; Yu, J.C.; Hsieh, Y.H.; Liao, W.L.; Shieh, J.C.; Yao, C.C.; Lee, H.J.; Chen, P.M.; Wu, P.E.; Shen, C.Y. Increased Cellular Levels of MicroRNA-9 and MicroRNA-221 Correlate with Cancer Stemness and Predict Poor Outcome in Human Breast Cancer. Cell Physiol. Biochem. 2018, 48, 2205–2218. [Google Scholar] [CrossRef]
- Wang, D.; Wang, X.; Si, M.; Yang, J.; Sun, S.; Wu, H.; Cui, S.; Qu, X.; Yu, X. Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett. 2020, 474, 36–52. [Google Scholar] [CrossRef]
- Kurrey, N.K.; Amit, K.; Bapat, S.A. Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol. Oncol. 2005, 97, 155–165. [Google Scholar] [CrossRef]
- Mirzaei, A.; Mohammadi, S.; Ghaffari, S.H.; Nikbakht, M.; Bashash, D.; Alimoghaddam, K.; Ghavamzadeh, A. Osteopontin b and c isoforms: Molecular Candidates Associated with Leukemic Stem Cell Chemoresistance in Acute Myeloid Leukemia. Asian Pac. J. Cancer Prev. 2017, 18, 1707–1715. [Google Scholar] [CrossRef]
- Bagaria, S.P.; Ray, P.S.; Sim, M.S.; Ye, X.; Shamonki, J.M.; Cui, X.; Giuliano, A.E. Personalizing breast cancer staging by the inclusion of ER, PR, and HER2. JAMA Surg. 2014, 149, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Hua, S.; Lei, L.; Deng, L.; Weng, X.; Liu, C.; Qi, X.; Wang, S.; Zhang, D.; Zou, X.; Cao, C.; et al. miR-139-5p inhibits aerobic glycolysis, cell proliferation, migration, and invasion in hepatocellular carcinoma via a reciprocal regulatory interaction with ETS1. Oncogene 2018, 37, 1624–1636. [Google Scholar] [CrossRef]
- Ji, X.; Guo, H.; Yin, S.; Du, H. miR-139-5p functions as a tumor suppressor in cervical cancer by targeting TCF4 and inhibiting Wnt/β-catenin signaling. Onco Targets Ther. 2019, 12, 7739–7748. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, C.; Jiang, Y.; Wan, Y.; Zhou, S.; Cheng, W. Tumor-suppressor role of miR-139-5p in endometrial cancer. Cancer Cell Int. 2018, 18, 51. [Google Scholar] [CrossRef]
- Zhang, H.D.; Sun, D.W.; Mao, L.; Zhang, J.; Jiang, L.H.; Li, J.; Wu, Y.; Ji, H.; Chen, W.; Wang, J.; et al. MiR-139-5p inhibits the biological function of breast cancer cells by targeting Notch1 and mediates chemosensitivity to docetaxel. Biochem. Biophys. Res. Commun. 2015, 465, 702–713. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, W.; Sun, D.; Wei, X.; Ding, Y.; Ma, Y.; Wang, Z. Downregulation of miR-139-5p promotes prostate cancer progression through regulation of SOX5. Biomed. Pharmacother. 2019, 109, 2128–2135. [Google Scholar] [CrossRef]
- Li, Q.; Liang, X.; Wang, Y.; Meng, X.; Xu, Y.; Cai, S.; Wang, Z.; Liu, J.; Cai, G. miR-139-5p Inhibits the Epithelial-Mesenchymal Transition and Enhances the Chemotherapeutic Sensitivity of Colorectal Cancer Cells by Downregulating BCL2. Sci. Rep. 2016, 6, 27157. [Google Scholar] [CrossRef]
- Gu, S.Q.; Luo, J.H.; Yao, W.X. The regulation of miR-139-5p on the biological characteristics of breast cancer cells by targeting COL11A1. Math. Biosci. Eng. 2019, 17, 1428–1441. [Google Scholar] [CrossRef]
- Shao, S.; Zhao, X.; Zhang, X.; Luo, M.; Zuo, X.; Huang, S.; Wang, Y.; Gu, S.; Zhao, X. Notch1 signaling regulates the epithelial-mesenchymal transition and invasion of breast cancer in a Slug-dependent manner. Mol. Cancer 2015, 14, 28. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.Y.; Kang, H.; Kim, T.H.; Kim, G.; Heo, J.H.; Kwon, A.Y.; Kim, S.; Jung, S.G.; An, H.J. MicroRNA-136 inhibits cancer stem cell activity and enhances the anti-tumor effect of paclitaxel against chemoresistant ovarian cancer cells by targeting Notch3. Cancer Lett. 2017, 386, 168–178. [Google Scholar] [CrossRef]
- Dong, Z.; Yu, C.; Rezhiya, K.; Gulijiahan, A.; Wang, X. Downregulation of miR-146a promotes tumorigenesis of cervical cancer stem cells via VEGF/CDC42/PAK1 signaling pathway. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3711–3719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koturbash, I.; Zemp, F.J.; Pogribny, I.; Kovalchuk, O. Small molecules with big effects: The role of the microRNAome in cancer and carcinogenesis. Mutat. Res. 2011, 722, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.M.; Pan, Y.; Wei, Y.; Cheng, X.; Zhou, B.P.; Tan, M.; Zhou, X.; Xia, W.; Hortobagyi, G.N.; Yu, D.; et al. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 2004, 6, 459–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, K.S.; Hung, M.C. Transcriptional repression of the neu protooncogene by estrogen stimulated estrogen receptor. Cancer Res. 1992, 52, 6624–6629. [Google Scholar] [PubMed]
- Bao, W.; Fu, H.J.; Xie, Q.S.; Wang, L.; Zhang, R.; Guo, Z.Y.; Zhao, J.; Meng, Y.L.; Ren, X.L.; Wang, T.; et al. HER2 interacts with CD44 to up-regulate CXCR4 via epigenetic silencing of microRNA-139 in gastric cancer cells. Gastroenterology 2011, 141, 2076–2087. [Google Scholar] [CrossRef]
- Kim, J.; Yao, F.; Xiao, Z.; Sun, Y.; Ma, L. MicroRNAs and metastasis: Small RNAs play big roles. Cancer Metastasis Rev. 2018, 37, 5–15. [Google Scholar] [CrossRef]
- Patrawala, L.; Calhoun, T.; Schneider-Broussard, R.; Zhou, J.; Claypool, K.; Tang, D.G. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res. 2005, 65, 6207–6219. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.W.; Yu, J.C.; Hsieh, Y.H.; Yao, C.C.; Chao, J.I.; Chen, P.M.; Hsieh, H.Y.; Hsiung, C.N.; Chu, H.W.; Shen, C.Y.; et al. MicroRNA-30a increases tight junction protein expression to suppress the epithelial-mesenchymal transition and metastasis by targeting Slug in breast cancer. Oncotarget 2016, 7, 16462–16478. [Google Scholar] [CrossRef] [Green Version]
Clincopathological Parameters | Decreased miR-139 Levels (T/N Ratio, −ddct < −2.20) | |
---|---|---|
N (%) | OR (95% CI) | |
Tumor size (mm3) | ||
≤20 | 48/106 (45.3) | 1.00 (Ref.) |
>20 | 51/85 (60.0) | 1.81 (1.02–3.23) * |
Tumor grade | ||
Well (G1) | 10/24 (41.7) | 1.00 (Ref) |
Moderate (G2) | 39/82 (47.6) | 1.27 (0.51–3.19) |
Poor (G3) | 50/85 (58.8) | 2.01 (0.79–5.02) |
Tumor stage | ||
I | 29/65 (44.6) | 1.00 (Ref) |
IIa/IIb | 48/96 (50.0) | 1.24 (0.66–2.34) |
III | 18/26 (69.2) | 2.79 (1.06–7.34) * |
IV | 4/4 (100.0) | -- |
LNM | ||
N0 | 45/102 (44.1) | 1.00 (Ref) |
N1 | 35/60 (58.3) | 1.77 (0.93–3.38) |
N2 | 19/29 (65.5) | 2.41 (1.02–5.69) * |
Decreased miR-139 Expression in Cancer Tissue Relative to Non-Cancer Tissues (T/N Ratio, 2−2.2 = 0.22) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ER | PR | HER2 | ||||||||||
Positive | Negative | Positive | Negative | Negative | Positive | |||||||
N (%) | OR (95% CI) | N (%) | OR (95% CI) | N (%) | OR (95% CI) | N (%) | OR (95% CI) | N (%) | OR (95% CI) | N (%) | OR (95% CI) | |
Tumor size (mm3) | ||||||||||||
≤20 | 25/55 (45.5) | 1.00 (Ref.) | 23/50 (46.0) | 1.00 (Ref.) | 28/53 (52.8) | 1.00 (Ref.) | 20/51 (39.2) | 1.00 (Ref.) | 30/65 (46.2) | 1.00 (Ref.) | 18/40 (45.0) | 1.00 (Ref.) |
>20 | 13/26 (50.0) | 1.20 (0.47–3.05) | 36/57 (63.2) | 2.01 (0.92–4.36) | 18/33 (54.5) | 1.07 (0.45–2.56) | 31/50 (62.0) | 2.53 (1.13–5.64) * | 24/45 (53.3) | 1.33 (0.62–2.86) | 25/38 (65.8) | 2.35 (0.94–5.87) |
Grade | ||||||||||||
I/II | 27/59 (45.8) | 1.00 (Ref.) | 21/45 (46.7) | 1.00 (Ref.) | 27/55 (49.1) | 1.00 (Ref.) | 21/48 (43.8) | 1.00 (Ref.) | 27/62 (43.5) | 1.00 (Ref.) | 21/42 (50.0) | 1.00 (Ref.) |
III | 11/22 (50.0) | 1.19 (0.45–3.16) | 38/62 (61.3) | 1.81 (0.83–3.94) | 19/31 (61.3) | 1.64 (0.67–4.02) | 30/53 (56.6) | 1.68 (0.76–3.69) | 27/48 (56.3) | 1.67 (0.78–3.56) | 22/36 (61.1) | 1.57 (0.64–3.88) |
Stage | ||||||||||||
I/IIa/IIb | 34/74 (45.9) | 1.00 (Ref.) | 41/84 (48.8) | 1.00 (Ref.) | 38/75 (50.7) | 1.00 (Ref.) | 37/82 (45.1) | 1.00 (Ref.) | 45/96 (46.9) | 1.00 (Ref.) | 30/62 (48.4) | 1.00 (Ref.) |
Ⅲ/Ⅳ | 4/7 (57.1) | 1.57 (0.33–7.50) | 18/23 (78.3) | 3.78 (1.28–11.11) * | 8/11 (72.7) | 2.60 (0.64–10.55) | 14/19 (73.7) | 3.41 (1.12–10.33) * | 9/14 (64.3) | 2.04 (0.64–6.54) | 13/16 (81.3) | 4.62 (1.20–17.84) * |
LNM | ||||||||||||
Negative | 20/44 (45.5) | 1.00 (Ref.) | 25/57 (43.9) | 1.00 (Ref.) | 22/44 (50.0) | 1.00 (Ref.) | 23/57 (40.4) | 1.00 (Ref.) | 29/65 (44.6) | 1.00 (Ref.) | 16/36 (44.4) | 1.00 (Ref.) |
Positive | 18/37 (48.6) | 1.14 (0.47–2.73) | 34/50 (68.0) | 2.72 (1.23–6.00) * | 24/42 (57.1) | 1.33 (0.57–3.12) | 28/44 (63.6) | 2.59 (1.15–5.82) * | 25/45 (55.6) | 1.55 (0.72–3.33) | 27/42 (64.3) | 2.25 (0.90–5.59) |
Clinicopathological Characteristics | N (%) |
---|---|
Age (mean ± S.D. and range, years) | 50.8 ± 11.7 (23–87) |
Tumor size (mm3) | |
≤20 | 106 (55.5) |
>20 | 85 (44.5) |
Histological grade | |
Well differentiation (G1) | 24 (12.6) |
Moderate differentiation (G2) | 82 (42.9) |
Poor differentiation (G3) | 85 (44.5) |
Clinical stage | |
I | 65 (34.0) |
IIa | 70 (36.7) |
IIb | 26 (13.6) |
III | 26 (13.6) |
IV | 4 (2.1) |
LNM | |
Negative (N0) | 102 (53.4) |
Positive (N1/N2) | 89 (46.6) |
ER | |
Positive (ER+) | 81 (43.1) |
Negative (ER−) | 107 (56.9) |
N/A | 3 |
PR | |
Positive (PR+) | 86 (46.0) |
Negative (PR−) | 101 (54.0) |
N/A | 4 |
HER2/neu | |
Negative (HER2−) | 110 (58.5) |
Positive (HER2+) | 78 (41.5) |
N/A | 3 |
Molecular subtype | |
Luminal A | 67 (35.8) |
Luminal B | 38 (20.3) |
HER2-enriched | 40 (21.4) |
TNBC | 42 (22.5) |
N/A | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.-W.; Liao, W.-L.; Chen, P.-M.; Yu, J.-C.; Shiau, H.-P.; Hsieh, Y.-H.; Lee, H.-J.; Cheng, Y.-C.; Wu, P.-E.; Shen, C.-Y. MiR-139 Modulates Cancer Stem Cell Function of Human Breast Cancer through Targeting CXCR4. Cancers 2021, 13, 2582. https://doi.org/10.3390/cancers13112582
Cheng C-W, Liao W-L, Chen P-M, Yu J-C, Shiau H-P, Hsieh Y-H, Lee H-J, Cheng Y-C, Wu P-E, Shen C-Y. MiR-139 Modulates Cancer Stem Cell Function of Human Breast Cancer through Targeting CXCR4. Cancers. 2021; 13(11):2582. https://doi.org/10.3390/cancers13112582
Chicago/Turabian StyleCheng, Chun-Wen, Wen-Ling Liao, Po-Ming Chen, Jyh-Cherng Yu, Hui-Ping Shiau, Yi-Hsien Hsieh, Huei-Jane Lee, Yu-Chun Cheng, Pei-Ei Wu, and Chen-Yang Shen. 2021. "MiR-139 Modulates Cancer Stem Cell Function of Human Breast Cancer through Targeting CXCR4" Cancers 13, no. 11: 2582. https://doi.org/10.3390/cancers13112582
APA StyleCheng, C.-W., Liao, W.-L., Chen, P.-M., Yu, J.-C., Shiau, H.-P., Hsieh, Y.-H., Lee, H.-J., Cheng, Y.-C., Wu, P.-E., & Shen, C.-Y. (2021). MiR-139 Modulates Cancer Stem Cell Function of Human Breast Cancer through Targeting CXCR4. Cancers, 13(11), 2582. https://doi.org/10.3390/cancers13112582