Perspectives on the Role of Isoliquiritigenin in Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. ISL’s Metabolites, Pharmakinetics, and Pharmacological Effects
2.1. ISL Metabolites
2.2. ISL Pharmacokinetics
2.3. ISL Nanoformulations and ISL Derivatives: Improved Efficacy
- Nanosuspension: ISL is milled with HPC (hydroxypropyl cellulose) SSL and PVP (polyvinylpyrrolidone) K30 to form a lamelliform or ellipse shape of the nanosuspension. HPC SSL and PVP K30 act as stabilizer. These two nanosuspension particles (size: 238.1 ± 4.9 nm with SSL; 354.1 ± 9.1 nm with K30) do not only improve the solubility issue, but also enhance the cytotoxicity a 7.5–10-fold [20].
- Nanoencapsulation: Mesoporous silica nanoparticles (MSNs) are a solid material, acting as a biodegradable nanoscale drug carrier. When MSNs are encapsulated with ISL, they improve the efficacy of ISL in vitro and in vivo [21].
- Lipid–polymer hybrid nanoparticle system:
- 3.1.
- iRGD hybrid NPs: The composition of lipid–polymer hybrid nanoparticles (NPs) include lactic-co-glycolic acid (PLGA), lecithin, and a hydrophilic poly-ethylene-glycol (PEG). ISL-loaded hybrid NPs are composed of an inner PLGA core with an outer lipid layer (PEG, lecithin, and iRGD peptides). iRGD peptides (CRGDK/RGPD/EC, a tumor-homing peptides), can deliver drugs to a tumor. In vitro, ISL–iRGD NPs show stronger inhibition effects and induce apoptosis effects. In vivo, ISL–iRGD NPs show stronger effects in the viability of tumor cells. Herein, iRGD-modified lipid–polymer NPs showed better solubility, bioavailability, and targeting distribution [22].
- 3.2.
- Hydrophilic polyanion solid lipid nanoparticles (SLNs): SLNs are composed of natural lipids such as lecithin or triglycerides that remain solid at 37 °C. SLNs can protect labile compounds from chemical degradation and can improve bioavailability. Low-molecular-weight heparins (LMWHs) are fragments of heparin showing hydrophilic polyanions that can improve the efficacy of ISL [23].
- Microemulsion: The self-microemulsifying drug delivery system (SEMDDS) was designed for improving the solubility, absorption, and bioavailability of lipophilic drugs. The SMEDDS comprises ethyl oleate (EO; oil phase), Tween 80 (surfactant), and PEG 400 (co-surfactant). ISL-loaded SMEDDS has been proven to improve the solubility and oral in vivo availability [17].
- ISL-loaded nanostructured lipid carriers (ISL-NLCs): NLCs mix solid lipids with spatially incompatible liquid lipids, which leads to a special nanostructure with improved properties for drug loading. ISL-loaded NLCs are constructed by glycerol monostearate (MS) and Mi-glyol-812 as the solid and liquid lipid materials to carry the ISL [24]. In pharmacokinetic studies, less than 10% of the NLCs remains in the stomach after oral administration, mainly absorbed in the colon [19]. Moreover, the antitumor effect of ISL-loaded NLCs has been evaluated in sarcoma 180 (S180)-bearing and murine hepatoma (H22)-bearing mice models via IP administration [24]. A biodistribution study showed that the ISL concentration of ISL-loaded NLCs in the tumor is higher 2.5-fold than free ISL. In a skin permeability study, the previous study suggested NLCs as a promising carrier to deliver the ISL [25].
- TPGS-modified proliposomes: D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) has been selected as an excipient for ISL-loaded TPGS-modified proliposomes (ISL-TPGS-PLP), prepared using the film dispersion method with ISL-loaded proliposomes (ISL–PLP). ISL-TPGS-PLP can enhance the solubility, bioavailability and liver-targeting ability of ISL [18].
- Polymeric micelles: PEO (polyethylene oxide)–PPO (polypropylene oxide)–PEO (polyethylene oxide) triblock copolymers are highly biocompatible and act as surface-active agents. P123 (PEO20–PPO65–PEO20) can remarkably enhance the retention of poorly soluble drugs in the blood circulation. Another important derivative of Pluronic, F127 (PEO100–PPO69–PEO100), possesses high biocompatibility. Therefore, mixed F127/P123 polymeric micelles have been developed, which have remarkably enhanced bioavailability with high encapsulation efficiency and low particle size. ISL-loaded F127/P123 polymeric micelles (ISL-FPM) improve the solubility as well as enhance the bioavailability and antioxidant activity of ISL [26].
- Nanoliposomes (NLs): Drug-loaded PEGylated nanomaterials have shown effective cancer cell-killing ability, PEG2000-DPSE-QUE-NLs (polyethyleneglycol-2000-distearoyl phosphatidyl ethanolamine loaded with querce-tin (QUE)) can efficiently disperse in aqueous media compared to controls, and PEGylated (PEG2000-DPSE) NLs have been found to be effective drug delivery vehicles when simply loaded with ISL. ISL-NLs as tumor-targeted drug carriers are more effective in regulating glycolysis in colon cancer cell lines (CRC: HCT116) [27].
- Hydrogel: Hydrogels are composed of hyaluronic acid (HA) and hydroxyethyl cellulose (HEC), and they can improve the skin permeation of ISL [28].
2.4. ISL Docking Model
2.5. ISL Biology Effects
3. ISL Anti-Tumor Effects
3.1. ISL’s Effects on Breast Cancer
3.2. Effects on Colon Cancer
3.3. Effect on Ovary Cancer
3.4. Effect on Lung Cancer
3.5. Effect on Leukemia
3.6. Effect on Melanoma
3.7. Effect on Hepatoma
3.8. Effect on Prostate Cancer
3.9. Effect on Cervical Cancer
3.10. Effect on Other Cancers
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Panda, A.K.; Chakraborty, D.; Sarkar, I.; Khan, T.; Sa, G. New insights into therapeutic activity and anticancer properties of curcumin. J. Exp. Pharmacol. 2017, 9, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Walker, B.R.; Edwards, C.R. Licorice-induced hypertension and syndromes of apparent mineralocorticoid excess. Endocrinol. Metab. Clin. N. Am. 1994, 23, 359–377. [Google Scholar] [CrossRef]
- Lee, S.K.; Park, K.-K.; Park, J.H.Y.; Lim, S.S.; Chung, W.-Y. The Inhibitory Effect of Roasted Licorice Extract on Human Metastatic Breast Cancer Cell-Induced Bone Destruction. Phytother. Res. 2013, 27, 1776–1783. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Liu, D.; Nikolic, D.; Zhu, D.; Pezzuto, J.M.; Van Breemen, R.B. In Vitro Metabolism of Isoliquiritigenin by Human Liver Microsomes. Drug Metab. Dispos. 2007, 36, 461–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuendet, M.; Guo, J.; Luo, Y.; Chen, S.-N.; Oteham, C.P.; Moon, R.C.; Van Breemen, R.B.; Marler, L.E.; Pezzuto, J.M. Cancer Chemopreventive Activity and Metabolism of Isoliquiritigenin, a Compound Found in Licorice. Cancer Prev. Res. 2010, 3, 221–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Liu, A.; Cao, H.; Luo, Y.; Pezzuto, J.M.; Van Breemen, R.B. Biotransformation of the Chemopreventive Agent 2′,4′,4-Trihydroxychalcone (Isoliquiritigenin) by UDP-Glucuronosyltransferases. Drug Metab. Dispos. 2008, 36, 2104–2112. [Google Scholar] [CrossRef] [Green Version]
- Yang, E.-J.; Kim, M.; Woo, J.E.; Lee, T.; Jung, J.-W.; Song, K.-S. The comparison of neuroprotective effects of isoliquiritigenin and its Phase I metabolites against glutamate-induced HT22 cell death. Bioorg. Med. Chem. Lett. 2016, 26, 5639–5643. [Google Scholar] [CrossRef]
- Chen, C.; Shenoy, A.K.; Padia, R.; Fang, D.-D.; Jing, Q.; Yang, P.; Shi-Bing, S.; Huang, S. Suppression of lung cancer progression by isoliquiritigenin through its metabolite 2, 4, 2’, 4’-Tetrahydroxychalcone. J. Exp. Clin. Cancer Res. 2018, 37, 243. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.K.; Chin, Y.-W.; Bae, J.-K.; Seo, J.S.; Choi, Y.H. Pharmacokinetics of Isoliquiritigenin and Its Metabolites in Rats: Low Bioavailability Is Primarily Due to the Hepatic and Intestinal Metabolism. Planta Med. 2013, 79, 1656–1665. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.-X.; Wink, M. Reversal of Multidrug Resistance in Human Colon Cancer and Human Leukemia Cells by Three Plant Extracts and Their Major Secondary Metabolites. Medicines 2018, 5, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yushan, R.; Ying, Y.; Yujun, T.; Jingchun, Y.; Dongguang, L.; Lihong, P.; Pingping, W.; Lili, Z.; Fanhui, Z.; Zhong, L.; et al. Isoliquiritigenin inhibits mouse S180 tumors with a new mechanism that regulates autophagy by GSK-3beta/TNF-alpha pathway. Eur. J. Pharmacol. 2018, 838, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Chen, W.; Zheng, Q.; Wang, X.; Yan, H.; Li, L.; Aisa, H. Determination of Isoliquiritigenin and Its Distribution in Mice by Synchronous Fluorescence Spectrometry. Anal. Sci. 2011, 27, 1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, H.; Zhang, X.; Wang, T.; Liang, L.; Chang, W.; Xia, H. Pharmacokinetics, biodistribution and bioavailability of isoliquiritigenin after intravenous and oral administration. Pharm. Biol. 2014, 52, 228–236. [Google Scholar] [CrossRef]
- Li, H.; Ye, M.; Zhang, Y.; Huang, M.; Xu, W.; Chu, K.; Chen, L.; Que, J. Blood-brain barrier permeability of Gualou Guizhi granules and neuroprotective effects in ischemia/reperfusion injury. Mol. Med. Rep. 2012, 12, 1272–1278. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Fang, F.; Song, M.; Ma, S. The effect of isoliquiritigenin on learning and memory impairments induced by high-fat diet via inhibiting TNF-α/JNK/IRS signaling. Biochem. Biophys. Res. Commun. 2015, 464, 1090–1095. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Q.; Yang, Q.; Wei, Q.; Man, N.; Adu-Frimpong, M.; Toreniyazov, E.; Ji, H.; Yu, J.; Xu, X. Enhancement of Oral Bioavailability and Anti-hyperuricemic Activity of Isoliquiritigenin via Self-Microemulsifying Drug Delivery System. AAPS PharmSciTech 2019, 20, 218. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Q.; Adu-Frimpong, M.; Wei, Q.; Xie, Y.; Zhang, K.; Wei, C.; Weng, W.; Ji, H.; Toreniyazov, E.; et al. Preparation, in vitro and in vivo evaluation of isoliquiritigenin-loaded TPGS modified proliposomes. Int. J. Pharm. 2019, 563, 53–62. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, T.; Shi, Y.; Ni, J. Enhancement of gastrointestinal absorption of isoliquiritigenin by nanostructured lipid carrier. Adv. Powder Technol. 2014, 25, 1060–1068. [Google Scholar] [CrossRef]
- Qiao, F.; Zhao, Y.; Mai, Y.; Guo, J.; Dong, L.; Zhang, W.; Yang, J. Isoliquiritigenin Nanosuspension Enhances Cytostatic Effects in A549 Lung Cancer Cells. Planta Med. 2020, 86, 538–547. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, J.; Wang, Z.; Liu, B.; Zhu, S.; Zhu, L.; Peng, B. Licorice isoliquiritigenin-encapsulated mesoporous silica nanoparticles for osteoclast inhibition and bone loss prevention. Theranostics 2019, 9, 5183–5199. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Zhang, J.; Fu, C.; Xie, X.; Peng, F.; You, J.; Tang, H.; Wang, Z.; Li, P.; Chen, J. iRGD-modified lipid-polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability. Int. J. Nanomed. 2017, 12, 4147–4162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Qiao, H.; Chen, Y.; Li, L.; Xia, H.; Shi, Y. Preparation, properties and preclinical pharmacokinetics of low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle. Iran. J. Pharm. Res. 2016, 15, 269–282. [Google Scholar] [PubMed]
- Zhang, X.-Y.; Qiao, H.; Ni, J.M.; Shi, Y.B.; Qiang, Y. Preparation of isoliquiritigenin-loaded nanostructured lipid carrier and the in vivo evaluation in tumor-bearing mice. Eur. J. Pharm. Sci. 2013, 49, 411–422. [Google Scholar] [CrossRef]
- Noh, G.Y.; Suh, J.Y.; Park, S.N. Ceramide-based nanostructured lipid carriers for transdermal delivery of isoliquiritigenin: Development, physicochemical characterization, and in vitro skin permeation studies. Korean J. Chem. Eng. 2017, 34, 400–406. [Google Scholar] [CrossRef]
- Xie, Y.-J.; Wang, Q.; Adu-Frimpong, M.; Liu, J.; Zhang, K.-Y.; Xu, X.; Yu, J.-N. Preparation and evaluation of isoliquiritigenin-loaded F127/P123 polymeric micelles. Drug Dev. Ind. Pharm. 2019, 45, 1224–1232. [Google Scholar] [CrossRef]
- Wang, G.; Yu, Y.; Wang, Y.-Z.; Yin, P.-H.; Xu, K.; Zhang, H. The effects and mechanisms of isoliquiritigenin loaded nanoliposomes regulated AMPK/mTOR mediated glycolysis in colorectal cancer. Artif. Cells Nanomed. Biotechnol. 2020, 48, 1231–1249. [Google Scholar] [CrossRef]
- Kong, B.J.; Kim, A.; Park, S.N. Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin. Carbohydr. Polym. 2016, 147, 473–481. [Google Scholar] [CrossRef]
- Cao, M.; Zhan, M.; Wang, Z.; Wang, Z.; Li, X.-M.; Miao, M. Development of an Orally Bioavailable Isoliquiritigenin Self-Nanoemulsifying Drug Delivery System to Effectively Treat Ovalbumin-Induced Asthma. Int. J. Nanomed. 2020, 15, 8945–8961. [Google Scholar] [CrossRef]
- Jing, Z.; Ji-Liang, W.; Lin, Z.; Chun, Z. Preparation of isoliquiritigenin liposome and its inhibitive effects on proliferation of human cervical cancer cells in vitro. Chin. J. Clin. Pharmacol. Ther. 2004, 11, 1268–1272. [Google Scholar]
- Peng, F.; Meng, C.-W.; Zhou, Q.-M.; Chen, J.-P.; Xiong, L. Cytotoxic Evaluation against Breast Cancer Cells of Isoliquiritigenin Analogues from Spatholobus suberectus and Their Synthetic Derivatives. J. Nat. Prod. 2015, 79, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Wang, J.; Xu, Y.; Zhang, Y.; Xu, N.; Yin, L. Discovery of novel isoliquiritigenin analogue ISL-17 as a potential anti-gastric cancer agent. Biosci. Rep. 2020, 40, 20201199. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Xiong, L.; Xie, X.; Tang, H.; Huang, R.; Peng, C. Isoliquiritigenin Derivative Regulates miR-374a/BAX Axis to Suppress Triple-Negative Breast Cancer Tumorigenesis and Development. Front. Pharmacol. 2020, 11, 378. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Lee, S.; Kim, K.; Lee, Y.; Lee, J.; Oh, S.; Choi, J.W.; Kim, S.W.; Hwang, K.C.; Lim, S. Isoliquiritigenin Derivatives inhibit RANKL-induced osteoclastogenesis by regulating p38 and NF-κB activation in RAW 264.7 cells. Molecules 2020, 25, 3908. [Google Scholar] [CrossRef]
- Gaur, R.; Yadav, K.S.; Verma, R.K.; Yadav, N.P.; Bhakuni, R.S. In vivo anti-diabetic activity of derivatives of isoliquiritigenin and liquiritigenin. Phytomedicine 2014, 21, 415–422. [Google Scholar] [CrossRef]
- Selvaraj, B.; Kim, D.W.; Huh, G.; Lee, H.; Kang, K.; Lee, J.W. Synthesis and biological evaluation of isoliquiritigenin derivatives as a neuroprotective agent against glutamate mediated neurotoxicity in HT22 cells. Bioorg. Med. Chem. Lett. 2020, 30, 127058. [Google Scholar] [CrossRef]
- Reddy, M.R.; Aidhen, I.S.; Reddy, U.A.; Reddy, G.B.; Ingle, K.; Mukhopadhyay, S.; Ingle, K. Synthesis of 4-C -β-D-Glucosylated Isoliquiritigenin and Analogues for Aldose Reductase Inhibition Studies. Eur. J. Org. Chem. 2019, 2019, 3937–3948. [Google Scholar] [CrossRef]
- Gay, N.H.; Suwanjang, W.; Ruankham, W.; Songtawee, N.; Wongchitrat, P.; Prachayasittikul, V.; Prachayasittikul, S.; Phopin, K. Butein, isoliquiritigenin, and scopoletin attenuate neurodegeneration via antioxidant enzymes and SIRT1/ADAM10 signaling pathway. RSC Adv. 2020, 10, 16593–16606. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, N.; Han, S.; Wang, D.; Mo, S.; Yu, L.; Huang, H.; Tsui, K.; Shen, J.; Chen, J. Dietary Compound Isoliquiritigenin Inhibits Breast Cancer Neoangiogenesis via VEGF/VEGFR-2 Signaling Pathway. PLoS ONE 2013, 8, e68566. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Wang, Z.; Peng, C.; You, J.; Shen, J.; Han, S.; Chen, J. Dietary compound isoliquiritigenin targets GRP78 to chemosensitize breast cancer stem cells via beta-catenin/ABCG2 signaling. Carcinogenesis 2014, 35, 2544–2554. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.-X.; Wen, Y.; He, J.-L.; Huang, S.-Z.; Gao, F.; Guo, C.-J.; Liu, Q.-Q.; Zheng, S.-W.; Gong, D.-Y.; Li, Y.-Z.; et al. Isoliquiritigenin, an Orally Available Natural FLT3 Inhibitor from Licorice, Exhibits Selective Anti-Acute Myeloid Leukemia Efficacy In Vitro and In Vivo. Mol. Pharmacol. 2019, 96, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.K.; Lee, M.-H.; Lim, D.Y.; Kim, J.E.; Singh, P.; Lee, S.-Y.; Jeong, C.-H.; Lim, T.-G.; Chen, H.; Chi, Y.-I.; et al. Isoliquiritigenin Induces Apoptosis and Inhibits Xenograft Tumor Growth of Human Lung Cancer Cells by Targeting Both Wild Type and L858R/T790M Mutant EGFR. J. Biol. Chem. 2014, 289, 35839–35848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, F.; Yang, F.; Wang, R.; Yao, X.J.; Bai, L.; Zeng, X.; Huang, J.; Wong, V.K.; Lam, C.W.; Zhou, H.; et al. Isoliquiritigenin suppresses human T Lymphocyte activation via covalently binding cysteine 46 of IkappaB kinase. Oncotarget 2017, 8, 34223–34235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.J.; Youn, H.S. Isoliquiritigenin suppresses the Toll-interleukin-1 receptor domain-containing adapter inducing interferon-beta (TRIF)-dependent signaling pathway of Toll-like receptors by targeting TBK1. J. Agric. Food Chem. 2010, 58, 4701–4705. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Zhang, N.; Zhao, L.; Hu, L.; Cortopassi, W.A.; Jacobson, M.P.; Li, X.; Zhong, R. Structure-based identification of novel CK2 inhibitors with a linear 2-propenone scaffold as anti-cancer agents. Biochem. Biophys. Res. Commun. 2019, 512, 208–212. [Google Scholar] [CrossRef]
- Kim, D.-C.; Choi, S.-Y.; Kim, S.-H.; Yun, B.-S.; Yoo, I.-D.; Reddy, N.R.P.; Yoon, H.S.; Kim, K.-T. Isoliquiritigenin Selectively Inhibits H2 Histamine Receptor Signaling. Mol. Pharmacol. 2006, 70, 493–500. [Google Scholar] [CrossRef]
- Wang, C.; Chen, L.; Cai, Z.C.; Chen, C.; Liu, Z.; Liu, X.; Zou, L.; Chen, J.; Tan, M.; Wei, L.; et al. Comparative Proteomic Analysis Reveals the Molecular Mechanisms Underlying the Accumulation Difference of Bioactive Constituents in Glycyrrhiza uralensis Fisch under Salt Stress. J. Agric. Food Chem. 2020, 68, 1480–1493. [Google Scholar] [CrossRef]
- Khan, S.I.; Zhao, J.; Ibrahim, M.; Walker, L.A.; DasMahapatra, A.K. Potential utility of natural products as regulators of breast cancer-associated aromatase promoters. Reprod. Biol. Endocrinol. 2011, 9, 91. [Google Scholar] [CrossRef] [Green Version]
- Shah, U.; Patel, S.; Patel, M.; Gandhi, K.; Patel, A. Identification of chalcone derivatives as putative non-steroidal aromatase inhibitors potentially useful against breast cancer by molecular docking and ADME prediction. Indian J. Chem. Sect. B 2020, 59, 283–293. [Google Scholar]
- Li, Z.-X.; Li, J.; Li, Y.; You, K.; Xu, H.; Wang, J. Novel insights into the apoptosis mechanism of DNA topoisomerase I inhibitor isoliquiritigenin on HCC tumor cell. Biochem. Biophys. Res. Commun. 2015, 464, 548–553. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Z.; Wang, Y.; Xie, X.; Shen, J.; Peng, C.; You, J.; Peng, F.; Tang, H.; Guan, X.; et al. Dietary compound isoliquiritigenin prevents mammary carcinogenesis by inhibiting breast cancer stem cells through WIF1 demethylation. Oncotarget 2015, 6, 9854–9876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, L.D.; Zhang, Y.; Pan, X.; Tan, R.X.; Cheng, C.H.K. Inhibition of xanthine oxidase by liquiritigenin and isoliquiritigenin isolated from Sinofranchetia chinensis. Cell. Mol. Life Sci. 2000, 57, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-H.; Chen, H.-Y.; Wang, C.-W.; Shieh, T.-M.; Huang, T.-C.; Lin, L.-C.; Wang, K.-L.; Hsia, S.-M. Isoliquiritigenin induces apoptosis and autophagy and inhibits endometrial cancer growth in mice. Oncotarget 2016, 7, 73432–73447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Na, A.-Y.; Yang, E.-J.; Jeon, J.M.; Ki, S.H.; Song, K.-S.; Lee, S. Protective Effect of Isoliquiritigenin against Ethanol-Induced Hepatic Steatosis by Regulating the SIRT1-AMPK Pathway. Toxicol. Res. 2018, 34, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younas, M.; Hano, C.; Giglioli-Guivarc’H, N.; Abbasi, B.H. Mechanistic evaluation of phytochemicals in breast cancer remedy: Current understanding and future perspectives. RSC Adv. 2018, 8, 29714–29744. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, N.; Liu, P.; Chen, Q.; Situ, H.; Xie, T.; Zhang, J.; Peng, C.; Lin, Y.; Chen, J. MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin. Oncotarget 2014, 5, 7013–7026. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.-L.; Hsia, S.-M.; Chan, C.-J.; Chang, F.-Y.; Huang, C.-Y.; Bau, D.-T.; Wang, P.S. Inhibitory effects of isoliquiritigenin on the migration and invasion of human breast cancer cells. Expert Opin. Ther. Targets 2013, 17, 337–349. [Google Scholar] [CrossRef]
- Kwon, H.M.; Choi, Y.J.; Choi, J.S.; Kang, S.W.; Bae, J.Y.; Kang, I.J.; Jun, J.G.; Lee, S.S.; Lim, S.S.; Kang, Y.H. Blockade of cytokine-induced endothelial cell adhesion molecule expression by licorice isoliquiritigenin through NF-kappaB signal disruption. Exp. Biol. Med. 2007, 232, 235–245. [Google Scholar]
- Zhang, X.; Yeung, E.D.; Wang, J.; Panzhinskiy, E.E.; Tong, C.; Li, W.; Li, J. Isoliquiritigenin, a natural anti-oxidant, selectively inhibits the proliferation of prostate cancer cells. Clin. Exp. Pharmacol. Physiol. 2010, 37, 841–847. [Google Scholar]
- Hu, F.-W.; Yu, C.-C.; Hsieh, P.-L.; Liao, Y.-W.; Lu, M.-Y.; Chu, P.-M. Targeting oral cancer stemness and chemoresistance by isoliquiritigenin-mediated GRP78 regulation. Oncotarget 2017, 8, 93912–93923. [Google Scholar] [CrossRef] [Green Version]
- Maggiolini, M.; Statti, G.; Vivacqua, A.; Gabriele, S.; Rago, V.; Loizzo, M.; Menichini, F.; Andò, S. Estrogenic and antiproliferative activities of isoliquiritigenin in MCF7 breast cancer cells. J. Steroid Biochem. Mol. Biol. 2002, 82, 315–322. [Google Scholar] [CrossRef]
- Anemone, A.; Consolino, L.; Conti, L.; Reineri, F.; Cavallo, F.; Aime, S.; Longo, D.L. In vivo evaluation of tumour acidosis for assessing the early metabolic response and onset of resistance to dichloroacetate by using magnetic resonance pH imaging. Int. J. Oncol. 2017, 51, 498–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, G.T.Y.; Ye, L.; Leung, L.K. The Licorice Flavonoid Isoliquiritigenin Suppresses Phorbol Ester-induced Cyclooxygenase-2 Expression in the Non-tumorigenic MCF-10A Breast Cell Line. Planta Med. 2009, 76, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Li, Y.; Wang, Y.; Zhao, H.; Zhang, J.; Chai, H.; Tang, T.; Yue, J.; Guo, A.M.; Yang, J. Downregulation of COX-2 and CYP 4A signaling by isoliquiritigenin inhibits human breast cancer metastasis through preventing anoikis resistance, migration and invasion. Toxicol. Appl. Pharmacol. 2014, 280, 10–20. [Google Scholar] [CrossRef]
- Ning, S.; Mu, J.; Shen, Z.; Zhu, D.; Jiang, F.; Wang, X.; Li, Y. Isoliquiritigenin attenuates the invasive capacity of breast cancer cells via up-regulating the tumor suppressor RECK. RSC Adv. 2016, 6, 24719–24727. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, H.; Wang, Y.; Zheng, H.; Yu, W.; Chai, H.; Zhang, J.; Falck, J.R.; Guo, A.M.; Yue, J.; et al. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer. Toxicol. Appl. Pharmacol. 2013, 272, 37–48. [Google Scholar] [CrossRef]
- Peng, F.; Tang, H.; Liu, P.; Shen, J.; Guan, X.-Y.; Xie, X.; Gao, J.; Xiong, L.; Jiangang, S.; Chen, J.; et al. Isoliquiritigenin modulates miR-374a/PTEN/Akt axis to suppress breast cancer tumorigenesis and metastasis. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ning, S.; Zhu, D.; Shen, Z.; Liu, J.; Liu, Y.; Chen, J.; Li, Z. Isoliquiritigenin attenuates MiR-21 expression via induction of PIAS3 in breast cancer cells. RSC Adv. 2017, 7, 18085–18092. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.-H.; Chiang, Y.-F.; Shieh, T.-M.; Chen, H.-Y.; Shih, C.-K.; Wang, T.-H.; Wang, K.-L.; Huang, T.-C.; Hong, Y.-H.; Li, S.-C.; et al. Dietary Compound Isoliquiritigenin, an Antioxidant from Licorice, Suppresses Triple-Negative Breast Tumor Growth via Apoptotic Death Program Activation in Cell and Xenograft Animal Models. Antioxidants 2020, 9, 228. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Gho, W.M.; Chan, F.L.; Chen, S.; Leung, L.K. Dietary administration of the licorice flavonoid isoliquiritigenin deters the growth of MCF-7 cells overexpressing aromatase. Int. J. Cancer 2009, 124, 1028–1036. [Google Scholar] [CrossRef]
- Zorko, B.A.; Pérez, L.B.; De Blanco, E.J.C. Effects of ILTG on DAPK1 promoter methylation in colon and leukemia cancer cell lines. Anticancer. Res. 2010, 30, 3945–3950. [Google Scholar] [PubMed]
- Yoshida, T.; Horinaka, M.; Takara, M.; Tsuchihashi, M.; Mukai, N.; Wakada, M.; Sakai, T. Combination of isoliquiritigenin and tumor necrosis factor-related apoptosis-inducing ligand induces apoptosis in colon cancer HT29 cells. Environ. Health Prev. Med. 2008, 13, 281–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, H.; Lee, S.H.; Lee, S.H. Isoliquiritigenin-mediated p62/SQSTM1 induction regulates apoptotic potential through attenuation of caspase-8 activation in colorectal cancer cells. Eur. J. Pharmacol. 2018, 841, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Auyeung, K.K.-W.; Auyeung, J.K.K.A.K.K. Novel herbal flavonoids promote apoptosis but differentially induce cell cycle arrest in human colon cancer cell. Investig. New Drugs 2009, 28, 1–13. [Google Scholar] [CrossRef]
- Lee, C.K.; Son, S.H.; Park, K.K.; Park, J.H.Y.; Lim, S.S.; Chung, W.-Y. Isoliquiritigenin Inhibits Tumor Growth and Protects the Kidney and Liver Against Chemotherapy-Induced Toxicity in a Mouse Xenograft Model of Colon Carcinoma. J. Pharmacol. Sci. 2008, 106, 444–451. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T.; Takasuka, N.; Iigo, M.; Baba, M.; Nishino, H.; Tsuda, H.; Okuyama, T. Isoliquiritigenin, a flavonoid from licorice, reduces prostaglandin E2 and nitric oxide, causes apoptosis, and suppresses aberrant crypt foci development. Cancer Sci. 2004, 95, 448–453. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-L.; Wei, F.; Zhao, K.; Zhang, Y.; Wang, D.; Ya-Li, H. Isoliquiritigenin inhibits colorectal cancer cells HCT-116 growth by suppressing the PI3K/AKT pathway. Open Life Sci. 2017, 12, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Sechet, E.; Telford, E.; Bonamy, C.; Sansonetti, P.J.; Sperandio, B. Natural molecules induce and synergize to boost expression of the human antimicrobial peptide beta-defensin-3. Proc. Natl. Acad. Sci. USA 2018, 115, E9869–E9878. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Huang, S.; Chen, C.-L.; Su, S.-B.; Fang, D.-D. Isoliquiritigenin Inhibits Ovarian Cancer Metastasis by Reversing Epithelial-to-Mesenchymal Transition. Molecules 2019, 24, 3725. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-Y.; Huang, T.-C.; Shieh, T.-M.; Wu, C.-H.; Lin, L.-C.; Hsia, S.-M. Isoliquiritigenin Induces Autophagy and Inhibits Ovarian Cancer Cell Growth. Int. J. Mol. Sci. 2017, 18, 2025. [Google Scholar] [CrossRef] [Green Version]
- Mahalingam, S.; Gao, L.; Eisner, J.; Helferich, W.G.; Flaws, J.A. Effects of isoliquiritigenin on ovarian antral follicle growth and steroidogenesis. Reprod. Toxicol. 2016, 66, 107–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Yang, L.; Deng, X.; Sun, Y. Effects of isoliquiritigenin on ovarian cancer cells. OncoTargets Ther. 2018, 11, 1633–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, X.; Yu, B.; Wang, Y.; Jiang, J.; Liu, L.; Zhao, H.; Qi, W.; Zheng, Q. Involvement of endoplasmic reticulum stress in isoliquiritigenin-induced SKOV-3 cell apoptosis. Recent Pat. Anti-Cancer Drug Discov. 2013, 8, 191–199. [Google Scholar] [CrossRef]
- Lee, J.-E.; Hong, E.-J.; Nam, H.-Y.; Hwang, M.; Kim, J.-H.; Han, B.-G.; Jeon, J.-P. Molecular signatures in response to Isoliquiritigenin in lymphoblastoid cell lines. Biochem. Biophys. Res. Commun. 2012, 427, 392–397. [Google Scholar] [CrossRef]
- Li, D.; Wang, Z.; Chen, H.; Wang, J.; Zheng, Q.; Shang, J.; Li, J. Isoliquiritigenin induces monocytic differentiation of HL-60 cells. Free Radic. Biol. Med. 2009, 46, 731–736. [Google Scholar] [CrossRef]
- Liu, Q.; Lv, H.; Wen, Z.; Ci, X.; Peng, L. Isoliquiritigenin activates nuclear factor erythroid-2 related factor 2 to suppress the NOD-Like receptor protein 3 inflammasome and inhibits the NF-kappaB pathway in macrophages and in acute lung injury. Front. Immunol. 2017, 8, 1518. [Google Scholar] [CrossRef]
- Traboulsi, H.; Cloutier, A.; Boyapelly, K.; Bonin, M.-A.; Marsault, É.; Cantin, A.M.; Richter, M.V. The Flavonoid Isoliquiritigenin Reduces Lung Inflammation and Mouse Morbidity during Influenza Virus Infection. Antimicrob. Agents Chemother. 2015, 59, 6317–6327. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.; Zhou, Y. Combination of liquiritin, isoliquiritin and isoliquirigenin induce apoptotic cell death through upregulating p53 and p21 in the A549 non-small cell lung cancer cells. Oncol. Rep. 2013, 31, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Yang, J.; Wen, Q.; Li, Y. Isoliquiritigenin, a flavonoid from licorice, relaxes guinea-pig tracheal smooth muscle in vitro and in vivo: Role of cGMP/PKG pathway. Eur. J. Pharmacol. 2008, 587, 257–266. [Google Scholar] [CrossRef]
- Hsu, Y.-L.; Kuo, P.-L.; Chiang, L.-C.; Lin, C.-C. Isoliquiritigenin inhibits the proliferation and induces the apoptosis of human non-small cell lung cancer a549 cells. Clin. Exp. Pharmacol. Physiol. 2004, 31, 414–418. [Google Scholar] [CrossRef]
- Ii, T.; Satomi, Y.; Katoh, D.; Shimada, J.; Baba, M.; Okuyama, T.; Nishino, H.; Kitamura, N. Induction of cell cycle arrest and p21CIP1/WAF1 expression in human lung cancer cells by isoliquiritigenin. Cancer Lett. 2004, 207, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-J.; Song, H.-Y.; Youn, H.-S. Suppression of the TRIF-dependent signaling pathway of toll-like receptors by isoliquiritigenin in RAW264.7 macrophages. Mol. Cells 2009, 28, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, J.Y.; Seo, G.S.; Kim, Y.-C.; Sohn, D.H. Isoliquiritigenin, from Dalbergia odorifera, up-regulates anti-inflammatory heme oxygenase-1 expression in RAW264.7 macrophages. Inflamm. Res. 2009, 58, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, B.; Yao, Y.; Chen, N.; Chen, X.; Tian, H.; Wang, Z.; Zheng, Q. NADPH Oxidase-Derived Reactive Oxygen Species Are Involved in the HL-60 Cell Monocytic Differentiation Induced by Isoliquiritigenin. Molecules 2012, 17, 13424–13438. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, B.; Yuan, X.; Yao, Y.; Zhao, H.; Sun, X.; Zheng, Q. Isoliquiritigenin-induced effects on Nrf2 mediated antioxidant defence in the HL-60 cell monocytic differentiation. Cell Biol. Int. 2013, 37, 1215–1224. [Google Scholar] [CrossRef]
- Youns, M.; Fu, Y.-J.; Zu, Y.-G.; Kramer, A.; Konkimalla, V.B.; Radlwimmer, B.; Sültmann, H.; Efferth, T. Sensitivity and resistance towards isoliquiritigenin, doxorubicin and methotrexate in T cell acute lymphoblastic leukaemia cell lines by pharmacogenomics. Arch. Pharmacol. 2010, 382, 221–234. [Google Scholar] [CrossRef]
- Zu, Y.; Liu, X.; Fu, Y.-J.; Shi, X.; Wu, N.; Yao, L.; Efferth, T. Cytotoxic Activity of Isoliquiritigenin towards CCRF-CEM Leukemia Cells and its Effect on DNA Damage. Planta Med. 2009, 75, 1134–1140. [Google Scholar] [CrossRef]
- Yu, H.; Li, H.; Li, Y.; Li, M.; Chen, G. Effect of isoliquiritigenin for the treatment of atopic dermatitis-like skin lesions in mice. Arch. Dermatol. Res. 2017, 309, 805–813. [Google Scholar] [CrossRef]
- Xiang, S.; Chen, H.; Luo, X.-J.; An, B.; Wu, W.; Cao, S.; Ruan, S.; Wang, Z.; Weng, L.; Zhu, H.; et al. Isoliquiritigenin suppresses human melanoma growth by targeting miR-301b/LRIG1 signaling. J. Exp. Clin. Cancer Res. 2018, 37, 184. [Google Scholar] [CrossRef]
- Chen, X.; Yang, M.; Hao, W.; Han, J.; Ma, J.; Wang, C.; Sun, S.; Zheng, Q. Differentiation-inducing and anti-proliferative activities of isoliquiritigenin and all-trans-retinoic acid on B16F0 melanoma cells: Mechanisms profiling by RNA-seq. Gene 2016, 592, 86–98. [Google Scholar] [CrossRef]
- Chen, X.Y.; Li, D.F.; Han, J.C.; Wang, B.; Dong, Z.P.; Yu, L.N.; Pan, Z.H.; Qu, C.J.; Chen, Y.; Sun, S.G.; et al. Reprogramming induced by isoliquiritigenin diminishes melanoma cachexia through mTORC2-AKT-GSK3beta signaling. Oncotarget 2017, 8, 34565–34575. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ren, H.-H.; Wang, D.; Chen, Y.; Qu, C.-J.; Pan, Z.-H.; Liu, X.; Hao, W.; Xu, W.-J.; Wang, K.; et al. Isoliquiritigenin Induces Mitochondrial Dysfunction and Apoptosis by Inhibiting mitoNEET in a Reactive Oxygen Species-Dependent Manner in A375 Human Melanoma Cells. Oxidative Med. Cell. Longev. 2019, 2019, 9817576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Ma, J.; Yan, X.; Chen, X.; Si, L.; Liu, Y.; Han, J.; Hao, W.; Zheng, Q. Isoliquiritigenin Inhibits Proliferation and Induces Apoptosis via Alleviating Hypoxia and Reducing Glycolysis in Mouse Melanoma B16F10 Cells. Recent Pat. Anti-Cancer Drug Discov. 2016, 11, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, B.; Yuan, X.; Yang, F.; Liu, J.; Zhao, H.; Liu, L.; Wang, Y.; Wang, Z.; Zheng, Q. Isoliquiritigenin-Induced Differentiation in Mouse Melanoma B16F0 Cell Line. Oxidative Med. Cell. Longev. 2012, 2012, 534934. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wu, Y.; Jiang, Y.; Zhou, Y.; Wang, Y.; Yao, Y.; Yi, C.; Gou, L.; Yang, J. Isoliquiritigenin inhibits the growth of multiple myeloma via blocking IL-6 signaling. J. Mol. Med. 2012, 90, 1311–1319. [Google Scholar] [CrossRef]
- Lv, J.; Fu, Y.; Cao, Y.; Jiang, S.; Yang, Y.; Song, G.; Yun, C.; Gao, R. Isoliquiritigenin inhibits melanogenesis, melanocyte dendricity and melanosome transport by regulating ERK-mediated MITF degradation. Exp. Dermatol. 2020, 29, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Iwashita, K.; Kobori, M.; Yamaki, K.; Tsushida, T. Flavonoids Inhibit Cell Growth and Induce Apoptosis in B16 Melanoma 4A5 Cells. Biosci. Biotechnol. Biochem. 2000, 64, 1813–1820. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, C.; Zeng, W.-C.; Xu, G.-Y.; Wu, J.-M.; Li, Z.-W.; Huang, X.-Y.; Lin, R.; Shi, X. Isoliquiritigenin inhibits the proliferation, migration and metastasis of Hep3B cells via suppressing cyclin D1 and PI3K/AKT pathway. Biosci. Rep. 2020, 40, 40. [Google Scholar] [CrossRef]
- Wang, J.R.; Luo, Y.H.; Piao, X.J.; Zhang, Y.; Feng, Y.C.; Li, J.Q.; Xu, W.T.; Zhang, Y.; Zhang, T.; Wang, S.N.; et al. Mechanisms underlying isoliquiritigenin-induced apoptosis and cell cycle arrest via ROS-mediated MAPK/STAT3/NF-kappaB pathways in human hepatocellular carcinoma cells. Drug Dev. Res. 2019, 80, 461–470. [Google Scholar] [CrossRef]
- Hsu, Y.-L.; Kuo, P.-L.; Lin, C.-C. Isoliquiritigenin induces apoptosis and cell cycle arrest through p53-dependent pathway in Hep G2 cells. Life Sci. 2005, 77, 279–292. [Google Scholar] [CrossRef]
- Hsu, Y.-L.; Kuo, P.-L.; Lin, L.-T.; Lin, C.-C. Isoliquiritigenin Inhibits Cell Proliferation and Induces Apoptosis in Human Hepatoma Cells. Planta Med. 2005, 71, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.S.; Park, E.J.; Kang, Y.H.; Hawthorne, M.E.; Vigo, J.S.; Graham, J.G.; Cabieses, F.; Fong, H.H.; Mehta, R.G.; Pezzuto, J.M.; et al. Potential cncer chemopreventive flavonoids from the stems of Tephrosia toxicaria. J. Nat. Prod. 2003, 66, 1166–1170. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.-C.; Hsu, C.-L.; Lin, H.-T.; Yen, G.-C. Anticancer Effects of Flavonoid Derivatives Isolated from Millettia reticulata Benth in SK-Hep-1 Human Hepatocellular Carcinoma Cells. J. Agric. Food Chem. 2010, 58, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Lai, Y.; Li, Y.; Shu, N.; Wang, Z.; Wang, Y.; Li, Y.; Chen, Z. Antineoplastic activity of isoliquiritigenin, a chalcone compound, in androgen-independent human prostate cancer cells linked to G2/M cell cycle arrest and cell apoptosis. Eur. J. Pharmacol. 2018, 821, 57–67. [Google Scholar] [CrossRef]
- Lee, Y.M.; Lim, D.Y.; Choi, H.J.; Jung, J.I.; Chung, W.-Y.; Park, J.H.Y. Induction of Cell Cycle Arrest in Prostate Cancer Cells by the Dietary Compound Isoliquiritigenin. J. Med. Food 2009, 12, 8–14. [Google Scholar] [CrossRef]
- Kwon, G.T.; Cho, H.J.; Chung, W.-Y.; Park, K.-K.; Moon, A.; Park, J.H.Y. Isoliquiritigenin inhibits migration and invasion of prostate cancer cells: Possible mediation by decreased JNK/AP-1 signaling. J. Nutr. Biochem. 2009, 20, 663–676. [Google Scholar] [CrossRef]
- Jung, J.I.; Chung, E.; Seon, M.R.; Shin, H.-K.; Kim, E.J.; Lim, S.S.; Chung, W.-Y.; Park, K.-K.; Park, J.H.Y. Isoliquiritigenin (ISL) inhibits ErbB3 signaling in prostate cancer cells. BioFactors 2006, 28, 159–168. [Google Scholar] [CrossRef]
- Jung, J.I.; Lim, S.S.; Choi, H.J.; Shin, H.-K.; Kim, E.J.; Chung, W.-Y.; Park, K.-K.; Park, J.H.Y. Isoliquiritigenin induces apoptosis by depolarizing mitochondrial membranes in prostate cancer cells. J. Nutr. Biochem. 2006, 17, 689–696. [Google Scholar] [CrossRef]
- Kanazawa, M.; Satomi, Y.; Mizutani, Y.; Ukimura, O.; Kawauchi, A.; Sakai, T.; Baba, M.; Okuyama, T.; Nishino, H.; Miki, T. Isoliquiritigenin Inhibits the Growth of Prostate Cancer. Eur. Urol. 2003, 43, 580–586. [Google Scholar] [CrossRef]
- Hirchaud, F.; Hermetet, F.; Ablise, M.; Fauconnet, S.; Vuitton, D.A.; Prétet, J.-L.; Mougin, C. Isoliquiritigenin Induces Caspase-Dependent Apoptosis via Downregulation of HPV16 E6 Expression in Cervical Cancer Ca Ski Cells. Planta Med. 2013, 79, 1628–1635. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, B.; Gan, L.; Wang, Z.H.; Yu, B.C.; Liu, L.L.; Zheng, Q.; Wang, Z.P. Involvement of the mitochondrion-dependent and the endoplasmic reticulum stress-signaling pathways in isoliquiritigenin-induced apoptosis of HeLa cell. Biomed. Environ. Sci. 2013, 26, 268–276. [Google Scholar] [PubMed]
- Hsu, Y.-L.; Chia, C.-C.; Chen, P.-J.; Huang, S.-E.; Huang, S.-C.; Kuo, P.-L. Shallot and licorice constituent isoliquiritigenin arrests cell cycle progression and induces apoptosis through the induction of ATM/p53 and initiation of the mitochondrial system in human cervical carcinoma HeLa cells. Mol. Nutr. Food Res. 2009, 53, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, S.; Sun, W.; Wei, C. Isoliquiritigenin inhibits proliferation and metastasis of MKN28 gastric cancer cells by suppressing the PI3K/AKT/mTOR signaling pathway. Mol. Med. Rep. 2018, 18, 3429–3436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.H.; Lee, S.; Shin, Y.-S.; Cho, M.; Kang, H.J.; Cho, H. Anti-Cancer Effect of Quercetin in Xenograft Models with EBV-Associated Human Gastric Carcinoma. Molecules 2016, 21, 1286. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Fu, N.-Y.; Pang, D.-B.; Wu, W.-Y.; Xu, A.-L. Apoptosis Induced by Isoliquiritigenin in Human Gastric Cancer MGC-803 Cells. Planta Med. 2001, 67, 754–757. [Google Scholar] [CrossRef]
- Kim, D.-C.; Ramachandran, S.; Baek, S.-H.; Kwon, S.-H.; Kwon, K.-Y.; Cha, S.-D.; Bae, I.; Cho, C.-H. Induction of Growth Inhibition and Apoptosis in Human Uterine Leiomyoma Cells by Isoliquiritigenin. Reprod. Sci. 2008, 15, 552–558. [Google Scholar] [CrossRef]
- Chen, J.; Liu, C.; Yang, Q.-Q.; Ma, R.-B.; Ke, Y.; Dong, F.; Wu, X.-E. Isoliquiritigenin Suppresses Osteosarcoma U2OS Cell Proliferation and Invasion by Regulating the PI3K/Akt Signalling Pathway. Chemotherapy 2018, 63, 155–161. [Google Scholar] [CrossRef]
- Li, C.; Zhou, X.; Sun, C.; Liu, X.; Shi, X.; Wu, S. Isoliquiritigenin inhibits the proliferation, apoptosis and migration of osteosarcoma cells. Oncol. Rep. 2019, 41, 2502–2510. [Google Scholar] [CrossRef] [Green Version]
- Alshangiti, A.M.; Togher, K.L.; Hegarty, S.V.; Sullivan, A.M.; O’Keeffe, G.W. The dietary flavonoid isoliquiritigenin is a potent cytotoxin for human neuroblastoma cells. Neuronal Signal. 2019, 3, 201. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Chang, H.; Ma, P.; Gao, G.; Jin, C.; Zhao, X.; Zhou, W.; Jin, B. Inhibitory effect of DNA topoisomerase inhibitor isoliquiritigenin on the growth of glioma cells. Int. J. Clin. Exp. Pathol. 2015, 8, 12577–12582. [Google Scholar]
- Yang, H.-H.; Zhang, C.; Lai, S.-H.; Zeng, C.-C.; Liu, Y.; Wang, X.-Z. Isoliquiritigenin Induces Cytotoxicity in PC-12 Cells In Vitro. Appl. Biochem. Biotechnol. 2017, 183, 1173–1190. [Google Scholar] [CrossRef] [PubMed]
- Si, L.; Yang, X.; Yanming, W.; Wang, Y.; Zheng, Q. Isoliquiritigenin induces apoptosis of human bladder cancer T24 cells via a cyclin-dependent kinase-independent mechanism. Oncol. Lett. 2017, 14, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Drevon, D.; Fursa, S.R.; Malcolm, A.L. Intercoder Reliability and Validity of WebPlotDigitizer in Extracting Graphed Data. Behav. Modif. 2016, 41, 323–339. [Google Scholar] [CrossRef] [PubMed]
- Baba, M.; Asano, R.; Takigami, I.; Takahashi, T.; Ohmura, M.; Okada, Y.; Sugimoto, H.; Arika, T.; Nishino, H.; Okuyama, T. Studies on Cancer Chemoprevention by Traditional Folk Medicines XXV.—Inhibitory Effect of Isoliquiritigenin on Azoxymethane-Induced Murine Colon Aberrant Crypt Focus Formation and Carcinogenesis. Biol. Pharm. Bull. 2002, 25, 247–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.H.; Bae, J.-K.; Chae, H.-S.; Nhoek, P.; Choi, J.-S.; Chin, Y.-W.; Choi, Y.O. Isoliquiritigenin ameliorates dextran sulfate sodium-induced colitis through the inhibition of MAPK pathway. Int. Immunopharmacol. 2016, 31, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Lv, X.; Yang, H.; Peng, L.; Ci, X. Isoliquiritigenin exerts antioxidative and anti-inflammatory effects via activating the KEAP-1/Nrf2 pathway and inhibiting the NF-kappaB and NLRP3 pathways in carrageenan-induced pleurisy. Food Funct. 2020, 11, 2522–2534. [Google Scholar] [CrossRef]
- Yu, D.; Liu, X.; Zhang, G.; Ming, Z.; Wang, T. Isoliquiritigenin inhibits cigarette smoke-induced COPD by attenuating inflammation and oxidative stress via the regulation of the Nrf2 and NF-kappaB signaling pathways. Front. Pharmacol. 2018, 9, 1001. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, G.; Zhou, S. Protective effects of isoliquiritigenin on LPS-induced acute lung injury by activating PPAR-gamma. Inflammation 2018, 41, 1290–1296. [Google Scholar] [CrossRef]
- Yamazaki, S.; Morita, T.; Endo, H.; Hamamoto, T.; Baba, M.; Joichi, Y.; Kaneko, S.; Okada, Y.; Okuyama, T.; Nishino, H.; et al. Isoliquiritigenin suppresses pulmonary metastasis of mouse renal cell carcinoma. Cancer Lett. 2002, 183, 23–30. [Google Scholar] [CrossRef]
- Sun, C.; Wang, Z.-H.; Liu, X.-X.; Yang, L.-N.; Wang, Y.; Liu, Y.; Mao, A.-H.; Liu, Y.-Y.; Zhou, X.; Di, C.-X.; et al. Disturbance of redox status enhances radiosensitivity of hepatocellular carcinoma. Am. J. Cancer Res. 2015, 5, 1368–1381. [Google Scholar] [CrossRef] [Green Version]
- Park, I.; Park, K.-K.; Park, J.H.Y.; Chung, W.-Y. Isoliquiritigenin induces G2 and M phase arrest by inducing DNA damage and by inhibiting the metaphase/anaphase transition. Cancer Lett. 2009, 277, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-C.; Wu, C.-H.; Shieh, T.-M.; Chen, H.-Y.; Huang, T.-C.; Hsia, S.-M. The licorice dietary component isoliquiritigenin chemosensitizes human uterine sarcoma cells to doxorubicin and inhibits cell growth by inducing apoptosis and autophagy via inhibition of m-TOR signaling. J. Funct. Foods 2017, 33, 332–344. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, H.; Ma, X.-F.; Zhou, X.; Gan, L.; Liu, Y.-Y.; Wang, Z.-H. Isoliquiritigenin Enhances Radiosensitivity of HepG2 Cells via Disturbance of Redox Status. Cell Biophys. 2012, 65, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhang, B.; Chen, N.; Chen, X.; Liu, L.-L.; Zheng, Q.; Wang, Z.-P. Isoliquiritigenin treatment induces apoptosis by increasing intracellular ROS levels in HeLa cells. J. Asian Nat. Prod. Res. 2012, 14, 789–798. [Google Scholar] [CrossRef]
- Zhao, H.; Yuan, X.; Li, D.; Chen, H.; Jiang, J.; Wang, Z.; Sun, X.; Zheng, Q. Isoliquiritigen Enhances the Antitumour Activity and Decreases the Genotoxic Effect of Cyclophosphamide. Molecules 2013, 18, 8786–8798. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Wu, D.; Huang, Y. Natural compounds ursolic acid and isoliquiritigenin target GRP78 to enhance human gastric cancer cell chemosensitivity by 5-fluorouracil. FASEB J. 2016, 30, 1193–1194. [Google Scholar]
- Yang, N.; Patil, S.; Zhuge, J.; Wen, M.C.; Bolleddula, J.; Doddaga, S.; Goldfarb, J.; Sampson, H.A.; Li, X.M. Glycyrrhiza uralensis flavonoids present in anti-asthma formula, ASHMI, inhibit memory Th2 responses in vitro and in vivo. Phytother. Res. 2013, 27, 1381–1391. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Londoño, A.P.; Bello-Alvarez, C.; Pedraza-Chaverri, J. Isoliquiritigenin pretreatment attenuates cisplatin induced proximal tubular cells (LLC-PK1) death and enhances the toxicity induced by this drug in bladder cancer T24 cell line. Food Chem. Toxicol. 2017, 109 Pt 1, 143–154. [Google Scholar] [CrossRef]
- Gómez-Sierra, T.; Medina-Campos, O.N.; Solano, J.D.; Ibarra-Rubio, M.E.; Pedraza-Chaverri, J. Isoliquiritigenin Pretreatment Induces Endoplasmic Reticulum Stress-Mediated Hormesis and Attenuates Cisplatin-Induced Oxidative Stress and Damage in LLC-PK1 Cells. Molecules 2020, 25, 4442. [Google Scholar] [CrossRef]
- Siegel, R.L.; Mph, K.D.M.; Sauer, A.G.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Liu, Q.; Gong, Y.; Xu, X.; Zhang, C.; Liu, X.; Zhang, C.; Guo, H.; Zhang, X.; Gong, Y.; et al. GSH-dependent antioxidant defense contributes to the acclimation of colon cancer cells to acidic microenvironment. Cell Cycle 2016, 15, 1125–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, L.; Pan, G.; Liu, X.; Huang, J.; Jiang, Z.; Zhu, X.; Gan, X.; Xu, Q.; Tan, N. High expression of ALDOA and DDX5 are associated with poor prognosis in human colorectal cancer. Cancer Manag. Res. 2018, 10, 1799–1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Wang, Y.-Z.; Yu, Y.; Wang, J.-J.; Yin, P.-H.; Xu, K. Triterpenoids Extracted from Rhus chinensis Mill Act Against Colorectal Cancer by Inhibiting Enzymes in Glycolysis and Glutaminolysis: Network Analysis and Experimental Validation. Nutr. Cancer 2019, 72, 293–319. [Google Scholar] [CrossRef] [PubMed]
- Jayson, G.C.; Kohn, E.C.; Kitchener, H.C.; Ledermann, J.A. Ovarian cancer. Lancet 2014, 384, 1376–1388. [Google Scholar] [CrossRef]
- Nasim, F.; Sabath, B.F.; Eapen, G.A. Lung Cancer. Med. Clin. N. Am. 2019, 103, 463–473. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.M.; Jemal, A. Cancer statistics. Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef]
- Romaszko, A.M.; Doboszyńska, A. Multiple primary lung cancer: A literature review. Adv. Clin. Exp. Med. 2018, 27, 725–730. [Google Scholar] [CrossRef]
- Tian, T.; Sun, J.; Wang, J.; Liu, Y.; Liu, H. Isoliquiritigenin inhibits cell proliferation and migration through the PI3K/AKT signaling pathway in A549 lung cancer cells. Oncol. Lett. 2018, 16, 6133–6139. [Google Scholar] [CrossRef] [Green Version]
- Hsia, S.-M.; Yu, C.-C.; Shih, Y.-H.; Chen, M.Y.; Wang, T.-H.; Huang, Y.-T.; Shieh, T.-M. Isoliquiritigenin as a cause of DNA damage and inhibitor of ataxia-telangiectasia mutated expression leading to G2/M phase arrest and apoptosis in oral squamous cell carcinoma. Head Neck 2015, 38 (Suppl. 1), E360–E371. [Google Scholar] [CrossRef]
Formulation | Material | Particle Size (nm) | Model | Conclusion | Ref |
---|---|---|---|---|---|
Nanosuspension | Hydroxypropyl cellulose-SSL Polyvinylpyrroli-done-K30 | 238.1 ± 4.9 354.1 ± 9.1 | In vitro: A549 | HPC SSL‑ISL‑NS and PVP K30-ISL‑NS both improve the solubility and cytotoxic activity of ISL (IC50: ~0.08 µM). | [20] |
Nanoencapsulation | Mesoporous silica nanoparticles | ~200 | In vitro: mouse primary bone marrow-derived macrophages (BMMs) In vivo: lipopolysaccharide (LPS)-mediated calvarial bone erosion model (received 50 mg/kg MSNs-ISL; once every 2 days via subcutaneous injection) Experiment period: 7 days | MSNs-ISL as an effective natural product-based bone-bioresponsive nanoencapsulation system prevents osteoclast-mediated bone loss (In vitro effective dose: 16~64 µg/mL). | [21] |
Lipid–polymer hybrid | ISL-iRGD nanoparticles | ~130 138.97 ± 2.44 |
In vitro: MCF-7, MDA-MB231, 4T1 In vivo: 4T1-bearing nude mouse (received 35 µg/kg once every 2 days via IV injection) Experiment period: 20 days | RGD modified lipid–polymer hybrid NPs improve ISL in anti-breast cancer efficacy (Effective dose: >12 µM). | [22] |
LMWH-ISL-SLN | 217.53 ± 4.86 | In vitro: HepG2 In vivo: Kunming mice (6 female and 6 male; 50 mg/kg via IV injection daily) Experiment period: 14 days | Pharmacokinetics of LMWH-ISL-SLN demonstrated its safety and better bio-distribution after intravenous administration (In vitro IC50: ~7.45 µg/mL). | [23] | |
Micro-emulsion | Self-microemulsifying drug delivery system (SEMDDS) | 44.78 ± 0.35 | In vivo: SD rat (oral administration: a single dose: 200 mg/kg) Experiment period: 24 h | ISL-SMEDDS can enhance the solubility and oral bioavailability of ISL. | [17] |
20.63 ± 1.95 | In vivo: SD rat (oral administration: twice a day; 20 mg/kg) Experiment period: 63 days | [29] | |||
Nanostructured lipid carrier (ISL-NLC) | Monostearate and lecithin | 160.73 ± 6.08 | In vivo: Kunming mice bearing H22 and S180 tumor (intraperitoneal injection daily) Experiment period: 12 days | ISL-NLC nanoparticles with high envelopment efficiency with initial burst release, exhibiting superior in vivo antitumor effect and biodistribution. | [24] |
MS and Miglyol 812 | 160.73 ± 6.08 | In vivo: SD rat (oral administration: a single dose: 20 mg/kg) Experiment period: 36 h | NLC are valuable as an oral delivery carrier to enhance the absorption of a poorly water-soluble drug, ISL. | [19] | |
Ceramide, cholesterol, caprylic/capric triglyceride | 150.2–251.7 | In vitro: Franz diffusion cell In vivo: ICR mice | NCL improved the skin permeation of ISL (permeability: 8.48~10.12 μg/cm3). | [25] | |
TPGS-modified proliposomes | D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), proliposomes | 23.8 ± 0.9 | In vivo: Swiss-ICR mice oral administration Experiment period: 24 h | ISL-TPGS-PLP had small particle size, high encapsulation efficiency and drug loading capacity, and possessed good storage stability. | [18] |
Polymeric micelles | ISL-loaded F127/P123 polymeric micelles (ISL-FPM) | 20.12 ± 0.72 | In vivo: SD rat, (oral administration: a single dose 200 mg/kg) Experiment period: 24 h | ISL-FPM act as a promising approach to improve solubility as well as enhance bioavailability and antioxidant activity of ISL. | [26] |
Liposome | Phospholipid and cholesterol | 233.1 | In vitro: HeLa and SiHa | ISL liposome can significantly inhibit the proliferation of human cervical cancer cells in vitro. | [30] |
Nanoliposome | Sodium cholate, cholesterol and IPM were melted with a ratio of 5:1:4 (w/w/w) | 82.3 ± 35.6 | In vitro: HCT116 and HT29 | ISL involved in the glucose metabolism in colon cancer. | [27] |
Hydrogel systems | HA-HEC hydrogels | N.A. | In vitro: skin permeation study Franz diffusion cells | HA-HEC hydrogel showing the stable viscoelastic be haviour and the optimal adhesiveness has potential to enhance skin permeation of IS (permeability: 20 μg/cm3). | [28] |
Type | Cell Line | Result | Ref |
---|---|---|---|
Breast | MCF-10A (0~50 µM) (24 h) | ISL had no significant influence on MCF-10A as human normal tissues. | [40] |
MCF-10A (0~100 µM) (24 h) | ISL had limited inhibitory effects on the proliferation in normal cell and did not show the chemosensitization effect with epirubicin. | [56] | |
H184B5F5/M10 (0.1~10 µM) (6~48 h) | ISL did not influence the normal cell viability at the at 0.1~10 µM. | [57] | |
Lung | HELF (24~72 h) | Both pure drug of ISL and nanosuspension showed low toxicity to normal cells. | [20] |
Hepatocyte | AML-12 (0~200 µM) (24 h) | 5~50 μM of ISL increased cell proliferation, strong cytotoxicity was observed over 100 μM. | [54] |
Uterus Endometrium | T-HESCs (5~100 µM) (24~48 h) | The viability of T-HESCs showed significant changes when ISL concentration over 75 μM was applied. | [53] |
Gastric | GES-1 (20 µM) (48 h) | ISL exhibited a negligible effect on cell growth and cell viability exceeded 70%. | [32] |
Endothelia | HUVEC | Over 10 µM of ISL is nontoxic with inhibiting the VCAM-1 and E-selectin. | [58] |
Small intestine | IEC-6 (10~100 µM) (24 h) | No effect was observed in IEC-6 cells. | [59] |
Oral | SG cell (25~400 μM) (24 h) | The half maximal effective dose (IC50) of ISL is 386.3 ± 29.7 μM. | [60] |
Brain | H22 | ISL had the potential to against glutamate-induced neuronal cell death (neuroprotective effect) | [36] |
Type of Cancer | Cell | Testing Range/IC50 | Signaling Pathways Effect of ISL (In Vitro) | Ref |
---|---|---|---|---|
Breast cancer | MCF-7 | Testing conc: 10 nM~10 µM (5 days; 10 nM is sufficient) |
| [61] |
MCF-7 MDA-MB-231 | Effective conc: 25 µM and 50 µM (24 h) |
| [51] | |
MCF-7 MDA-MB-231 HUVEC | Testing conc.: 0, 20, 40, 60, 80, 100 µM |
| [62] | |
Tumor cell line: MCF-7 IC50 estimated = ~33.39 µM MDA-MB-231 IC50 estimated = ~35.64 µM (48 h) | ||||
HUVEC IC50 estimated = ~75.48 µM | ||||
PMA-induced COX-2 in MCF-10A | Effective conc: 0.1 µM and 10 µM (24 h; 1 µM is sufficient.) |
| [63] | |
BT549 MDA-MB-231 | Effective conc.: 10, 20, 40 µM (12 h) |
| [64] | |
MDA-MB-231 Hs-578T | Effective conc.: ~20 µM |
| [65] | |
Breast cancer | MCF-7 MDA-MB-231 | Testing conc.: 0, 5, 10, 20 µM |
| [66] |
Tumor cell line: MCF-7 IC50 = 10.08 µM MDA-MB-231 IC50 = 5.5 µM (48 h) | ||||
MCF-7 MDA-MB-231 | Testing conc.: 0, 6.25, 12.5, 25, 50, 100 µM |
| [67] | |
Tumor cell line: MCF-7 IC50: 32.66 µM MDA-MB-231 IC50: 22.36 µM (24 h) | ||||
MDA-MB-231 Hs-578T | Effective conc.: 10 µM and 20 µM |
| [68] | |
MCF-7 MDA-MB-231 BT549 MCF-10 | Testing conc.: 1, 5, 10 and 25 µM |
| [40] | |
Tumor cell lines: MCF-7 IC50 estimated: ~33.0 µM MDA-MB-231 IC50 estimated: ~21.2 µM BT549 IC50 estimated: ~18.1 µM (24 h) | ||||
Normal cell line: MCF- 10A IC50 estimated: ~80.51 µM (24 h) | ||||
Breast cancer | MCF-7 MDA-MB-231 H184B5F5/M10 | Effective conc: 25 µM and 50 µM (48 h) Tumor cell lines: MCF-7 MDA-MB-231 |
| [57] |
Normal cell line: H184B5F5/M10 (ISL did not influence the viability) | ||||
MCF-7 MCF-7/ADR MCF-10A | Tumor cell lines: MCF-7 IC50 estimation: ~59.39 µM MCF-7/ADR IC50 estimation: ~38.86 µM (24 h) |
| [56] | |
Normal cell line: MCF-10A ISL (at 100 µM) had limited inhibitory effects on the proliferation | ||||
MDA-MB-231 | Testing conc.: 0, 10, 25, 50 µM MDA-MB-231 IC50 estimated: ~24.23 µM (48 h) |
| [69] | |
MCF-7aro | Testing conc.: 0, 0.625, 1.25, 2.5, 5, 10 µM MCF-7aro IC50: 2.5 µM (24 h) |
| [48,70] | |
Colon cancer | HT29 | HT29 ED50: 11.1 µg/mL (42.32 µM) |
| [71] |
HT29 | Testing conc.: 0, 5,10, 20, 30, 40, 50 µM 40 µM was applied; (24 h) |
| [72] | |
HCT116 HT29 SW480 | Testing conc.: 0,10, 20, 30, 40 µM HCT116 IC50 estimated = ~42.41 µM Working conc.: 30 or 40 µM; (24 h) |
| [73] | |
HCT116 | Testing Conc.: 0, 2.5,5, 10, 20, 40, 80, 160 µM HCT116 IC50 estimated: ~78.78 µM (48 h) HCT116 IC50 estimated: ~53.97 µM (72 h) HCT116 IC50 estimated: ~44.8 µM (96 h) |
| [74] | |
CT26 | Testing Conc.: 0, 10, 20, 40, 60, 80 µM CT26 IC50 estimated = ~54.48 µM |
| [75] | |
Colon26 RCN9 CoLo-320DM | Testing Conc.: 0, 5, 25, 100 µM (24, 48 h) Colon26 IC50 estimated = ~17.55 µM (24 h) Colon26 IC50 estimated = ~12.59 µM (48 h) RCN9 IC50 estimated = ~41.73 µM (24 h) RCN9 IC50 estimated = ~18.21 µM (48 h) CoLo-320DM IC50 estimated = ~23.10 µM (24 h) CoLo-320DM IC50 estimated = ~10.82 µM (48 h) |
| [76] | |
Colon cancer | HCT116 | Applied 20 µM (48 h) |
| [77] |
Caco-2/TC-7 | Caco-2/TC-7 EC50: 42 μM |
| [78] | |
Ovary cancer | SKOV3 OVCAR5 ES2 | Testing conc.: 2, 4, 8, 16, 32, 64, and 100 µM SKOV3 IC50: 83.2 µM (72 h) OVCAR5 IC50: 55.5 µM (72 h) ES2 IC50: 40.1 µM (72 h) Effective Conc.: 10 µM |
| [79] |
SKOV3 OVCAR5 | Testing conc.: 0, 1, 5, 10, 20, 25, 50, 75, and 100 µM OVCAR5 IC50: 11 µM (48 h) ES2 IC50: 25 µM (48 h) |
| [80] | |
Antral follicle culture (female CD-1 mic) | Testing conc.: 0.6, 6, 36, and 100 μM |
| [81] | |
SKOV3 OVCAR3 | Testing conc.: 5~80 μM 30 μM applied |
| [82] | |
SKOV3 | N.A. |
| [80,83] | |
Lung cancer | H1299 H1975 A549 | H1299 IC50 estimated: ~36.78~46.08 µM H1975 IC50: 48.14 µM A549 IC50: 75.08 µM (48 h) |
| [9] |
A549 | A549: applied 20 µM (24 h) |
| [84,85] | |
RAW 264.7 | Testing conc.: 5, 10, 20 µM for (Pretreated with 10mM of t-BHP for 18 h) RAW 264.7 (treated with t-BHP) EC50 = 10 µM (18 h) |
| [86] | |
Calu-3 | Calu-3 cells were infected with PR8/H1N1 virus; [EC50] = 24.7 μM |
| [87] | |
H1650 H1975 A549 | H1650 IC50 estimated: ~26.88 µM (24 h) H1975 IC50 estimated: ~8.92 µM (24 h) A549 IC50 estimated: ~46.7 µM (24 h) |
| [42] | |
A549 | A549 IC50: 0.05 mg/mL (~191.21 µM ~117 µM) |
| [88] | |
Lung cancer | guinea-pig tracheal smooth muscle | N.A. |
| [89] |
A549 | A549 IC50: 27.14 µM |
| [90] | |
A549 | A549 IC50: 18.5 µM |
| [91] | |
AML (acute myeloid leukemia) | HL-60 | HL-60 ED50: 5.5 µg/mL (~21.46 µM) 5.00 µg/mL = 19.5 µM (72 h) |
| [71] |
MV4-11 MOLM-13 OCI-LY10 | MV4-11 IC50: 3.2 + 1.2 µM; MOLM-13 IC50: 4.9 + 2.1 µM OCI-LY10 IC50: 20.1 ± 6.7 µM (72 h) |
| [41] | |
LCLs | Testing conc.: 0, 20, 40, 60, 80, 100, 120, 140 µM LCLs IC50 estimated: 40~65 µM (24 h) Applied 50 µM for studies. |
| [84] | |
HL-60 | Testing conc.: 1~15 µg/mL (3.9 µM~58.54 µM) HL-60 IC50 estimated: ~40.42 µM (72 h) |
| [85] | |
RAW264.7 | Testing conc.: 20 and 50 μM |
| [92] | |
AML (acute myeloid leukemia) | RAW264.7 | Testing conc.: 50 and 100 μM |
| [93] |
HL-60 | Testing conc.: 2.5~20 μg/mL (3.9 µM~78.05 µM) (Working conc.: 72 µM) |
| [94] | |
HL-60 | Testing conc.: 2.5~10 μg/mL (3.9 µM~39.0 µM) |
| [95] | |
Jurkat J-Jhan J16 HUT78 Karpas 45 | Jurkat IC50: 0.49 ± 0.12 nM (72 h) J-Jhan IC50: 1.55 ± 1.12 nM (72 h) J16 IC50: 5.25 ± 1.12 µM (72 h) HUT78 IC50: 11 ±13.5 µM (72 h) Karpas 45 IC50: 6.61 ± 1.07 µM (72 h) |
| [96] | |
CCRF-CEM | CCRF-CEM IC50: 18.38 μM (24~72 h) |
| [97] | |
AML (acute myeloid leukemia) | Human monocyte model THP-1 | N.A. |
| [98] |
Melanoma | A375 A2058 | Testing Conc: 0, 10, 20, 40, 80 µM A375 IC50: 21.63 µM (24 h) A2058 IC50: 20.75 µM (24 h) |
| [99] |
B16F0 | N.A. |
| [100] | |
A375 | Testing Conc.: 0, 5, 10, 15 μg/mL (15 μg/mL = 58.53 µM) A375 IC50 estimated: ~48 µM |
| [101] | |
A375 | 40 μg/mL: 69.86% 60 μg/mL: 92.22% A375 IC50 estimated: ~73 µM (24 h) |
| [102] | |
Melanoma | B16F0 | Testing Conc.: 20, 40, 60 and 80 μg/mL B16F10 IC50 estimated: 35 μg/mL (~41.576 μM; 24 h) B16F10 IC50 estimated: 22 μg/mL (~86.77 μM; 48 h) |
| [103] |
B16F10 | Testing Conc.: 5, 10, 15, 20, and 25 μg/mL B16F10 IC50 estimated: ~19 μg/mL (~74.595 μM; 24 h) B16F10 IC50 estimated: ~10.5 μg/mL (~41.576 μM; 48 h) |
| [104] | |
ARH-77 U266 MPC-11 SP2/0 CZ-1 RPMI8226 | ARH-77 IC50: ~13.54 µM MPC-11 IC50: ~4.45 µM SP2/0 IC50: ~22.91 µM CZ-1 IC50: ~13.93 µM U266 IC50: ~8.62 µM RPMI8226 IC50: ~9.09 µM IC50 of ISL was < 4 μg/mL (48 h) |
| [105] | |
SK-MEL-2 HaCaT | Testing Conc.: 0, 1, 4, and 8 µM SK-MEL-2 cells and HaCaT cells (48 h) treated less than 8 µM showed no cytotoxic effects |
| [106] | |
Melanoma | B16 mouse melanoma 4A5 cells | Testing 150 and 200 µM (18 and 24 h) |
| [107] |
HCC/Hepato-ma | Hep3B | Hep3B IC50: 42.84 + 2.01 μM 50 μM applied (48 h) |
| [108] |
HepG2 Hep3B | Testing conc.: 20, 40, 60, 80, and 100 μM (18 h) HepG2 IC50: 27.71 μM Hep3B IC50: 35.28 μM |
| [109] | |
HepG2 | Testing conc.: 1, 5, 10, 20 μg HepG2 IC50 estimated: ~88.46 μM (24 h) HepG2 IC50 estimated: ~31.07 μM (48 h) |
| [110] | |
HepG2 | HepG2 IC50: 10.51 μg/mL (~39 μM; 48 h) |
| [111] | |
HCC/Hepato-ma | SNU475 | SNU475 IC50: 0.243 + 0.21 mM |
| [50] |
Hepa 1c1c7 | Hepa 1c1c7 IC50: 36.3 μM |
| [112] | |
Hep3B | Hep3B IC50: 50.8 μM |
| [45] | |
SK-Hep-1 | SK-Hep-1 IC50: 19.08 μM |
| [113] | |
PC-3 22RV1 | Testing conc: 0, 1, 10, 25, 50, and 100 μM) PC-3 IC50: 19.6 μM (48 h) 22RV1 IC50: 36.6 μM (48 h) |
| [114] | |
Prostate cancer | C4-2 LNCaP IEC-6 | 10~100 μM (24 h) C4-2 IC50: 87.0 μM |
| [59] |
DU145 | Applied conc.: 5~20 μM |
| [115] | |
DU145 | Applied conc.: 0~20 μM |
| [116] | |
DU145 | Applied conc.: 0~20 μM |
| [117] | |
Prostate cancer | MAT-LyLu DU145 | Applied conc.: 0~20 μM MAT-LyLuIC50 estimated: ~13.74/5.67/5.01 µM DU145 IC50 estimated: ~56.87/31.49/17.60 µM (24 h/48 h/72 h) |
| [118] |
DU145 LNCaP | Testing conc.: 0, 5, 10, 15, and 20 μM DU145 IC50 estimated: ~10.561 µM (48 h) LNCaP IC50 estimated: ~10.775 µM (48 h) |
| [119] | |
Cervical cancer | Ca Ski SiHa HeLa C-33A | Testing conc: 10, 20, 40, and 80 µM Ca Ski IC50 estimated: 39.09 μM (72 h) SiHa IC50 estimated: 53.76 μM (72 h) HeLa IC50 estimated: 58.10 μM (72 h) C-33A IC50 estimated: 32.83 μM (72 h) |
| [120] |
HeLa | Testing conc: 2, 5, 10, 30, 40, and 60 μg/mL HeLa IC50 estimated: ~21.24 μM (24 h) |
| [121] | |
HeLa | HeLa IC50: 9.8 μM (48 h) |
| [122] | |
Gastric cancer | MKN28 | MKN28 IC50: ~20.84 µM (48 h) |
| [123] |
MKN-45 | 5 µM applied |
| [46,124] | |
MGC-803 | 0.11 g/L applied (24 h) |
| [125] | |
SGC-7901 BGC-823 | BGc-823 IC50: 23.18 µM (48 h) SGC-7901 IC50: 12.91 µM (48 h) |
| [32] | |
Uterine leiomyoma | Leiomyma Myomentrium | Testing conc: 0, 10, 20, 50 µM Leiomyma IC50 estimated = ~39.33 µM Myomentrium IC50 estimated = ~698.8 µM (48 h) |
| [126] |
Osteosarcoma | U2OS | Testing conc: 5, 10, and 20 µM 20 μM applied |
| [127,128] |
Saos‑2 MC3T3-E1 | Saos‑2 IC50 estimated = ~24.23 μM 30 μM applied | |||
Glioma | SK-N-BE(2) IMR-32 | Effective conc. > 5 µM |
| [129] |
U87 | U87 IC50: 6.3 µM |
| [130] | |
PC12 | PC12 IC50: 17.8 ± 1.8 μM |
| [131] | |
Bladder cancer | T24 | Effective conc.: 30 and 70 µg/mL (24 h) |
| [132] |
Oral squamous cell carcinomas (OSCC) | SG SAS-CSCs OECM-1 | SG cells IC50: 386.3 ± 29.7 μM SAS-CSCs IC50: 144.9 ± 25.7 μM OECM-1-CSCs IC50: 104.5 ± 26.2 μM |
| [60] |
Cancer | Tumor Model | Dose | Applied | Duration | Effect of ISL In Vivo | Ref |
---|---|---|---|---|---|---|
Breast cancer | MDA-MB-231 bearing female nude mice | 20 mg/kg/day 50 mg/kg/day | IP | 25 days | ISL inhibit angiogenesis ISL inhibit breast cancer growth Little influence on normal tissue | [57] |
MDA-MB-231 bearing Balb/c nu/nu mice | 10 mg/kg/day 20 mg/kg/day 5 times/week | Oral | 38 days | Anti-metastatic activities | [64] | |
6-week-old female, MDA-MB-231 bearing BALB/c nude mice | 50 mg/kg/day 100 mg/kg/day 3 times/week | IP | 5 weeks | Cancer growth inhibition and through downregulating AA metabolic network and the deactivation of PI3K/AKT in human breast cancer | [66] | |
MMTV-PyMT transgenic mice | 50 mg/kg/day | Oral | 7 weeks (4th~11th week) | Suppress cancer growth and inhibit the metastasis via regulating miR-374a/PTEN/AKT axis Little influence on normal tissue | [67] | |
MMTV-PyMT mice | 50 mg/kg/day | Oral | 8~12 weeks (4th~12nd or 15th week) | ISL treatment significantly limited tumor foci growth and dispersion by promoting the demethylation of WIF1 promoter | [51] | |
4-week-old female NOD/SCID mice bearing MDA-MB-231 | 50 mg/kg/day | Oral | 4 weeks | Chemosensitize breast CSCs via inhibiting the GRP78/β-catenin/ABCG2 pathway | [40] | |
4T1-bearing nude-mouse model | 25 mg/kg/2 days | IP | 20 days | iRGD modified lipid–polymer hybrid NPs improve the efficacy of ISL in anti-breast cancer | [22] | |
5-week-old female nude-Foxn1nu mice bearing MDA-MB-231 | 2.5–5 mg/mL 0.25 mL/day | Oral gavage | 14~25 days | Inhibit triple-negative breast cancer cell (MDA-MB-231) growth through autophagy-mediated apoptosis | [69] | |
MCF-7aro xenograft model | 50~150 ppm or 0.15~0.5% in diet | Oral in diet | 13th~77th days | ISL acts as a chemoprotective agent to inhibit the enzyme and transcriptional activity of CYP19 | [70] | |
Colon | 7–8 week-old male BALB/c nude mice bear HCT116 tumor | 2.5 mg/kg/2days 5 mg/kg/2days | Peritumoral injection | 14 days | Mediate apoptotic through p62/SQSTM1 upregulation in CRC cancer | [73] |
6-week-old male ddY AOM induced mice | 10 ppm 100 ppm 250 ppm | In drinking water | 16~24 weeks | Against colon cancer | [134] | |
BALB/c male mice bearing CT26 | 1 mg/kg/day 5 mg/kg/day | PO IP | 15 days | Inhibited the growth of tumors ISL alleviates cisplatin-induced nephrotoxicity and hepatotoxicity Improved the side effects of cisplatin therapy | [75] | |
Male AOM-treated F344 rats | 100 ppm mixed in MF basal diet | Oral | 4 weeks | Inhibited the induction of preneoplastic aberrant crypt foci (ACF) ISL is a promising chemopreventive agent against colon carcinogenesis | [76] | |
6-week-old DSS-induced colitis mice | 30 mg/kg | Oral | 10 days | Inhibited MAPK pathway and suppressed the phosphorylation of ERK1/2 and p38, and the activation of NK-κB in colon tissue | [135] | |
NOD-SCID old female mice | 25 mg/kg, 50 mg/kg 100 mg/kg | Oral | 18~30 days observed~80 days | Anti-AML via ISL direct interact with FLT3 kinase (IC50 value of 115.1 ± 4.2 nM) | [41] | |
AML | 7~8-week-old female NOD-SCID mice bearing MV4-11 cells (AML xenograft model) | 25 mg/kg/day 50 mg/kg/day 100 mg/kg/day | Oral | 30 days | ISL significantly inhibited the MV4-11 flank tumor growth and prolonged survival in the bone marrow transplant model via decreasing the expression of Ki67 and inducing apoptosis | [41] |
Immuno- response | 6–8-week-old male and female BALB/c mice (AD-like lesion model) | 1% ISL daily | Oral | 6th~18th (12 days) | ISL significantly suppressed the DNCB-induced IgE and Th2 cytokines up-regulation | [98] |
DTH animal model with IKKβC46A transgenic (IKKβC46A in C57BL/6 mice) | 0.75 mg/ear | 24, 48, 72 h | ISL inhibited T cell activation in vivo via directly binding to IKKβ Cys46 | [43] | ||
Lung | Carrageenan-induced pleurisy mice model | 30 mg/kg | IP | Twice a day (12 h) | Activation of Nrf2 pathway thus decreasing oxidative stress Inhibition of the NF-κB, MAPK and NLRP3 pathways (with high level of iNOS and COX-2) causes anti-inflammatory activities | [136] |
CS-induced COPD mice | 10 mg/kg 20 mg/kg 30 mg/kg | Oral | Twice a day for 4 weeks | ISL inhibit inflammatory and oxidative stress via the regulation of the Nrf2 and NF-κB signaling pathways | [137] | |
LPS-induced acute lung injury (ALI) in male BALB/c mice | 5 mg/kg 10 mg/kg 20 mg/kg | Intracheal instillation | Twice a day (12 h) | ISL inhibited the inflammatory of LPS-induced lung injury by activating PPAR-γ and inhibiting NF-κB activation | [138] | |
Pulmonary metastasis model: BALB/c mouse bearing Renca cells | 0.1, 0.5, 2 and 10 mg/day | IP | 10 days | ISL prevented severe leukocytopenia caused by administration of 5-FU | [139] | |
Lung | LPS-Induced ALI mouse model in C57BL/6 mice | 30 mg/kg | IP | A single dose | ISL treatment significantly alleviated lung injury in LPS-induced ALI mice via activating AMPK/Nrf2/ARE signaling and inhibited LPS-induced NLRP3 and NF-κB pathway | [86] |
6~8-week-old C57BL/6 mice (Influenza virus infected model) | 10 mg/kg | IP | 18 days | ISL is a dual PPARγ and Nrf2 agonist with antiviral and anti-inflammatory properties that protect against influenza virus infection | [87] | |
6-week-old Athymic nude mice bearing NCI-H1975 cells | 1 mg/kg 5 mg/kg | IP | Three times per week, 12 days | ISL suppresses NSCLC cell growth by directly targeting wild type or mutant EGFR. Anticancer effects of ISL in NSCLC cells modulated the EGFR signaling through downstream AKT and ERK1/2 | [42] | |
Induce tracheal relaxation model in male Hartley guinea-pigs | 5 mg/kg 10 mg/kg 20 mg/kg | IG intraduodenal | A single dose | ISL activated the cGMP/PKG signaling cascade through PKG-dependent mechanism and thus to tracheal relaxation | [89] | |
Melanoma | 8-week-old immunocompromised mice bearing A2058 | 20 mg/kg | IP every other days | 42 days | ISL may inhibit the proliferation of melanoma cells by suppressing miR-301b and inducing its target LRIG1 | [99] |
6~8-week-old male C57BL/6 mice bearing B16F0 melanoma cells | 15 μg/mL | Oral | 48 h | ISL-induced differentiation of B16F0 cells accompanied increased ROS formation | [104] | |
4~5-week-old female SCID mice bearing U266 and male BABL/c bearing MPC-11 tumor | 100 μg/kg/day 200 μg/kg/day | IP | 15~20 days | ISl mediated IL-6 signaling | [105] | |
HCC | 4~5w-week-old female BALB/c- mice bearing Hep3B cells | 50 mg/kg/day | IP | 3 weeks | ISL can prevent HCC tumorigenesis and metastasis through suppressing cyclin D1 and PI3K/AKT pathway | [108] |
4-week-old male athymic BALB/c nude mice bearing HepG2 | 10 mg/kg | IP | A single dose | The effects of ISL on radiosensitization via Nrf2⇩-Keap1⇩ pathway | [140] | |
Prostate cancer | 6-week-old male BALB/c nude mice bearing PC-3 | 25 mg/kg/day 50 mg/kg/day | IP | ~28 days | IISL modulates cyclin B1–CDK1 for G2/M arrest and apoptosis | [114] |
Ovary cancer | 6-week-old female athymic nude mice were intraperitoneally injected SKOV3 cells | 12.5 mg/kg 25 mg/kg | IP every other days | 3 weeks | ISL at a noncytotoxic concentration was able to antagonize EMT ISL blocks ovarian cancer EMT by interfering with the TGF-pathway | [79] |
Gastric cancer | Xenograft NOD/SCID mice bearing EBV(+) or EBV(−) human gastric carcinoma (SNU719 or MKN74) | 30 mg/kg/day | Oral | 2 weeks | ISL have anti-tumor effects through up-regulating the expressions of p53, Bax, and Puma and the cleaved forms of Caspase-3 and -9 and Parp protein | [124] |
Osteosarco-ma | 5-week-old female NOD-SCID mice bearing Saos-2 | 50 mg/kg/day | Oral gavage | 56 days | ISL inhibit cell proliferation and induce the cell apoptosis via deactivating the PI3K/AKT signaling pathway | [128] |
Oral cancer | 5–6 week-old nude mice (BALB/c nu/nu mice) bearing OSCC-CSCs | 5 mg/kg/day | Oral gavage | 20 days | ISL-mediated reduction of GRP78 in OSCC-CSCs played a critical role | [131] |
Type of Cancer | IC50 | Combination Treatment | Combination Effect | Ref |
---|---|---|---|---|
In Vitro/In Vivo | ||||
Breast cancer | In vitro: MCF-7, MDA-MB-231 In vivo: NOD/SCID mice bearing MDA-MB-231 or MCF-7/ADR | ISL + 5-FU ISL + epirubicin ISL + taxol | ISL possess chemosensitizing effects via activation of autophagy ISL limited the self-renewal and differentiation abilities of breast CSCs via GRP78/β-catenin/ABCG2 signaling | [40,56] |
Colon cancer | In vitro: HT29 | ISL + TRAIL | ISL up-regulates a TRAIL receptor DR5 protein overcomes TRAIL resistance in colon cancer | [72] |
In vitro: HTC116 | ISL + 5-FU | ISL-induced p62/SQSTM1 expression mediated apoptosis by reducing caspase-8 activation | [73] | |
In vivo: CT26 murine colon cancer cells | ISL + cisplatin | ISL reduced tumor sizes without any detectable nephrotoxicity or hepatoxicity. ISL suppressed cisplatin-induced kidney and liver damage led to a syngeneic effect for anti-cancer | [75] | |
In vitro: CEM/ADR 5000 cells and Caco-2 cells | ISL + doxorubicin ISL + doxorubicin+ saponin digitonin | In combined therapy, ISL was identified as potential multidrug resistance (MDR) modulator which serves as a chemo-adjuvant therapy | [11] | |
Melanoma | In vivo: MM xenograft models | ISL + adriamycin | ISL could inhibit the growth of MM via blocking IL-6 ISL synergistically enhanced the anti-myeloma activity of adriamycin | [105] |
Liver cancer | In vitro: HepG2 In vivo: BALB/c bearing HepG2 | ISL + Radiochemotherapy | ISL induced oxidative stress (ROS) by disturbing the redox status and ultimately enhancing the radiosensitivity ISL on radiosensitization via Nrf2-Keap1 pathway | [111,143] |
[57,140] | ||||
Cervical cancer | In vitro: HeLa cell | ISL + ROS scavengers | ISL induced apoptosis by increasing intracellular ROS levels | [144] |
In vivo: KM mice bearing U14 | ISL + cyclophosphamide | ISL enhanced antitumor activity of CP in vivo and decreased the micronucleus formation DNA strand breaks | [145] | |
Gastric cancer | In vitro: MKN45 | ISL + 5-FU | ISL downregulated GRP78 and CSCs- marker, ABCG2, LGR5, CD24 and CD44 to enhance chemosensitivity with combination of 5-FU | [146] |
Leukemia | In vitro: T-ALL cells | ISL + DOX ISL + MTX | ISL may be a valuable adjunct for cancer therapy to treat otherwise drug-resistant tumors | [96] |
Lung cancer | Pulmonary metastasis model: BALB/c mouse bearing Renca cells | ISL + 5-FU | ISL suppressed tumor proliferation, potentiated nitric oxide production by lipopolysaccharide-stimulated macrophages, and facilitated cytotoxicity of splenic lymphocytes in vitro | [139] |
Asthma | In vitro: D10 cells In vivo: OVA sensitization/ 7, 4′-DHF challenge | ISL + ASHMI™ | ISL increased IFN-γ expression involving anti-inflammatory effect ISL reduced eosinophilic pulmonary inflammation via suppressed Th2 cytokines, IL-4 and IgE production | [147] |
Oral cancer | Oral squamous cell carcinomas In vivo: nude mice bearing OSCC | ISL + cisplatin | ISL mediated GRP78 regulation serves as chemotherapy adjuvant | [60] |
Bladder cancer | T24 | ISL + cisplatin | ISL treatment with cisplatin increases cell death in bladder cancer cells | [148] |
Uterine sarcoma | MES-SA/Dx5, MES-SA/Dx5-R | ISL + doxorubicin | ISL enhanced chemosensitivity via inducing apoptosis and autophagy ISL inhibits mTOR pathway | [142] |
Kidney cancer | LLC-PK1 | ISL + cisplatin | ISL pretreatment induces ER stress and produces hormesis to protect against CP-induced nephrotoxicity | [149] |
Neuroblastoma | In vitro: MYC-amplified NB cells SK-N-BE(2) and IMR-32 | ISL + cisplatin | Treated ISL with cisplatin resulted in loss of cell viability greatly, acting as a potential adjunct therapy | [129] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.-L.; Yu, Y.-C.; Hsia, S.-M. Perspectives on the Role of Isoliquiritigenin in Cancer. Cancers 2021, 13, 115. https://doi.org/10.3390/cancers13010115
Wang K-L, Yu Y-C, Hsia S-M. Perspectives on the Role of Isoliquiritigenin in Cancer. Cancers. 2021; 13(1):115. https://doi.org/10.3390/cancers13010115
Chicago/Turabian StyleWang, Kai-Lee, Ying-Chun Yu, and Shih-Min Hsia. 2021. "Perspectives on the Role of Isoliquiritigenin in Cancer" Cancers 13, no. 1: 115. https://doi.org/10.3390/cancers13010115
APA StyleWang, K.-L., Yu, Y.-C., & Hsia, S.-M. (2021). Perspectives on the Role of Isoliquiritigenin in Cancer. Cancers, 13(1), 115. https://doi.org/10.3390/cancers13010115