Bitter Melon (Momordica Charantia), a Nutraceutical Approach for Cancer Prevention and Therapy
Abstract
:1. Introduction
2. Bitter Melon and Its Constituents
2.1. Cucurbitane-Type Triterpenoids
2.2. Cucurbitane-Type Triterpene Glycosides
2.3. Phenolic Acids and Flavonoids
2.4. Proteins
3. The Activity of Bitter Melon on Cancers
3.1. Blood Cancer
3.2. Breast Cancer
3.3. Colon Cancer
3.4. Gastric Cancer
3.5. Head and Neck Cancer
3.6. Liver Cancer
3.7. Lung Cancer
3.8. Pancreatic Cancer
3.9. Prostate Cancer
3.10. Skin Cancer
3.11. Other Cancers
4. Molecular Mechanism of Bitter Melon in Cancer Prevention and Therapy
4.1. Generation of Reactive Oxygen Species, Anti-Inflammation and Carcinogen Elimination
4.2. Regulation of Cell Cycle
4.3. Modulation in Cell Signaling
4.4. Induction of Apoptosis and Autophagy
4.5. Inhibition of the Cancer Stem Cell Population
4.6. Modulation in Glucose and Lipid Metabolism
4.7. Modulation in Immune System
4.8. Inhibition of Invasion, Metastasis, Hypoxia and Angiogenesis
4.9. How Does Bitter Melon Extract Enter into Cancer Cells?
4.10. How Does Bitter Melon Regulate Gene Function?
4.10.1. Interaction with Cellular Macromolecules DNA, RNA and Proteins
4.10.2. Epigenetic Modification
5. Conclusions
6. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ROS | Reactive oxygen species |
αMMC | α-Momorcharin |
MAP30 | Momordica Antiviral Protein 30kD |
iPLA2 | calcium-independent phospholipase A2 |
DMBA | 7, 12-Dimethylbenz(a)anthracene |
4NQO | 4-Nitroquinoline 1-oxide |
ER | Endoplasmic Reticulum |
c-Met | MET Proto-Oncogene |
DENA | Diethylnitrosamine |
CCl4 | Carbon tetrachloride |
AMPK | 5′-AMP-Activated Protein Kinase |
AKT | AKT Serine/Threonine Kinase |
mTOR | Mechanistic Target of Rapamycin Kinase |
TRAMP | Transgenic Adenocarcinoma of the Mouse Prostate |
TNFα | Tumor Necrosis Factor α |
IL23a | Interleukin 23 Subunit Alpha |
IL1β | Interleukin 1 Beta |
IL6 | Interleukin 6 |
SOX2 | SRY-Box transcription Factor 2 |
OCT4 | Octamer-binding transcription factor 4 |
Cdk2/4 | Cyclin Dependent Kinase 2/4 |
MAPK | Mitogen-Activated Protein Kinase |
ERK | Extracellular signal-regulated kinase |
FOXM1 | Forkhead box protein M1 |
RAC | RacFamily Small GTPase |
CDC42 | Cell division control protein 42 homolog |
PARP | Poly (ADP-ribose) polymerase |
Bax | BCL2-Associated X, Apoptosis Regulator |
Bak | Bcl-2 homologous antagonist/killer |
Bid | BH3-Interacting Domain Death Agonist |
Bcl2 | BCL2 Apoptosis Regulator |
LC3-B | Microtubule-Associated Protein 1 Light Chain 3 Beta |
ATG-7/12 | Autophagy-Related 7/12 |
MMP2/9 | Matrix Metallopeptidase 2 |
TIMP2 | TIMP Metallopeptidase Inhibitor 2 |
HIF1α | Hypoxia-inducible factor 1-alpha |
VEGF | Vascular endothelial growth factor |
UPR | Unfolded Protein Response |
IRE-1 | The serine/threonine-protein kinase/endoribonuclease inositol-requiring enzyme 1 α |
GLUT-1 | Glucose transporter 1 |
SLC2A1 | Solute Carrier Family 2 Member 1 |
PFKP | Phosphofructokinase Platelet |
MCT4 | Monocarboxylate transporter 4 |
LDHA | Lactate dehydrogenase A |
PKM | Pyruvate kinase isozymes M1/M2 |
PDK3 | Pyruvate Dehydrogenase Kinase 3 |
ACLY | ATP Citrate Lyase |
ACC1 | Acetyl-CoA carboxylase 1 |
FASN | Fatty Acid Synthase |
SREBP | Sterol regulatory element-binding protein |
LDLR | Low density lipoprotein receptor |
ACAT-1 | Acyl-Coenzyme A: Cholesterol Acyltransferase 1 |
TIP47 | Tail-interacting protein of 47 kDa |
PD1 | Programmed cell death-1 |
LAMP1 | Lysosomal-associated membrane protein 1 |
CD107a | Cluster of Differentiation 107a |
Treg | Regulatory T cells |
Th 17 cells | T-helper 17 cells. |
References
- Feitelson, M.A.; Arzumanyan, A.; Kulathinal, R.J.; Blain, S.W.; Holcombe, R.F.; Mahajna, J.; Marino, M.; Martinez-Chantar, M.L.; Nawroth, R.; Sanchez-Garcia, I.; et al. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin. Cancer Biol. 2015, 35, S25–S54. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogelstein, B.; Kinzler, K.W. Cancer genes and the pathways they control. Nat. Med. 2004, 10, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhu, W.; Thompson, P.; Hannun, Y.A. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat. Commun. 2018, 9, 3490. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Jemal, A.; Grey, N.; Ferlay, J.; Forman, D. Global cancer transitions according to the Human Development Index (2008–2030): A population-based study. Lancet Oncol. 2012, 13, 790–801. [Google Scholar] [CrossRef]
- Safarzadeh, E.; Sandoghchian, S.S.; Baradaran, B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv. Pharm. Bull. 2014, 4, 421–427. [Google Scholar] [CrossRef]
- Oyebode, O.; Kandala, N.B.; Chilton, P.J.; Lilford, R.J. Use of traditional medicine in middle-income countries: A WHO-SAGE study. Health Policy Plan. 2016, 31, 984–991. [Google Scholar] [CrossRef] [Green Version]
- Nerurkar, P.; Ray, R.B. Bitter melon: Antagonist to cancer. Pharm. Res. 2010, 27, 1049–1053. [Google Scholar] [CrossRef]
- Jia, S.; Shen, M.; Zhang, F.; Xie, J. Recent Advances in Momordica charantia: Functional Components and Biological Activities. Int. J. Mol. Sci. 2017, 18, 2555. [Google Scholar] [CrossRef] [Green Version]
- Dandawate, P.R.; Subramaniam, D.; Padhye, S.B.; Anant, S. Bitter melon: A panacea for inflammation and cancer. Chin. J. Nat. Med. 2016, 14, 81–100. [Google Scholar] [CrossRef] [Green Version]
- Raina, K.; Kumar, D.; Agarwal, R. Promise of bitter melon (Momordica charantia) bioactives in cancer prevention and therapy. Semin. Cancer Biol. 2016, 40–41, 116–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, E.F.; Froetscher, L.; Scheibye-Knudsen, M.; Bohr, V.A.; Wong, J.H.; Ng, T.B. Emerging Antitumor Activities of the Bitter Melon (Momordica charantia). Curr. Protein Pept. Sci. 2019, 20, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, A.A.; Khalid, S.; Tahir, F.; Sabitaliyevich, U.Y.; Yaylim, I.; Attar, R.; Xu, B. Bitter gourd (Momordica charantia) as a rich source of bioactive components to combat cancer naturally: Are we on the right track to fully unlock its potential as inhibitor of deregulated signaling pathways. Food Chem. Toxicol. 2018, 119, 98–105. [Google Scholar] [CrossRef]
- Shodehinde, S.A.; Adefegha, S.A.; Oboh, G.; Oyeleye, S.I.; Olasehinde, T.A.; Nwanna, E.E.; Adedayo, B.C.; Boligon, A.A. Phenolic Composition and Evaluation of Methanol and Aqueous Extracts of Bitter Gourd (Momordica charantia L.) Leaves on Angiotensin-I-Converting Enzyme and Some Pro-oxidant-Induced Lipid Peroxidation In Vitro. J. Evid.-Based Complement. Altern. Med. 2016, 21, NP67–NP76. [Google Scholar] [CrossRef]
- Tan, S.; Parks, S.; Stathopoulos, C.; Roach, P. Extraction of Flavonoids from Bitter Melon. Food Nutr. Sci. 2014, 5, 458–465. [Google Scholar] [CrossRef] [Green Version]
- Haque, M.; Alam, M.D.B.; Hossain, S. The efficacy of Cucurbitane type triterpenoids, glycosides and phenolic compounds isolated from Momordica charantia: A review. Int. J. Pharm. Sci. Res. 2011, 2, 1135. [Google Scholar]
- Qian, S.; Sun, L.; Li, J.; Wu, J.; Hu, G.; Han, Y.; Yu, K.; Zhang, S. MAP30 inhibits autophagy through enhancing acetyltransferase p300 and induces apoptosis in acute myeloid leukemia cells. Oncol. Rep. 2016, 35, 3705–3713. [Google Scholar] [CrossRef] [Green Version]
- Soundararajan, R.; Prabha, P.; Rai, U.; Dixit, A. Antileukemic Potential of Momordica charantia Seed Extracts on Human Myeloid Leukemic HL60 Cells. Evid.-Based Complement. Altern. Med. 2012, 2012, 732404. [Google Scholar] [CrossRef] [Green Version]
- Kobori, M.; Ohnishi-Kameyama, M.; Akimoto, Y.; Yukizaki, C.; Yoshida, M. Alpha-eleostearic acid and its dihydroxy derivative are major apoptosis-inducing components of bitter gourd. J. Agric. Food Chem. 2008, 56, 10515–10520. [Google Scholar] [CrossRef]
- Kai, H.; Akamatsu, E.; Torii, E.; Kodama, H.; Yukizaki, C.; Sakakibara, Y.; Suiko, M.; Morishita, K.; Kataoka, H.; Matsuno, K. Inhibition of proliferation by agricultural plant extracts in seven human adult T-cell leukaemia (ATL)-related cell lines. J. Nat. Med. 2011, 65, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Jilka, C.; Strifler, B.; Fortner, G.W.; Hays, E.F.; Takemoto, D.J. In vivo antitumor activity of the bitter melon (Momordica charantia). Cancer Res. 1983, 43, 5151–5155. [Google Scholar] [PubMed]
- Jiang, Y.; Miao, J.; Wang, D.; Zhou, J.; Liu, B.; Jiao, F.; Liang, J.; Wang, Y.; Fan, C.; Zhang, Q. MAP30 promotes apoptosis of U251 and U87 cells by suppressing the LGR5 and Wnt/beta-catenin signaling pathway, and enhancing Smac expression. Oncol. Lett. 2018, 15, 5833–5840. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, G.; Jaiswal, S.R.; Singh, J. Effect of alpha, beta momorcharin on viability, caspase activity, cytochrome c release and on cytosolic calcium levels in different cancer cell lines. Mol. Cell. Biochem. 2014, 388, 233–240. [Google Scholar] [CrossRef]
- Wang, X.; Sun, W.; Cao, J.; Qu, H.; Bi, X.; Zhao, Y. Structures of new triterpenoids and cytotoxicity activities of the isolated major compounds from the fruit of Momordica charantia L. J. Agric. Food Chem. 2012, 60, 3927–3933. [Google Scholar] [CrossRef]
- Hsiao, P.C.; Liaw, C.C.; Hwang, S.Y.; Cheng, H.L.; Zhang, L.J.; Shen, C.C.; Hsu, F.L.; Kuo, Y.H. Antiproliferative and hypoglycemic cucurbitane-type glycosides from the fruits of Momordica charantia. J. Agric. Food Chem. 2013, 61, 2979–2986. [Google Scholar] [CrossRef]
- Ray, R.B.; Raychoudhuri, A.; Steele, R.; Nerurkar, P. Bitter melon (Momordica charantia) extract inhibits breast cancer cell proliferation by modulating cell cycle regulatory genes and promotes apoptosis. Cancer Res. 2010, 70, 1925–1931. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, N.; Steele, R.; Isbell, T.S.; Philips, N.; Ray, R.B. Bitter melon extract inhibits breast cancer growth in preclinical model by inducing autophagic cell death. Oncotarget 2017, 8, 66226–66236. [Google Scholar] [CrossRef] [Green Version]
- Shim, S.H.; Sur, S.; Steele, R.; Albert, C.J.; Huang, C.; Ford, D.A.; Ray, R.B. Disrupting cholesterol esterification by bitter melon suppresses triple-negative breast cancer cell growth. Mol. Carcinog. 2018, 57, 1599–1607. [Google Scholar] [CrossRef]
- Bai, L.Y.; Chiu, C.F.; Chu, P.C.; Lin, W.Y.; Chiu, S.J.; Weng, J.R. A triterpenoid from wild bitter gourd inhibits breast cancer cells. Sci. Rep. 2016, 6, 22419. [Google Scholar] [CrossRef] [Green Version]
- Weng, J.R.; Bai, L.Y.; Chiu, C.F.; Hu, J.L.; Chiu, S.J.; Wu, C.Y. Cucurbitane Triterpenoid from Momordica charantia Induces Apoptosis and Autophagy in Breast Cancer Cells, in Part, through Peroxisome Proliferator-Activated Receptor gamma Activation. Evid.-Based Complement. Altern. Med. 2013, 2013, 935675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossmann, M.E.; Mizuno, N.K.; Dammen, M.L.; Schuster, T.; Ray, A.; Cleary, M.P. Eleostearic Acid inhibits breast cancer proliferation by means of an oxidation-dependent mechanism. Cancer Prev. Res. 2009, 2, 879–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagasawa, H.; Watanabe, K.; Inatomi, H. Effects of bitter melon (Momordica charantia L.) or ginger rhizome (Zingiber offifinale rosc) on spontaneous mammary tumorigenesis in SHN mice. Am. J. Chin. Med. 2002, 30, 195–205. [Google Scholar] [CrossRef]
- Kwatra, D.; Subramaniam, D.; Ramamoorthy, P.; Standing, D.; Moran, E.; Velayutham, R.; Mitra, A.; Umar, S.; Anant, S. Methanolic extracts of bitter melon inhibit colon cancer stem cells by affecting energy homeostasis and autophagy. Evid.-Based Complement. Altern. Med. 2013, 2013, 702869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwatra, D.; Venugopal, A.; Standing, D.; Ponnurangam, S.; Dhar, A.; Mitra, A.; Anant, S. Bitter melon extracts enhance the activity of chemotherapeutic agents through the modulation of multiple drug resistance. J. Pharm. Sci. 2013, 102, 4444–4454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohno, H.; Yasui, Y.; Suzuki, R.; Hosokawa, M.; Miyashita, K.; Tanaka, T. Dietary seed oil rich in conjugated linolenic acid from bitter melon inhibits azoxymethane-induced rat colon carcinogenesis through elevation of colonic PPARgamma expression and alteration of lipid composition. Int. J. Cancer 2004, 110, 896–901. [Google Scholar] [CrossRef]
- Konishi, T.; Satsu, H.; Hatsugai, Y.; Aizawa, K.; Inakuma, T.; Nagata, S.; Sakuda, S.H.; Nagasawa, H.; Shimizu, M. Inhibitory effect of a bitter melon extract on the P-glycoprotein activity in intestinal Caco-2 cells. Br. J. Pharmacol. 2004, 143, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Yasui, Y.; Hosokawa, M.; Sahara, T.; Suzuki, R.; Ohgiya, S.; Kohno, H.; Tanaka, T.; Miyashita, K. Bitter gourd seed fatty acid rich in 9c,11t,13t-conjugated linolenic acid induces apoptosis and up-regulates the GADD45, p53 and PPARgamma in human colon cancer Caco-2 cells. Prostaglandins Leukot. Essent. Fat. Acids 2005, 73, 113–119. [Google Scholar] [CrossRef]
- Chipps, E.S.; Jayini, R.; Ando, S.; Protzman, A.D.; Muhi, M.Z.; Mottaleb, M.A.; Malkawi, A.; Islam, M.R. Cytotoxicity analysis of active components in bitter melon (Momordica charantia) seed extracts using human embryonic kidney and colon tumor cells. Nat. Prod. Commun. 2012, 7, 1203–1208. [Google Scholar] [CrossRef] [Green Version]
- Sur, S.; Nakanishi, H.; Flaveny, C.; Ippolito, J.E.; McHowat, J.; Ford, D.A.; Ray, R.B. Inhibition of the key metabolic pathways, glycolysis and lipogenesis, of oral cancer by bitter melon extract. Cell Commun. Signal. CCS 2019, 17, 131. [Google Scholar] [CrossRef] [Green Version]
- Sur, S.; Steele, R.; Aurora, R.; Varvares, M.; Schwetye, K.E.; Ray, R.B. Bitter Melon Prevents the Development of 4-NQO-Induced Oral Squamous Cell Carcinoma in an Immunocompetent Mouse Model by Modulating Immune Signaling. Cancer Prev. Res. 2018, 11, 191–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, S.; Muhammad, N.; Steele, R.; Kornbluth, J.; Ray, R.B. Bitter Melon Enhances Natural Killer-Mediated Toxicity against Head and Neck Cancer Cells. Cancer Prev. Res. 2017, 10, 337–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, S.; Muhammad, N.; Steele, R.; Peng, G.; Ray, R.B. Immunomodulatory role of bitter melon extract in inhibition of head and neck squamous cell carcinoma growth. Oncotarget 2016, 7, 33202–33209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajamoorthi, A.; Shrivastava, S.; Steele, R.; Nerurkar, P.; Gonzalez, J.G.; Crawford, S.; Varvares, M.; Ray, R.B. Bitter melon reduces head and neck squamous cell carcinoma growth by targeting c-Met signaling. PLoS ONE 2013, 8, e78006. [Google Scholar] [CrossRef] [PubMed]
- Brennan, V.C.; Wang, C.M.; Yang, W.H. Bitter melon (Momordica charantia) extract suppresses adrenocortical cancer cell proliferation through modulation of the apoptotic pathway, steroidogenesis, and insulin-like growth factor type 1 receptor/RAC-alpha serine/threonine-protein kinase signaling. J. Med. Food 2012, 15, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; Sun, Y.; Xu, J.; Cao, J.; Chen, G.; Zhang, H.; Zhang, X.; Zhao, Y. Cucurbitane triterpenoids from the fruit of Momordica charantia L. and their anti-hepatic fibrosis and anti-hepatoma activities. Phytochemistry 2019, 157, 21–27. [Google Scholar] [CrossRef]
- Fang, E.F.; Zhang, C.Z.; Wong, J.H.; Shen, J.Y.; Li, C.H.; Ng, T.B. The MAP30 protein from bitter gourd (Momordica charantia) seeds promotes apoptosis in liver cancer cells in vitro and in vivo. Cancer Lett. 2012, 324, 66–74. [Google Scholar] [CrossRef]
- Ali, M.M.; Borai, I.H.; Ghanem, H.M.; Abdel-Halim, A.H.; Mousa, F.M. The prophylactic and therapeutic effects of Momordica charantia methanol extract through controlling different hallmarks of the hepatocarcinogenesis. Biomed. Pharmacother. 2018, 98, 491–498. [Google Scholar] [CrossRef]
- Nerurkar, P.V.; Pearson, L.; Efird, J.T.; Adeli, K.; Theriault, A.G.; Nerurkar, V.R. Microsomal triglyceride transfer protein gene expression and ApoB secretion are inhibited by bitter melon in HepG2 cells. J. Nutr. 2005, 135, 702–706. [Google Scholar] [CrossRef] [Green Version]
- Thiagarajan, S.; Arapoc, D.J.; Husna Shafie, N.; Keong, Y.Y.; Bahari, H.; Adam, Z.; Ei, T. Momordica charantia (Indian and Chinese Bitter Melon) Extracts Inducing Apoptosis in Human Lung Cancer Cell Line A549 via ROS-Mediated Mitochodria Injury. Evid.-Based Complement. Altern. Med. 2019, 2019, 2821597. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; He, L.; Meng, Y.; Li, G.; Li, L.; Meng, Y. Alpha-MMC and MAP30, two ribosome-inactivating proteins extracted from Momordica charantia, induce cell cycle arrest and apoptosis in A549 human lung carcinoma cells. Mol. Med. Rep. 2015, 11, 3553–3558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, H.Y.; Lin, J.H.; Li, C.J.; Tsang, S.F.; Tsai, C.H.; Chyuan, J.H.; Chiu, S.J.; Chuang, S.E. Antimigratory Effects of the Methanol Extract from Momordica charantia on Human Lung Adenocarcinoma CL1 Cells. Evid.-Based Complement. Altern. Med. 2012, 2012, 819632. [Google Scholar] [CrossRef] [PubMed]
- Pitchakarn, P.; Umsumarng, S.; Mapoung, S.; Ting, P.; Temviriyanukul, P.; Punfa, W.; Pompimon, W.; Limtrakul, P. Kuguacin J isolated from bitter melon leaves modulates paclitaxel sensitivity in drug-resistant human ovarian cancer cells. J. Nat. Med. 2017, 71, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Yung, M.M.; Ross, F.A.; Hardie, D.G.; Leung, T.H.; Zhan, J.; Ngan, H.Y.; Chan, D.W. Bitter Melon (Momordica charantia) Extract Inhibits Tumorigenicity and Overcomes Cisplatin-Resistance in Ovarian Cancer Cells Through Targeting AMPK Signaling Cascade. Integr. Cancer Ther. 2016, 15, 376–389. [Google Scholar] [CrossRef] [Green Version]
- Kaur, M.; Deep, G.; Jain, A.K.; Raina, K.; Agarwal, C.; Wempe, M.F.; Agarwal, R. Bitter melon juice activates cellular energy sensor AMP-activated protein kinase causing apoptotic death of human pancreatic carcinoma cells. Carcinogenesis 2013, 34, 1585–1592. [Google Scholar] [CrossRef] [Green Version]
- Somasagara, R.R.; Deep, G.; Shrotriya, S.; Patel, M.; Agarwal, C.; Agarwal, R. Bitter melon juice targets molecular mechanisms underlying gemcitabine resistance in pancreatic cancer cells. Int. J. Oncol. 2015, 46, 1849–1857. [Google Scholar] [CrossRef] [Green Version]
- Dhar, D.; Deep, G.; Kumar, S.; Wempe, M.F.; Raina, K.; Agarwal, C.; Agarwal, R. Bitter melon juice exerts its efficacy against pancreatic cancer via targeting both bulk and cancer stem cells. Mol. Carcinog. 2018, 57, 1166–1180. [Google Scholar] [CrossRef]
- Dhar, D.; Raina, K.; Kant, R.; Wempe, M.F.; Serkova, N.J.; Agarwal, C.; Agarwal, R. Bitter melon juice-intake modulates glucose metabolism and lactate efflux in tumors in its efficacy against pancreatic cancer. Carcinogenesis 2019, 40, 1164–1176. [Google Scholar] [CrossRef]
- Pitchakarn, P.; Suzuki, S.; Ogawa, K.; Pompimon, W.; Takahashi, S.; Asamoto, M.; Limtrakul, P.; Shirai, T. Kuguacin J, a triterpeniod from Momordica charantia leaf, modulates the progression of androgen-independent human prostate cancer cell line, PC3. Food Chem. Toxicol. 2012, 50, 840–847. [Google Scholar] [CrossRef]
- Pitchakarn, P.; Ogawa, K.; Suzuki, S.; Takahashi, S.; Asamoto, M.; Chewonarin, T.; Limtrakul, P.; Shirai, T. Momordica charantia leaf extract suppresses rat prostate cancer progression in vitro and in vivo. Cancer Sci. 2010, 101, 2234–2240. [Google Scholar] [CrossRef]
- Ru, P.; Steele, R.; Nerurkar, P.V.; Phillips, N.; Ray, R.B. Bitter melon extract impairs prostate cancer cell-cycle progression and delays prostatic intraepithelial neoplasia in TRAMP model. Cancer Prev. Res. 2011, 4, 2122–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, S.D.; Yu, K.; Liu, X.H.; Yin, L.H.; Kirschenbaum, A.; Yao, S.; Narla, G.; DiFeo, A.; Wu, J.B.; Yuan, Y.; et al. Ribosome-inactivating proteins isolated from dietary bitter melon induce apoptosis and inhibit histone deacetylase-1 selectively in premalignant and malignant prostate cancer cells. Int. J. Cancer 2009, 125, 774–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, R.C.; Beohar, T. Chemopreventive and anticarcinogenic effects of Momordica charantia extract. Asian Pac. J. Cancer Prev. 2010, 11, 371–375. [Google Scholar] [PubMed]
- Akihisa, T.; Higo, N.; Tokuda, H.; Ukiya, M.; Akazawa, H.; Tochigi, Y.; Kimura, Y.; Suzuki, T.; Nishino, H. Cucurbitane-type triterpenoids from the fruits of Momordica charantia and their cancer chemopreventive effects. J. Nat. Prod. 2007, 70, 1233–1239. [Google Scholar] [CrossRef]
- Ganguly, C.; De, S.; Das, S. Prevention of carcinogen-induced mouse skin papilloma by whole fruit aqueous extract of Momordica charantia. Eur. J. Cancer prevention Off. J. Eur. Cancer Prev. Organ. 2000, 9, 283–288. [Google Scholar] [CrossRef]
- Deep, G.; Dasgupta, T.; Rao, A.R.; Kale, R.K. Cancer preventive potential of Momordica charantia L. against benzo(a)pyrene induced fore-stomach tumourigenesis in murine model system. Indian J. Exp. Biol. 2004, 42, 319–322. [Google Scholar]
- Li, Y.; Yin, L.; Zheng, L.; Xu, L.; Xu, Y.; Zhao, Y.; Qi, Y.; Yao, J.; Han, X.; Liu, K.; et al. Application of high-speed counter-current chromatography coupled with a reverse micelle solvent system to separate three proteins from Momordica charantia. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 895–896, 77–82. [Google Scholar] [CrossRef]
- Li, C.J.; Tsang, S.F.; Tsai, C.H.; Tsai, H.Y.; Chyuan, J.H.; Hsu, H.Y. Momordica charantia Extract Induces Apoptosis in Human Cancer Cells through Caspase- and Mitochondria-Dependent Pathways. Evid.-Based Complement. Altern. Med. 2012, 2012, 261971. [Google Scholar] [CrossRef] [Green Version]
- Pitchakarn, P.; Ohnuma, S.; Pintha, K.; Pompimon, W.; Ambudkar, S.V.; Limtrakul, P. Kuguacin J isolated from Momordica charantia leaves inhibits P-glycoprotein (ABCB1)-mediated multidrug resistance. J. Nutr. Biochem. 2012, 23, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Lee-Huang, S.; Huang, P.L.; Sun, Y.; Chen, H.C.; Kung, H.F.; Huang, P.L.; Murphy, W.J. Inhibition of MDA-MB-231 human breast tumor xenografts and HER2 expression by anti-tumor agents GAP31 and MAP30. Anticancer Res. 2000, 20, 653–659. [Google Scholar]
- Konishi, T.; Satsu, H.; Hatsugai, Y.; Aizawa, K.; Inakuma, T.; Nagata, S.; Sakuda, S.H.; Nagasawa, H.; Shimizu, M. A bitter melon extract inhibits the P-glycoprotein activity in intestinal Caco-2 cells: Monoglyceride as an active compound. BioFactors 2004, 22, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Claflin, A.J.; Vesely, D.L.; Hudson, J.L.; Bagwell, C.B.; Lehotay, D.C.; Lo, T.M.; Fletcher, M.A.; Block, N.L.; Levey, G.S. Inhibition of growth and guanylate cyclase activity of an undifferentiated prostate adenocarcinoma by an extract of the balsam pear (Momordica charantia abbreviata). Proc. Natl. Acad. Sci. USA 1978, 75, 989–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.Y.; Hou, M.J.; Chen, Y.C. Isolation of toxic and non-toxic lectins from the bitter pear melon Momordica charantia Linn. Toxicon Off. J. Int. Soc. Toxinol. 1978, 16, 653–660. [Google Scholar] [CrossRef]
- Lu, K.H.; Tseng, H.C.; Liu, C.T.; Huang, C.J.; Chyuan, J.H.; Sheen, L.Y. Wild bitter gourd protects against alcoholic fatty liver in mice by attenuating oxidative stress and inflammatory responses. Food Funct. 2014, 5, 1027–1037. [Google Scholar] [CrossRef]
- Fang, E.F.; Zhang, C.Z.; Fong, W.P.; Ng, T.B. RNase MC2: A new Momordica charantia ribonuclease that induces apoptosis in breast cancer cells associated with activation of MAPKs and induction of caspase pathways. Apoptosis Int. J. Program. Cell Death 2012, 17, 377–387. [Google Scholar] [CrossRef]
- Dia, V.P.; Krishnan, H.B. BG-4, a novel anticancer peptide from bitter gourd (Momordica charantia), promotes apoptosis in human colon cancer cells. Sci. Rep. 2016, 6, 33532. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.L.; Wong, J.H.; Fang, E.F.; Chan, Y.S.; Ng, T.B.; Cheung, R.C. Preferential cytotoxicity of the type I ribosome inactivating protein alpha-momorcharin on human nasopharyngeal carcinoma cells under normoxia and hypoxia. Biochem. Pharmacol. 2014, 89, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Qian, Q.; Chen, W.; Cao, Y.; Cao, Q.; Cui, Y.; Li, Y.; Wu, J. Targeting Reactive Oxygen Species in Cancer via Chinese Herbal Medicine. Oxidative Med. Cell. Longev. 2019, 2019, 9240426. [Google Scholar] [CrossRef] [Green Version]
- Landskron, G.; De la Fuente, M.; Thuwajit, P.; Thuwajit, C.; Hermoso, M.A. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014, 2014, 149185. [Google Scholar] [CrossRef] [Green Version]
- Pathania, S.; Bhatia, R.; Baldi, A.; Singh, R.; Rawal, R.K. Drug metabolizing enzymes and their inhibitors’ role in cancer resistance. Biomed. Pharmacother. 2018, 105, 53–65. [Google Scholar] [CrossRef]
- Younus, H. Therapeutic potentials of superoxide dismutase. Int. J. Health Sci. 2018, 12, 88–93. [Google Scholar]
- Visconti, R.; Della Monica, R.; Grieco, D. Cell cycle checkpoint in cancer: A therapeutically targetable double-edged sword. J. Exp. Clin. Cancer Res. 2016, 35, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, G.S. Cell signaling and cancer. Cancer Cell 2003, 4, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xia, M.; Jin, K.; Wang, S.; Wei, H.; Fan, C.; Wu, Y.; Li, X.; Li, X.; Li, G.; et al. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol. Cancer 2018, 17, 45. [Google Scholar] [CrossRef]
- Iida, M.; Harari, P.M.; Wheeler, D.L.; Toulany, M. Targeting AKT/PKB to improve treatment outcomes for solid tumors. Mutat. Res. 2020, 819–820, 111690. [Google Scholar] [CrossRef]
- Fresno Vara, J.A.; Casado, E.; de Castro, J.; Cejas, P.; Belda-Iniesta, C.; Gonzalez-Baron, M. PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 2004, 30, 193–204. [Google Scholar] [CrossRef]
- Chen, Q.; Kang, J.; Fu, C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal. Transduct. Target. Ther. 2018, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, C.G.; Epping, M.; Kruyt, F.A.; Giaccone, G. Apoptosis: Target of cancer therapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2002, 8, 2024–2034. [Google Scholar]
- White, E. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer 2012, 12, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Desai, A.; Yan, Y.; Gerson, S.L. Concise Reviews: Cancer Stem Cell Targeted Therapies: Toward Clinical Success. Stem Cells Transl. Med. 2019, 8, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Szafarowski, T.; Szczepanski, M.J. Cancer stem cells in head and neck squamous cell carcinoma. Otolaryngol. Pol. 2014, 68, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Liskova, A.; Kubatka, P.; Samec, M.; Zubor, P.; Mlyncek, M.; Bielik, T.; Samuel, S.M.; Zulli, A.; Kwon, T.K.; Busselberg, D. Dietary Phytochemicals Targeting Cancer Stem Cells. Molecules 2019, 24, 899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markowitz, J.; Carson, W.E., 3rd. Review of S100A9 biology and its role in cancer. Biochim. Biophys. Acta 2013, 1835, 100–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Economopoulou, P.; Perisanidis, C.; Giotakis, E.I.; Psyrri, A. The emerging role of immunotherapy in head and neck squamous cell carcinoma (HNSCC): Anti-tumor immunity and clinical applications. Ann. Transl. Med. 2016, 4, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatia, A.; Burtness, B. Novel Molecular Targets for Chemoprevention in Malignancies of the Head and Neck. Cancers 2017, 9, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, I.; Nunes, A.; Lima, A.; Borralho, P.; Rodrigues, C.; Ferreira, R.B.; Ribeiro, A.C. New Lectins from Mediterranean Flora. Activity against HT29 Colon Cancer Cells. Int. J. Mol. Sci. 2019, 20, 3059. [Google Scholar] [CrossRef] [Green Version]
- Lekka, M.; Laidler, P.; Labedz, M.; Kulik, A.J.; Lekki, J.; Zajac, W.; Stachura, Z. Specific detection of glycans on a plasma membrane of living cells with atomic force microscopy. Chem. Biol. 2006, 13, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Fang, E.F.; Zhang, C.Z.; Ng, T.B.; Wong, J.H.; Pan, W.L.; Ye, X.J.; Chan, Y.S.; Fong, W.P. Momordica Charantia lectin, a type II ribosome inactivating protein, exhibits antitumor activity toward human nasopharyngeal carcinoma cells in vitro and in vivo. Cancer Prev. Res. 2012, 5, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Park, J.I.; Bae, H.R.; Kim, C.G.; Stonik, V.A.; Kwak, J.Y. Relationships between chemical structures and functions of triterpene glycosides isolated from sea cucumbers. Front. Chem. 2014, 2, 77. [Google Scholar] [CrossRef] [Green Version]
- Koczurkiewicz, P.; Czyz, J.; Podolak, I.; Wojcik, K.; Galanty, A.; Janeczko, Z.; Michalik, M. Multidirectional effects of triterpene saponins on cancer cells—Mini-review of in vitro studies. Acta Biochim. Pol. 2015, 62, 383–393. [Google Scholar] [CrossRef]
- Sak, K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn. Rev. 2014, 8, 122–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Y.; Lin, S.; Liu, S.; Fan, X.; Li, G.; Meng, Y. A novel method for simultaneous production of two ribosome-inactivating proteins, alpha-MMC and MAP30, from Momordica charantia L. PLoS ONE 2014, 9, e101998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takemoto, D.J.; Jilka, C.; Rockenbach, S.; Hughes, J.V. Purification and characterization of a cytostatic factor with anti-viral activity from the bitter melon. Prep. Biochem. 1983, 13, 397–421. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Kanakis, C.D.; Tarantilis, P.A.; Polissiou, M.G.; Diamantoglou, S.; Tajmir-Riahi, H.A. An overview of DNA and RNA bindings to antioxidant flavonoids. Cell Biochem. Biophys. 2007, 49, 29–36. [Google Scholar] [CrossRef]
- Kanwal, R.; Gupta, S. Epigenetic modifications in cancer. Clin. Genet. 2012, 81, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Thakur, V.S.; Deb, G.; Babcook, M.A.; Gupta, S. Plant phytochemicals as epigenetic modulators: Role in cancer chemoprevention. AAPS J. 2014, 16, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Busch, C.; Burkard, M.; Leischner, C.; Lauer, U.M.; Frank, J.; Venturelli, S. Epigenetic activities of flavonoids in the prevention and treatment of cancer. Clin. Epigenetics 2015, 7, 64. [Google Scholar] [CrossRef] [Green Version]
- Sung, H.C.; Liu, C.W.; Hsiao, C.Y.; Lin, S.R.; Yu, I.S.; Lin, S.W.; Chiang, M.H.; Liang, C.J.; Pu, C.M.; Chen, Y.C.; et al. The effects of wild bitter gourd fruit extracts on ICAM-1 expression in pulmonary epithelial cells of C57BL/6J mice and microRNA-221/222 knockout mice: Involvement of the miR-221/-222/PI3K/AKT/NF-kappaB pathway. Phytomed. Int. J. Phytother. Phytopharm. 2018, 42, 90–99. [Google Scholar] [CrossRef]
Cancer Model | Bitter Melon Extract/Compounds | Preventive and Therapeutic Effects | Ref. |
---|---|---|---|
Blood | Seed extract, water extract of fruit, MAP30 and α-eleostearic acid | Inhibited the proliferation of leukemia cells HL-60, THP-1, HL60 ED, Su9T01, HUT-102 and Jurkat and induced apoptosis. Inhibited in-vivo tumor formation in mice, increased survival and immune function. | [18,19,20,21,22] |
Brain | MAP30, α, β momorcharin, charantagenins D, E, and sterol, 7-oxo-stigmasta-5,25-diene-3-O-β-d-glucopyranoside | Inhibited proliferation, migration, invasion and induced apoptosis in glioma cells | [23,24,25,26] |
Breast | Water extract of fruit, dried extract and isolated compounds 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (TCD), eleostearic acid, RNase MC2, MAP30 | Inhibited breast cancer cells growth, induced apoptosis and autophagy. Inhibited syngenic tumor, xenograft tumor and spontaneous mammary tumorigenesis in SHN virgin mice. | [13,26,27,28,29,30,31,32,33] |
Colon | Methanol extract of fruit, seed extract, seed oil, α-eleostearic acid, MAP30 and some isolated cucurbitane-type triterpene glycosides | Inhibited colon cancer cell proliferation, induced cell cycle arrest, apoptosis, autophagy, doxorubicin sensitivity and inhibited cancer stem cells. Prevented azoxymethane (AOM)-induced colon carcinogenesis in F344 rats. | [13,20,26,34,35,36,37,38,39] |
Head and neck | Water extract of fruit | Inhibited oral cancer cell proliferation, metabolism, and induced apoptosis in oral cancer cells. Regressed oral cancer syngenic tumor, xenograft tumor and 4NQO-induced mouse tongue carcinogenesis. | [40,41,42,43,44] |
Kidney | Water extract | Inhibited adrenocortical cancer cell proliferation, steroidogenesis and induced apoptosis. | [45] |
Liver | Water extract of fruit, methanol extract and isolated compounds karaviloside III, MAP30, RNase MC2, lectin. | Inhibited murine hepatic stellate cells and human liver cancer cells. Prevented xenograft tumor growth in nude mice and DENA/CCl4 induced liver carcinogenesis in rats. | [13,46,47,48,49] |
Lung | Water extract, methanol extract of leaf, MAP30 and α-MMC. | Inhibited proliferation, migration, invasion, and induced cell cycle arrest and apoptosis in human lung cancer cells. | [50,51,52] |
Ovary | Water extract of fruit and kuguacin J | Inhibited growth, induced apoptosis and cisplatin sensitivity in human ovarian cancer invitro and invivo models. | [53,54] |
Pancreas | Water extract of fruit | Prevented proliferation, metabolism and induced apoptosis in cancer cells and xenograft tumor. | [55,56,57,58] |
Prostate | Water extract of fruit, leaf extract, kuguacin J, 30 kDa protein from seeds (MCP30) | Inhibited cell proliferation, cell cycle and metastasis in prostate cancer cells. Prevented xenograft tumor and spontaneous tumor in TRAMP mice. | [59,60,61,62] |
Skin | Water extract of fruit, methanol extract of fruit and leaf, and cucurbitane-type triterpenes compounds from fruit | Prevented melanoma syngeneic tumor growth, DMBA/croton oil or DMBA/peroxynitrite induced skin carcinogenesis in mice. | [63,64,65] |
Stomach | Fruit extract, methanol extract of leaf and fractioned proteins I–III | Showed anti-cancer activities in human gastric cancer cell lines. Prevented benzo(a)pyrene [B(a)P] induced forestomach papillomagenesis in mice. | [66,67,68] |
Uterine cervix | Leaf extract and kuguacin J | Inhibited vinblastine and paclitaxel resistance in human cervical carcinoma cell line (KB-V1). | [69] |
Molecular Events | Bitter Melon Extract/Compound | Molecular Roles | Cancer Model | Reference |
---|---|---|---|---|
Reactive oxygen species (ROS) generation, anti-inflammation, carcinogen elimination | Fruit extract, triterpenoid (3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al) | Induced ROS generation, activity of different detoxification enzymes including glutathione-s-transferase, superoxide dismutase and catalase, and reduced pro-inflammatory cytokines. | Head and neck cancer, lung cancer and breast cancer cells, alcohol-induced rat liver injury, 4NQO-induced mouse tongue cancer | [30,40,41,50,74] |
Regulation in cell cycle | Fruit extract, α-MMC and MAP30, kuguacin J, lectin | Induced G2/M phase and S phase cell cycle arrest, inhibited cyclin D1, cyclin B1, cyclin E, survivin, Cdk2, Cdk4 and induced p21, p27, p53, pChk1/2 | Breast cancer, prostate cancer, colon cancer, lung cancer, and head and neck cancer cells | [13,14,27,34,44,51,61] |
Modulation in cell signalling | Crude extract, α-eleostearic acid, 3β, 7β, 25-trihydroxycucurbita-5,23(E)-dien-19-al, lectin, RNase MC2 | Inhibited c-Met/Stat3/c-myc and Mcl-1 signalling, AKT/mTOR/p70S6K signalling, p38 MAPK signalling, AMPK signalling, AKT/ERK/FOXM1 signalling | Head and neck cancer, ovarian cancer, breast cancer, lung cancer, prostate cancer, nasopharyngeal cancer and pancreatic cancer cells | [14,44,54,75] |
Induction of Apoptosis and autophagy | Crude extract, α, β- momorcharin, RNase MC2, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al, MAP30, lectin, BG-4 | Induced activation of caspases, pro-apoptotic genes, reduced anti-apoptotic genes, and induced PARP cleavage. Induced long chain 3 (LC3)-B and p62/SQSTM1 (p62), Beclin-1, ATG-7 and 12 | Breast cancer, prostate cancer, head and neck cancer, colon cancer, lung cancer, pancreatic cancer, hepatocellular carcinoma, glioma, leukemia cells | [13,14,27,28,44,50,55,61,75,76] |
Inhibition of cancer stem cell population | Fruit extract, MAP30 | Inhibited cancer stem cells and stem cell markers SOX2, OCT4, NANOG and CD44, suppressed Wnt/β-catenin signalling. | Colon cancer, pancreatic cancer, prostate cancer and glioma cells | [23,34,57,62] |
Inhibition of hypoxia and angiogenesis | α-MMC | Reduced HIF1α, VEGF, unfolded protein response (UPR), IRE-1, | Nasopharyngeal Carcinoma | [77] |
Modulation in glucose and lipid metabolism | Crude extract | Inhibited key glycolysis and fatty acid metabolism genes, phospholipid synthesis and cholesterol esterification. | In-vivo and in-vitro model of head and neck cancer, breast cancer and pancreatic cancer | [29,40,58] |
Modulation in immune system | Crude extract | Inhibited immune check point gene PD1, cytokines s100a9, IL23a, IL1β. Induced natural killer cell-mediated cytotoxicity. Inhibited Treg cell and Th17 cell population. | In-vivo and in-vitro model of head and neck cancer | [41,42,43] |
Inhibition of invasion and metastasis | Crude extract, kuguacin J | Inhibited MMP9, MMP2, collagenase type IV activity, increased TIMP2 | Lung adenocarcinoma cell, ovarian cancer cell, rat prostate cancer cells | [52,54,60] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sur, S.; Ray, R.B. Bitter Melon (Momordica Charantia), a Nutraceutical Approach for Cancer Prevention and Therapy. Cancers 2020, 12, 2064. https://doi.org/10.3390/cancers12082064
Sur S, Ray RB. Bitter Melon (Momordica Charantia), a Nutraceutical Approach for Cancer Prevention and Therapy. Cancers. 2020; 12(8):2064. https://doi.org/10.3390/cancers12082064
Chicago/Turabian StyleSur, Subhayan, and Ratna B. Ray. 2020. "Bitter Melon (Momordica Charantia), a Nutraceutical Approach for Cancer Prevention and Therapy" Cancers 12, no. 8: 2064. https://doi.org/10.3390/cancers12082064
APA StyleSur, S., & Ray, R. B. (2020). Bitter Melon (Momordica Charantia), a Nutraceutical Approach for Cancer Prevention and Therapy. Cancers, 12(8), 2064. https://doi.org/10.3390/cancers12082064