Normalized Pulmonary Artery Diameter Predicts Occurrence of Postpneumonectomy Respiratory Failure, ARDS, and Mortality
Abstract
1. Introduction
2. Results
2.1. Morphometric Measurements
2.2. Correlations between PAD, Morphometric Parameters, Clinical, and Laboratory Variables
2.3. Factors Associated with Short-Term Outcome: The Role of PAD
3. Discussion
Strengths and Limitations of the Study
4. Materials and Methods
4.1. General Study Design
4.2. Pre-Operative Investigations and Peri-Operative Care
4.3. Collected Data
4.4. CT Measurements
4.5. Outcomes
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hanna, G.G.; Siva, S.; Plumridge, N.; Solomon, B.; Ball, D.L. Preoperative chemotherapy for non-small-cell lung cancer. Lancet 2014, 384, 232–233. [Google Scholar] [CrossRef]
- Janet-Vendroux, A.; Loi, M.; Bobbio, A.; Lococo, F.; Lupo, A.; Ledinot, P.; Magdeleinat, P.; Roche, N.; Damotte, D.; Regnard, J.-F.; et al. Which is the Role of Pneumonectomy in the Era of Parenchymal-Sparing Procedures? Early/Long-Term Survival and Functional Results of a Single-Center Experience. Lung 2015, 193, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Kalathiya, R.; Saha, S.P. Pneumonectomy for Non–Small Cell Lung Cancer. South. Med. J. 2012, 105, 350–354. [Google Scholar] [CrossRef] [PubMed]
- James, T.W.; Faber, L.P. Indications for pneumonectomy. Pneumonectomy for malignant disease. Chest Surg. Clin. N. Am. 1999, 9, 291–309. [Google Scholar]
- Shah, A.A.; Worni, M.; Kelsey, C.; Onaitis, M.W.; D’Amico, T.A.; Berry, M.F. Does pneumonectomy have a role in the treatment of stage IIIA non-small cell lung cancer? Ann. Thorac. Surg. 2013, 95, 1700–1707. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Alam, N.; Park, B.J.; Wilton, A.; Seshan, V.E.; Bains, M.S.; Downey, R.J.; Flores, R.M.; Rizk, N.; Rusch, V.W.; Amar, D. Incidence and Risk Factors for Lung Injury After Lung Cancer Resection. Ann. Thorac. Surg. 2007, 84, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Jeon, K.; Yoon, J.W.; Suh, G.Y.; Kim, J.; Kim, K.; Yang, M.; Kim, H.; Kwon, O.J.; Shims, Y.M. Risk Factors for Post-pneumonectomy Acute Lung Injury/Acute Respiratory Distress Syndrome in Primary Lung Cancer Patients. Anaesth. Intensiv. Care 2009, 37, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.B.; Lee, S.W.; Park, S.-I.; Kim, Y.H.; Kim, D.K. Risk factor analysis for postoperative acute respiratory distress syndrome and early mortality after pneumonectomy: The predictive value of preoperative lung perfusion distribution. J. Thorac. Cardiovasc. Surg. 2010, 140, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.; Berbis, J.; Baste, J.-M.; Le Pimpec-Barthes, F.; Tronc, F.; Falcoz, P.-E.; Dahan, M.; Loundou, A. Pneumonectomy for lung cancer: Contemporary national early morbidity and mortality outcomes. J. Thorac. Cardiovasc. Surg. 2015, 149, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Licker, M.; De Perrot, M.; Spiliopoulos, A.; Robert, J.; Diaper, J.; Chevalley, C.; Tschopp, J.-M. Risk Factors for Acute Lung Injury After Thoracic Surgery for Lung Cancer. Anesthesia Analg. 2003, 97, 1558–1565. [Google Scholar] [CrossRef] [PubMed]
- Ruffini, E.; Parola, A.; Papalia, E.; Filosso, P.L.; Mancuso, M.; Oliaro, A.; Actis-Dato, G.; Maggi, G. Frequency and mortality of acute lung injury and acute respiratory distress syndrome after pulmonary resection for bronchogenic carcinoma. Eur. J. Cardio-Thorac. Surg. 2001, 20, 30–37. [Google Scholar] [CrossRef]
- Kutlu, C.A.; A Williams, E.; Evans, T.W.; Pastorino, U.; Goldstraw, P. Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Ann. Thorac. Surg. 2000, 69, 376–380. [Google Scholar] [CrossRef]
- Parquin, F.; Marchal, M.; Mehiri, S.; Herve, P.; Lescot, B. Post-pneumonectomy pulmonary edema: Analysis and risk factors. Eur. J. Cardio-Thorac. Surg. 1996, 10, 929–932. [Google Scholar] [CrossRef]
- Hayes, J.P.; Williams, E.A.; Goldstraw, P.; Evans, T.W. Lung injury in patients following thoracotomy. Thorax 1995, 50, 990–991. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Blanc, K.; Zaimi, R.; Dechartres, A.; Lefebvre, A.; Janet-Vendroux, A.; Hamelin-Canny, E.; Roche, N.; Alifano, M.; Rabbat, A. Early acute respiratory distress syndrome after pneumonectomy: Presentation, management, and short- and long-term outcomes. J. Thorac. Cardiovasc. Surg. 2018, 156, 1706–1714.e5. [Google Scholar] [CrossRef] [PubMed]
- Rams, J.J.; Harrison, R.W.; Fry, W.A.; Moulder, P.V.; Adams, W.E. Operative Pulmonary Artery Pressure Measurements as a Guide to Postoperative Management and Prognosis following Pneumonectomy. Dis. Chest 1962, 41, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Brunelli, A.; Kim, A.W.; Berger, K.I.; Addrizzo-Harris, D.J. Physiologic Evaluation of the Patient with Lung Cancer being Considered for Resectional Surgery: Diagnosis and Management of Lung Cancer, 3rd ed.; American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2013, 143 (Suppl. 5), e166S–e190S. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; D’Amico, T.; Samad, Z.; Hasan, R.; Berry, M.F. The impact of pulmonary hypertension on morbidity and mortality following major lung resection. Eur. J. Cardiothorac. Surg. 2014, 45, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Peretti, M.; Hervochon, R.; Loi, M.; Blanc, K.; Roche, N.; Alifano, M. Predictors of post-pneumonectomy respiratory failure and ARDS: Usefulness of normalized pulmonary artery diameter. Intensiv. Care Med. 2018, 44, 1357–1359. [Google Scholar] [CrossRef] [PubMed]
- Rudski, L. Point: Can Doppler Echocardiography Estimates of Pulmonary Artery Systolic Pressures Be Relied Upon to Accurately Make the Diagnosis of Pulmonary Hypertension? Yes. Chest 2013, 143, 1533–1536. [Google Scholar] [CrossRef] [PubMed]
- Rich, J.D. Counterpoint: Can Doppler echocardiography estimates of pulmonary artery systolic pressures be relied upon to accurately make the diagnosis of pulmonary hypertension? No. Chest 2013, 143, 1536–1539. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.S.; Wells, A.U.; Padley, S.P.G. A CT Sign of Chronic Pulmonary Arterial Hypertension: The Ratio of Main Pulmonary Artery to Aortic Diameter. J. Thorac. Imaging 1999, 14, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Beller, C.J.; Farag, M.; Wannaku, S.; Seppelt, P.; Arif, R.; Ruhparwar, A.; Karck, M.; Weymann, A.; Kallenbach, K. Gender-Specific Differences in Outcome of Ascending Aortic Aneurysm Surgery. PLoS ONE 2015, 10, e0124461. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.M.; Washko, G.R.; Han, M.K.; Abbas, N.; Nath, H.; Mamary, A.J.; Regan, E.; Bailey, W.C.; Martinez, F.J.; Westfall, E.; et al. Pulmonary arterial enlargement and acute exacerbations of COPD. New Engl. J. Med. 2012, 367, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Blanc, K.; Dechartres, A.; Zaimi, R.; Lefebvre, A.; Janet-Vendroux, A.; Fournel, L.; Dermine, H.; Lorut, C.; Becanne, X.; Hamelin-Canny, E.; et al. Patients experiencing early acute respiratory failure have high postoperative mortality after pneumonectomy. J. Thorac. Cardiovasc. Surg. 2018, 156, 2368–2376. [Google Scholar] [CrossRef] [PubMed]
- Foroulis, C.N.; Kotoulas, C.; Kakouros, S.; Evangelatos, G.; Chassapis, C.; Konstantinou, M.; Lioulias, A.G. Study on the late effect of pneumonectomy on right heart pressures using Doppler echocardiography. Eur. J. Cardio-Thorac. Surg. 2004, 26, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Van Der Werff, Y.D.; Van Der Houwen, H.K.; Heijmans, P.J.; A Duurkens, V.; A Leusink, H.; Van Heesewijk, H.P.; De Boer, A. Postpneumonectomy pulmonary edema. A retrospective analysis of incidence and possible risk factors. Chest 1997, 111, 1278–1284. [Google Scholar] [CrossRef] [PubMed]
- Fee, H.J.; Holmes, E.C.; Gewirtz, H.S.; Ramming, K.P.; Alexander, J.M. Role of pulmonary vascular resistance measurements in preoperative evaluation of candidates for pulmonary resection. J. Thorac. Cardiovasc. Surg. 1978, 75, 519–524. [Google Scholar] [CrossRef]
- Sobin, L.H.; Gospodrowicz, M.K.; Wittekind, C.H. International Union against Cancer: TNM Classification of Malignant Tumours, 7th ed.; Wiley-Blackwell: New York, NY, USA, 2009. [Google Scholar]
- The ARDS Definition Task Force. Acute Respiratory Distress Syndrome. The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar]
Features | Total Sample = 294 |
---|---|
Age: Years | 63.9 ± 9.9 |
Gender: Men/Women | 211 (71.8%)/83(28.2%) |
Current/Never Smokers (n = 291) | 267 (91.8%)/24 (8.2%) |
Cumulative tobacco consumption (Pack/Years) (n = 291) | 40 (30–50) |
Right/Left side | 135 (45.9%)/159 (54.1%) |
Weight (kg) | 71.84 ± 14.48 |
Height (cm) | 169.3 ± 8.1 |
BMI (kg/m2) | 24.98 ± 4.29; median 24 |
Underweight <18.5 | 18 (6.1%) |
Normal weight 18.5–25 | 137 (46.6%) |
Overweight 25.01–30 | 102 (34.7%) |
Obesity >30 | 37 (12.6%) |
BSA (m2) | 1.82 ± 0.19 |
Diabetes Yes/No (n = 291) | 24 (8.2%)/267 (91.8%) |
Hypertension Yes/No (n = 291) | 110 (37.8%)/181 (62.2%) |
Ischemic Heart Disease Yes/No (n = 291) | 61 (21.0%)/230 (79.0%) |
CCI (n = 291) | 5.1 ±1.7; median 5.0 |
Baseline Modified Borg Dyspnea Scale >2 (n = 288) Yes/No | 53 (18.4%)/235 (81.6%) |
FEV1 (% of predicted) | 79.9 ± 17.1 |
FEV1/FVC ratio (n = 285) | 71.9 ± 13.2 |
ppoFEV1 | 50.56 ± 11.24 |
Pattern of respiratory function (n = 285) Normal Obstructive Restrictive | 104 (36.5%) 118 (41.4%) 63 (22.1%) |
KCO (% of predicted) (n = 132) | 78.13 ± 21.07 |
PAD (mm) | 26.0 (24.0–28.0) |
NPAD (mm/m2) | 14.4 ± 2.0 Median 14.0 (13.0–15.6) |
Ratio PAD/AoD | 0.8 ± 0.1 |
NAC Yes/No (n = 291) | 90(30.9%)/201(69.1%) |
NAR Yes/No (n = 291) | 4 (1.4%)/287 (98.6%) |
NSCLC/other malignancies | 289 (98.3%)/5 (1.7%) |
SqCLC/malignancies other than SqCLC | 146 (49.7%)/148 (50.3%) |
Pathologic stage I/II/IIIA/IIIB/IV (n = 282/289 NSCLC) | 21 (7.4%)/71 (25.2%)/176 (62.4%)/14 (5%) |
Feature | Normalized Pulmonary Artery Diameter | p | Ratio PAD/AoD | p | |
---|---|---|---|---|---|
<Median Value | ≥Median Value | ||||
Mean age | 61.48 ± 9.89 | 64.70 ± 9.74 | 0.0049 | r = −0.186 | 0.0015 |
Men | 113 (53.6%) | 98 (46.4%) | 0.052 | 0.79 ± 0.11 | 0.31 |
Women | 34 (41.0%) | 49 (59.0%) | 0.81 ± 0.11 | ||
Smoke (n = 291) Current Never Smokers | 131 (49.1%) 15 (62.5%) | 136 (50.9%) 9 (37.5%) | 0.21 | 0.79 ± 0.11 0.80 ± 0.09 | 0.71 |
Mean cumulative tobacco consumption (Pack/Years) (n = 291) | 39.53 ± 24.84 | 41.41 ± 22.13 | 0.39 | r = −0.065 | 0.26 |
Right side | 59 (43.7%) | 76 (56.3%) | 0.047 | 0.81 ± 0.11 | 0.067 |
Left side | 88 (55.4%) | 71 (44.6%) | 0.78 ± 0.11 | ||
Weight (kg) | 76.04 ± 13.96 | 67.65 ± 13.76 | 0.00000021 | r = 0.019 | 0.74 |
Height (cm) | 171.4 ± 8.2 | 167.3 ± 7.5 | 0.000081 | r = 0.011 | 0.85 |
BMI (kg/m2) | 25.87 ± 4.26 | 24.09 ± 4.13 | 0.00024 | r = 0.032 | 0.59 |
Underweight | 7 (38.9%) | 11 (61.1%) | 0.78 | 0.78 ± 0.11 | 0.77 |
Normal weight | 58 (42.3%) | 79 (57.7%) | 0.79 ± 0.11 | ||
Overweight | 59 (57.8%) | 43 (42.2%) | 0.80 ± 0.11 | ||
Obesity | 23 (62.2%) | 14 (37.8%) | 0.79 ± 0.11 | ||
BSA (m2) | 1.88 ± 0.19 | 1.76 ± 0.19 | <0.0000001 | r = 0.012 | 0.84 |
CCI | 4.89 ± 1.64 | 5.34 ± 1.83 | 0.041 | r = −0.120 | 0.040 |
Baseline dyspnea—Modified Borg Dyspnea Scale ≥2 (n = 288) Yes No | 28 (52.8%) 114 (48.5%) | 25 (47.2%) 121 (51.5%) | 0.57 | 0.80 ± 0.09 0.80 ± 0.11 | 0.56 |
Mean FEV1 (% of predicted) | 79.84 ± 16.02 | 79.90 ± 18.10 | 0.97 | r = −0.040 | 0.50 |
Mean FEV1/FVC (n = 285) | 72.31 ± 12.79 | 71.55 ± 13.68 | 0.81 | r = 0.022 | 0.72 |
Pattern of respiratory function (n = 285) Obstructive Normal Restrictive | 60 (50.8%) 51 (49.0%) 31 (49.2%) | 58 (49.2%) 53 (51.0%) 32 (50.8%) | 0.83 | 0.79 ± 0.12 0.79 ± 0.11 0.80 ± 0.11 | 0.54 |
Mean ppoFEV1 | 50.68 ± 11.20 | 50.43 ± 11.29 | 0.88 | r = −0.027 | 0.69 |
NAC (n = 291) Yes No | 46 (51.1%) 100 (49.75%) | 44 (48.9%) 101 (50.25%) | 0.83 | 0.80 ± 0.11 0.79 ± 0.11 | 0.73 |
NAR (n = 291) Yes No | 2 (50%) 144 (50.17%) | 2 (50%) 143 (49.83%) | 0.62 | 0.83 ± 0.04 0.79 ± 0.11 | 0.48 |
Type of malignancy NSCLC Other malignancies | 142 (49.1%) 5 (100%) | 147 (50.9%) 0 (0%) | 0.07 | 0.80 ± 0.11 0.78 ± 0.11 | 0.76 |
SqCLC | 72 (49.3%) | 74 (50.7%) | 0.82 | 0.80 ± 0.12 | 0.28 |
malignancies other than SqCLC | 75 (50.7%) | 73 (49.3%) | 0.80 ± 0.11 | ||
Pathologic stage (n = 282/289 NSCLC) I–II III–IV | 46 (50.0%) 92 (48.4%) | 46 (50.0%) 98 (51.6%) | 0.80 | 0.79 ± 0.11 0.80 ± 0.11 | 0.44 |
Feature | Need of Mechanical Ventilation | ARDS | ||||
---|---|---|---|---|---|---|
Yes | No | p | Yes | No | p | |
Mean age | 66.26 ± 9.53 | 62.50 ± 9.91 | 0.028 | 67.43 ± 8.78 | 62.60 ± 9.95 | 0.020 |
Men | 38 (18.0%) | 173 (82.0%) | 0.075 | 24 (11.4%) | 187 (88.6%) | 0.29 |
Women | 8 (9.64%) | 75 (90.36%) | 6 (7.2%) | 77 (92.8%) | ||
Smoke (n = 291) Current Never Smokers | 43 (16.1%) 3 (12.5%) | 224 (83.9%) 21 (87.5%) | 0.86 | 28 (10.5%) 2 (8.3%) | 239 (89.5%) 22 (91.7%) | 0.99 |
Mean cumulative tobacco consumption (Pack/Years) (n = 291) | 41.96 ± 21.80 | 40.19 ± 23.85 | 0.67 | 43.53 ± 22.22 | 40.12 ± 23.67 | 0.41 |
Right side | 29 (21.5%) | 106 (78.5%) | 0.011 | 19 (14.1%) | 116 (85.9%) | 0.043 |
Left side | 17 (10.7%) | 142 (89.3%) | 11 (6.9%) | 148 (93.1%) | ||
Weight (Kg) | 71.22 ± 14.94 | 71.96 ± 14.39 | 0.73 | 70.27 ± 14.18 | 72.02 ± 14.51 | 0.53 |
Height (cm) | 170.61 ± 8.80 | 169.1 ± 8.0 | 0.28 | 168.1 ± 6.6 | 169.4 ± 8.3 | 0.39 |
BMI (kg/m2) | 24.45 ± 4.64 | 25.08 ± 4.21 | 0.39 | 24.86 ± 4.76 | 24.99 ± 4.23 | 0.87 |
BSA (m2) | 1.82 ± 0.20 | 1.817 ± 0.196 | 0.92 | 1.79 ± 0.18 | 1.821 ± 0.199 | 0.44 |
CCI | 6.20 ± 1.92 | 4.90 ± 1.64 | 0.00032 | 5.93 ± 1.57 | 5.02 ± 1.75 | 0.0043 |
Baseline dyspnea—Modified Borg Dyspnea Scale >2 (n= 288) Yes No | 8 (15.1%) 36 (15.3%) | 45 (84.9%) 199 (84.7%) | 0.97 | 5 (9.4%) 24 (10.2%) | 48 (9.6%) 211 (89.8%) | 0.86 |
Mean FEV1 (% of predicted) | 76.22 ± 17.11 | 80.55 ± 17.00 | 0.18 | 78.53 ± 14.78 | 80.02 ± 17.33 | 0.64 |
Mean FEV1/FVC (n = 285) | 73.41 ± 15.22 | 71.66 ± 12.84 | 0.58 | 75.29 ± 13.02 | 71.56 ± 13.22 | 0.24 |
Pattern of respiratory function (n = 285) Obstructive Normal Restrictive | 18 (15.3%) 12 (11.5%) 14 (22.2%) | 100 (84.7%) 92 (88.5%) 49 (77.8%) | 0.18 | 10 (8.5%) 8 (7.7%) 10 (15.9%) | 108 (91.5%) 96 (92.3%) 53 (84.1%) | 0.098 |
Mean KCO (n = 132) (% of predicted) | 70.25 ± 19.32 | 79.88 ± 21.05 | 0.041 | 65.43 ± 15.00 | 79.64 ± 21.18 | 0.016 |
Mean ppoFEV1 | 47.83 ± 9.81 | 51.07 ± 11.42 | 0.12 | 49.08 ± 10.70 | 50.73 ± 11.29 | 0.54 |
NAC (n = 291) Yes No | 10 (11.1%) 36 (17.9%) | 80 (88.9%) 165 (82.1%) | 0.14 | 5 (5.6%) 25 (12.4%) | 85 (94.4%) 176 (87.6%) | 0.074 |
NAR (n = 291) Yes No | 0 (0.0%) 46 (16.0%) | 4 (100.0%) 241 (84.0%) | 0.86 | 0 (0.0%) 30 (10.4%) | 4 (100.0%) 257 (89.6%) | 0.88 |
Type of malignancy NSCLC Other malignancies | 46 (15.9%) 0 (0.0%) | 243 (84.1%) 5 (100.0%) | 0.73 | 30 (10.4%) 0 (0.0%) | 259 (89.6%) 5 (100.0%) | 0.99 |
SqCLC | 25 (17.1%) | 121 (82.9%) | 0.49 | 15 (10.3%) | 131 (89.7%) | 0.97 |
Malignancies other than SqCLC | 21 (14.2%) | 127 (85.8%) | 15 (10.1%) | 133 (89.9%) | ||
Pathologic stage (n = 282/289 NSCLC) I–II III–IV | 18 (19.6%) 28 (14.7%) | 74 (80.4%) 162 (85.3%) | 0.30 | 12 (13.4%) 18 (9.47%) | 80 (89.9%) 172 (90.5%) | 0.36 |
PAD (mm) | 26.74 ± 3.70 | 25.80 ± 3.34 | 0.22 | 26.37 ± 3.37 | 25.90 ± 3.42 | 0.60 |
NPAD (≥median) Yes No | 31 (21.1%) 15 (10.2%) | 116 (78.9%) 132 (89.8%) | 0.010 | 21 (14.3%) 9 (6.1%) | 126 (85.7%) 138 (93.9%) | 0.021 |
PAD/AoD ratio | 0.82 ± 0.13 | 0.79 ± 0.11 | 0.18 | 0.80 ± 0.12 | 0.79 ± 0.11 | 0.85 |
Feature | 30-Day Mortality | ||
---|---|---|---|
Dead | Alive | p | |
Mean age | 69.76 ± 7.47 | 62.47 ± 9.92 | 0.00046 |
Men | 18 (8.5%) | 193 (91.5%) | 0.98 |
Women | 7 (91.6%) | 76 (8.4%) | |
Smoke (n = 291) Current Never Smokers | 22 (8.3%) 3 (12.5%) | 245 (91.7%) 21 (87.5%) | 0.74 |
Mean cumulative tobacco consumption (Pack/Years) (n = 291) | 41.08 ± 23.73 | 40.41 ± 23.53 | 0.77 |
Right side | 18 (13.3%) | 117 (86.7%) | 0.0062 |
Left side | 7 (4.4%) | 152 (95.6%) | |
Weight (kg) | 71.92 ± 15.45 | 71.84 ± 14.39 | 0.93 |
Height (cm) | 167.70 ± 7.10 | 169.50 ± 8.20 | 0.31 |
BMI (kg/m2) | 25.53 ± 4.98 | 24.93 ± 4.21 | 0.51 |
BSA (m2) | 1.80 ± 0.20 | 1.80 ± 0.19 | 0.73 |
CCI | 6.41 ± 1.81 | 4.98 ± 1.69 | 0.000086 |
Baseline dyspnea—Modified Borg Dyspnea Scale >2 (n = 288) Yes No | 4 (7.6%) 21 (8.9%) | 49 (92.4%) 214 (91.1%) | 0.99 |
Mean FEV1 (% of predicted) | 78.24 ± 14.78 | 80.02 ± 17.28 | 0.65 |
Mean FEV1/FVC (n = 285) | 72.13 ± 15.16 | 71.91 ± 13.07 | 0.60 |
Pattern of respiratory function (n = 285) Obstructive Normal Restrictive | 12 (10.2%) 3 (2.9%) 8 (12.7%) | 106 (89.8%) 101 (97.1%) 55 (87.3%) | 0.042 |
Mean KCO (n = 132) (% of predicted) | 73.09 ± 22.01 | 78.59 ± 20.93 | 0.42 |
Mean ppoFEV1 | 45.86 ± 8.55 | 51.06 ± 11.38 | 0.047 |
NAR (291) Yes No | 0 (0.0%) 25 (89.7%) | 4 (100.0%) 262 (91.3%) | 0.78 |
NAC (291) Yes No | 4 (4.4%) 21 (10.5%) | 86 (95.6%) 180 (89.5%) | 0.091 |
Type of malignancy NSCLC Other malignancies | 25 (8.5%) 0 (0.0%) | 264 (91.5%) 5 (100.0%) | 0.90 |
SqCLC | 12 (8.2%) | 134 (91.8%) | 0.86 |
Malignancies other than SqCLC | 13 (8.8%) | 135 (91.2%) | |
Pathologic stage (n = 282/289 NSCLC) I–II III–IV | 11 (12.0%) 14 (7.4%) | 81 (88.0%) 176 (92.6%) | 0.20 |
PAD (mm) | 26.60 ± 3.60 | 25.88 ± 3.39 | 0.38 |
NPAD (≥median) Yes No | 8 (5.4%) 17 (11.6%) | 139(94.6%) 130(88.4%) | 0.06 |
PAD/AoD ratio | 0.808 ± 0.141 | 0.793 ± 0.107 | 0.67 |
Feature | OR | IC 95% | p | |
---|---|---|---|---|
IMV | CCI > 5 | 3.8 | 1.76–822 | 0.0009 |
Right pneumonectomy | 2.37 | 1.20–4.71 | 0.013 | |
NPAD > 14 mm/m2 | 2.16 | 1.08–4.33 | 0.029 | |
ARDS | CCI > 5 | 2.55 | 1.17–5.59 | 0.018 |
NPAD > 14 mm/m2 | 2.52 | 1.10–5.77 | 0.028 | |
DEATH | CCI > 5 | 5.56 | 1.99–15.54 | 0.0011 |
Right pneumonectomy | 4.11 | 1.46–11.56 | 0.0074 | |
NPAD > 14 mm/m2 | 3.39 | 1.15–9.95 | 0.026 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daffrè, E.; Prieto, M.; Huang, H.; Janet-Vendroux, A.; Blanc, K.; N’Guyen, Y.-L.; Fournel, L.; Alifano, M. Normalized Pulmonary Artery Diameter Predicts Occurrence of Postpneumonectomy Respiratory Failure, ARDS, and Mortality. Cancers 2020, 12, 1515. https://doi.org/10.3390/cancers12061515
Daffrè E, Prieto M, Huang H, Janet-Vendroux A, Blanc K, N’Guyen Y-L, Fournel L, Alifano M. Normalized Pulmonary Artery Diameter Predicts Occurrence of Postpneumonectomy Respiratory Failure, ARDS, and Mortality. Cancers. 2020; 12(6):1515. https://doi.org/10.3390/cancers12061515
Chicago/Turabian StyleDaffrè, Elisa, Mathilde Prieto, Haihua Huang, Aurélie Janet-Vendroux, Kim Blanc, Yen-Lan N’Guyen, Ludovic Fournel, and Marco Alifano. 2020. "Normalized Pulmonary Artery Diameter Predicts Occurrence of Postpneumonectomy Respiratory Failure, ARDS, and Mortality" Cancers 12, no. 6: 1515. https://doi.org/10.3390/cancers12061515
APA StyleDaffrè, E., Prieto, M., Huang, H., Janet-Vendroux, A., Blanc, K., N’Guyen, Y.-L., Fournel, L., & Alifano, M. (2020). Normalized Pulmonary Artery Diameter Predicts Occurrence of Postpneumonectomy Respiratory Failure, ARDS, and Mortality. Cancers, 12(6), 1515. https://doi.org/10.3390/cancers12061515