APC Mutation Marks an Aggressive Subtype of BRAF Mutant Colorectal Cancers
Abstract
:1. Background
2. Methods
2.1. Cohorts Included in the Study
2.2. DNA Extraction, Library Preparation and Exome Sequencing of Local Samples
2.3. Assessing the Somatic Mutational Landscape of WNT Regulators
2.4. Murine Model of Apc and Braf Mutation
2.5. Sanger Sequencing
2.6. Statistical Analysis
3. Results
3.1. The Somatic Mutation Landscape of WNT Signaling in BRAF Mutated Cancers
3.2. Somatic Mutation Interaction Analysis Identifies Co-Mutated WNT Signaling Loci and Mutual Exclusivity of Truncating APC and RNF43 Mutations
3.3. The WNT Signaling Mutational Landscape of BRAF Mutant Microsatellite Unstable Cancers Differs from BRAF Mutant Microsatellite Stable Cancers
3.4. WNT Signalling Regulators Are Differentially Mutated in BRAF Mutant Cancers in Comparison to BRAF Wild Type Cancers
3.5. Mutation Clustering Analysis Reveals Mutational Hotspots in Nine WNT Signaling Genes
3.6. Mutations in WNT Signaling Regulators Confer Prognostic Implications
3.7. Co-Mutation of APC and BRAF Represents a Unique and Aggressive Subtype of BRAF Mutant Cancers
3.8. Mutation of Braf in APCmin/+ Mouse Results in Massive Polyp Load, Rapid Disease Progression and Poor Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Borowsky, J.; Dumenil, T.; Bettington, M.; Pearson, S.-A.; Bond, C.; Fennell, L.; Liu, C.; McKeone, D.; Rosty, C.; Brown, I.; et al. The role of APC in WNT pathway activation in serrated neoplasia. Mod. Pathol. 2018, 31, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Bond, C.E.; McKeone, D.M.; Kalimutho, M.; Bettington, M.L.; Pearson, S.-A.; Dumenil, T.D.; Wockner, L.F.; Burge, M.; Leggett, B.A.; Whitehall, V.L.J. RNF43 and ZNRF3 are commonly altered in serrated pathway colorectal tumorigenesis. Oncotarget 2016, 7, 70589–70600. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Ogawa, R.; Yoshida, H.; Taniguchi, H.; Kojima, M.; Saito, Y.; Sekine, S. Acquisition of WNT Pathway Gene Alterations Coincides with the Transition From Precursor Polyps to Traditional Serrated Adenomas. Am. J. Surg. Pathol. 2019, 43, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Sekine, S.; Yamashita, S.; Tanabe, T.; Hashimoto, T.; Yoshida, H.; Taniguchi, H.; Kojima, M.; Shinmura, K.; Saito, Y.; Hiraoka, N.; et al. Frequent PTPRK-RSPO3 fusions and RNF43 mutations in colorectal traditional serrated adenoma. J. Pathol. 2016, 239, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Rowan, A.J.; Lamlum, H.; Ilyas, M.; Wheeler, J.; Straub, J.; Papadopoulou, A.; Bicknell, D.; Bodmer, W.F.; Tomlinson, I.P.M. APC mutations in sporadic colorectal tumors: A mutational “hotspot” and interdependence of the “two hits”. Proc. Natl. Acad. Sci. USA 2000, 97, 3352–3357. [Google Scholar] [CrossRef] [Green Version]
- Kambara, T.; Matsubara, N.; Nagao, A.; Uchida, T.; Nakagawa, H.; Tanaka, N.; Nagasaka, T.; Young, J.; Leggett, B.; Jass, J. Mtations in BRAF, KRAS, and APC, and CpG island methylation: Alternative pathways to colorectal cancer. Cancer Res. 2006, 66, 81. [Google Scholar]
- The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012, 487, 330–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannakis, M.; Hodis, E.; Jasmine Mu, X.; Yamauchi, M.; Rosenbluh, J.; Cibulskis, K.; Saksena, G.; Lawrence, M.S.; Qian, Z.R.; Nishihara, R.; et al. RNF43 is frequently mutated in colorectal and endometrial cancers. Nat. Genet. 2014, 46, 1264–1266. [Google Scholar] [CrossRef]
- Tu, J.; Park, S.; Yu, W.; Zhang, S.; Wu, L.; Carmon, K.; Liu, Q.J. The most common RNF43 mutant G659Vfs*41 is fully functional in inhibiting Wnt signaling and unlikely to play a role in tumorigenesis. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Watkins, D.N.; Jair, K.-W.; Schuebel, K.E.; Markowitz, S.D.; Chen, W.D.; Pretlow, T.P.; Yang, B.; Akiyama, Y.; van Engeland, M.; et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat. Genet. 2004, 36, 417–422. [Google Scholar] [CrossRef]
- Suzuki, H.; Gabrielson, E.; Chen, W.; Anbazhagan, R.; van Engeland, M.; Weijenberg, M.P.; Herman, J.G.; Baylin, S.B. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat. Genet. 2002, 31, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, O.; Fraga, M.F.; Ballestar, E.; Paz, M.F.; Herranz, M.; Espada, J.; García, J.M.; Muñoz, A.; Esteller, M.; González-Sancho, J.M. Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene 2006, 25, 4116–4121. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Sethi, N.S.; Hinoue, T.; Schneider, B.G.; Cherniack, A.D.; Sanchez-Vega, F.; Seoane, J.A.; Farshidfar, F.; Bowlby, R.; Islam, M.; et al. Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Available online: https://pubmed.ncbi.nlm.nih.gov/29622466-comparative-molecular-analysis-of-gastrointestinal-adenocarcinomas/ (accessed on 20 January 2020).
- Giannakis, M.; Mu, X.J.; Shukla, S.A.; Qian, Z.R.; Cohen, O.; Nishihara, R.; Bahl, S.; Cao, Y.; Amin-Mansour, A.; Yamauchi, M.; et al. Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma. Cell Rep. 2016, 15, 857–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasaikar, S.; Huang, C.; Wang, X.; Petyuk, V.A.; Savage, S.R.; Wen, B.; Dou, Y.; Zhang, Y.; Shi, Z.; Arshad, O.A.; et al. Proteogenomic Analysis of Human Colon Cancer Reveals New Therapeutic Opportunities. Cell 2019, 177, 1035–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaeger, R.; Chatila, W.K.; Lipsyc, M.D.; Hechtman, J.F.; Cercek, A.; Sanchez-Vega, F.; Jayakumaran, G.; Middha, S.; Zehir, A.; Donoghue, M.T.A.; et al. Clinical Sequencing Defines the Genomic Landscape of Metastatic Colorectal Cancer. Available online: https://pubmed.ncbi.nlm.nih.gov/29316426/ (accessed on 16 January 2020).
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef] [Green Version]
- Fennell, L.; Dumenil, T.; Wockner, L.; Hartel, G.; Nones, K.; Bond, C.; Borowsky, J.; Liu, C.; McKeone, D.; Bowdler, L.; et al. Integrative Genome-Scale DNA Methylation Analysis of a Large and Unselected Cohort Reveals Five Distinct Subtypes of Colorectal Adenocarcinomas. Cell. Mol. Gastroenterol. Hepatol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Li, H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. arXiv 2013, arXiv:13033997. Q-Bio. Available online: http://arxiv.org/abs/1303.3997 (accessed on 6 February 2020).
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup The Sequence Alignment/Map format and SAMtools. Bioinforma. Oxf. Engl. 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Kassahn, K.S.; Holmes, O.; Nones, K.; Patch, A.-M.; Miller, D.K.; Christ, A.N.; Harliwong, I.; Bruxner, T.J.; Xu, Q.; Anderson, M.; et al. Somatic Point Mutation Calling in Low Cellularity Tumors. PLoS ONE 2013, 8, e74380. [Google Scholar] [CrossRef] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayakonda, A.; Lin, D.-C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018, 28, 1747–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamborero, D.; Gonzalez-Perez, A.; Lopez-Bigas, N. OncodriveCLUST: Exploiting the Positional Clustering of Somatic Mutations to Identify Cancer Genes. Available online: https://pubmed.ncbi.nlm.nih.gov/23884480/ (accessed on 20 January 2020).
- Mularoni, L.; Sabarinathan, R.; Deu-Pons, J.; Gonzalez-Perez, A.; López-Bigas, N. OncodriveFML: A general framework to identify coding and non-coding regions with cancer driver mutations. Genome Biol. 2016, 17, 128. [Google Scholar] [CrossRef] [Green Version]
- Bond, C.E.; Liu, C.; Kawamata, F.; McKeone, D.M.; Fernando, W.; Jamieson, S.; Pearson, S.-A.; Kane, A.; Woods, S.L.; Lannagan, T.R.M.; et al. Oncogenic BRAF mutation induces DNA methylation changes in a murine model for human serrated colorectal neoplasia. Epigenetics 2018, 13, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Kane, A.M.; Fennell, L.J.; Liu, C.; Borowsky, J.; McKeone, D.M.; Bond, C.E.; Kazakoff, S.; Patch, A.-M.; Koufariotis, L.T.; Pearson, J.; et al. Alterations in signaling pathways that accompany spontaneous transition to malignancy in a mouse model of BRAF mutant microsatellite stable colorectal cancer. Neoplasia 2020, 22, 120–128. [Google Scholar] [CrossRef]
- Fennell, L.J.; Clendenning, M.; McKeone, D.M.; Jamieson, S.H.; Balachandran, S.; Borowsky, J.; Liu, J.; Kawamata, F.; Bond, C.E.; Rosty, C.; et al. RNF43 is mutated less frequently in Lynch Syndrome compared with sporadic microsatellite unstable colorectal cancers. Fam. Cancer 2018, 17, 63–69. [Google Scholar] [CrossRef]
- Jiang, X.; Hao, H.X.; Growney, J.D.; Woolfenden, S.; Bottiglio, C.; Ng, N.; Lu, B.; Hsieh, M.H.; Bagdasarian, L.; Meyer, R.; et al. Inactivating Mutations of RNF43 Confer Wnt Dependency in Pancreatic Ductal Adenocarcinoma. Available online: https://pubmed.ncbi.nlm.nih.gov/23847203/ (accessed on 20 January 2020).
- Seshagiri, S.; Stawiski, E.W.; Durinck, S.; Modrusan, Z.; Storm, E.E.; Conboy, C.B.; Chaudhuri, S.; Guan, Y.; Janakiraman, V.; Jaiswal, B.S.; et al. Recurrent R-Spondin Fusions in Colon Cancer. Available online: https://pubmed.ncbi.nlm.nih.gov/22895193/ (accessed on 15 January 2020).
- Sekine, S.; Ogawa, R.; Hashimoto, T.; Motohiro, K.; Yoshida, H.; Taniguchi, H.; Saito, Y.; Yasuhiro, O.; Ochiai, A.; Hiraoka, N. Comprehensive characterization of RSPO fusions in colorectal traditional serrated adenomas. Histopathology 2017, 71, 601–609. [Google Scholar] [CrossRef]
- Yuan, Z.; Sánchez Claros, C.; Suzuki, M.; Maggi, E.C.; Kaner, J.D.; Kinstlinger, N.; Gorecka, J.; Quinn, T.J.; Geha, R.; Corn, A.; et al. Loss of MEN1 Activates DNMT1 Implicating DNA Hypermethylation as a Driver of MEN1 Tumorigenesis. Available online: https://pubmed.ncbi.nlm.nih.gov/26871472/ (accessed on 20 January 2020).
- Agarwal, S.K. The future: Genetics advances in MEN1 therapeutic approaches and management strategies. Endocr. Relat. Cancer 2017, 24, T119–T134. [Google Scholar] [CrossRef] [Green Version]
- Marini, F.; Falchetti, A.; Luzi, E.; Tonelli, F.; Maria Luisa, B. Multiple Endocrine Neoplasia Type 1 (MEN1) Syndrome. In Cancer Syndromes; Riegert-Johnson, D.L., Boardman, L.A., Hefferon, T., Roberts, M., Eds.; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2009. Available online: http://www.ncbi.nlm.nih.gov/books/NBK7029/ (accessed on 20 January 2020).
- Nalesso, G.; Thomas, B.L.; Sherwood, J.C.; Yu, J.; Addimanda, O.; Eldridge, S.E.; Thorup, A.-S.; Dale, L.; Schett, G.; Zwerina, J.; et al. WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis. Ann. Rheum. Dis. 2017, 76, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Rodon, J.; Argilés, G.; Connolly, R.M.; Vaishampayan, U.; de Jonge, M.; Garralda, E.; Giannakis, M.; Smith, D.C.; Dobson, J.R.; McLaughlin, M.; et al. Abstract CT175: Biomarker analyses from a phase I study of WNT974, a first-in-class Porcupine inhibitor, in patients (pts) with advanced solid tumors. Cancer Res. 2018, 78, CT175. [Google Scholar] [CrossRef]
- Albuquerque, C.; Breukel, C.; van der Luijt, R.; Fidalgo, P.; Lage, P.; Slors, F.J.M.; Leitão, C.N.; Fodde, R.; Smits, R. The ‘just-right’ signaling model: APC somatic mutations are selected based on a specific level of activation of the β-catenin signaling cascade. Hum. Mol. Genet. 2002, 11, 1549–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pai, R.K.; Jayachandran, P.; Koong, A.C.; Chang, D.T.; Kwok, S.; Ma, L.; Arber, D.A.; Balise, R.R.; Tubbs, R.R.; Shadrach, B.; et al. BRAF-mutated, Microsatellite-stable Adenocarcinoma of the Proximal Colon: An Aggressive Adenocarcinoma With Poor Survival, Mucinous Differentiation, and Adverse Morphologic Features. Am. J. Surg. Pathol. 2012, 36, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Bolzacchini, E.; Cerutti, R.; Digiacomo, N.; Sahnane, N.; Pinotti, G.; Bregni, M.; Artale, S.; Verusio, C.; Crivelli, F.; Capella, C.; et al. Difference in immune infiltration in MSI and MSS BRAF mutant colorectal cancer. J. Clin. Oncol. 2018, 36, e15624. [Google Scholar] [CrossRef]
- Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar] [CrossRef]
- Rad, R.; Cadiñanos, J.; Rad, L.; Varela, I.; Strong, A.; Kriegl, L.; Constantino-Casas, F.; Eser, S.; Hieber, M.; Seidler, B.; et al. A Genetic Progression Model of BrafV600E-Induced Intestinal Tumorigenesis Reveals Targets for Therapeutic Intervention. Cancer Cell 2013, 24, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Pai, R.K.; Bettington, M.; Srivastava, A.; Rosty, C. An Update on the Morphology and Molecular Pathology of Serrated Colorectal Polyps and Associated Carcinomas. Available online: https://pubmed.ncbi.nlm.nih.gov/31028362/ (accessed on 20 January 2020).
- Shih, I.-M.; Wang, T.-L.; Traverso, G.; Romans, K.; Hamilton, S.R.; Ben-Sasson, S.; Kinzler, K.W.; Vogelstein, B. Top-down morphogenesis of colorectal tumors. Proc. Natl. Acad. Sci. USA 2001, 98, 2640–2645. [Google Scholar] [CrossRef] [Green Version]
- Bormann, F.; Rodríguez-Paredes, M.; Lasitschka, F.; Edelmann, D.; Musch, T.; Benner, A.; Bergman, Y.; Dieter, S.M.; Ball, C.R.; Glimm, H.; et al. Cell-of-Origin DNA Methylation Signatures Are Maintained during Colorectal Carcinogenesis. Cell Rep. 2018, 23, 3407–3418. [Google Scholar] [CrossRef]
- Hashimoto, T.; Yamashita, S.; Yoshida, H.; Taniguchi, H.; Ushijima, T.; Yamada, T.; Saito, Y.; Ochiai, A.; Sekine, S.; Hiraoka, N. WNT Pathway Gene Mutations Are Associated With the Presence of Dysplasia in Colorectal Sessile Serrated Adenoma/Polyps. Am. J. Surg. Pathol. 2017, 41, 1188–1197. [Google Scholar] [CrossRef]
- Bettington, M.; Walker, N.; Rosty, C.; Brown, I.; Clouston, A.; McKeone, D.; Pearson, S.-A.; Leggett, B.; Whitehall, V. Clinicopathological and molecular features of sessile serrated adenomas with dysplasia or carcinoma. Gut 2017, 66, 97–106. [Google Scholar] [CrossRef]
- Liu, C.; Bettington, M.L.; Walker, N.I.; Dwine, J.; Hartel, G.F.; Leggett, B.A.; Whitehall, V.L.J. CpG Island Methylation in Sessile Serrated Adenomas Increases with Age, Indicating Lower Risk of Malignancy in Young Patients. Gastroenterology 2018, 155, 1362–1365. [Google Scholar] [CrossRef] [PubMed]
- Bennecke, M.; Kriegl, L.; Bajbouj, M.; Retzlaff, K.; Robine, S.; Jung, A.; Arkan, M.C.; Kirchner, T.; Greten, F.R. Ink4a/Arf and Oncogene-Induced Senescence Prevent Tumor Progression during Alternative Colorectal Tumorigenesis. Cancer Cell 2010, 18, 135–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, A.M.; Ridgway, R.A.; Derkits, S.E.; Parry, L.; Barker, N.; Clevers, H.; Clarke, A.R.; Sansom, O.J. p21 loss blocks senescence following Apc loss and provokes tumourigenesis in the renal but not the intestinal epithelium. EMBO Mol. Med. 2010, 2, 472–486. [Google Scholar] [CrossRef] [PubMed]
Gene | Samples Mutated (MSI) | Samples Mutated (MSS) | Adjusted p Value | Odds Ratio (MSI/MSS) |
---|---|---|---|---|
KMT2D | 51 | 4 | 1.15 × 10−06 | 13.03657408 |
CHD8 | 36 | 1 | 1.15 × 10−05 | 30.45914642 |
ITPR2 | 30 | 0 | 1.68 × 10−05 | NA |
CREBBP | 40 | 3 | 3.65 × 10−05 | 11.57936393 |
ITPR3 | 41 | 4 | 9.91 × 10−05 | 8.88801381 |
BCL9L | 34 | 2 | 9.91 × 10−05 | 13.77175126 |
EP300 | 25 | 0 | 1.32 × 10−04 | NA |
USP34 | 33 | 2 | 1.46 × 10−04 | 13.18635308 |
DVL2 | 23 | 0 | 2.29 × 10−04 | NA |
TRRAP | 43 | 6 | 2.86 × 10−04 | 6.194964561 |
SCRIB | 22 | 0 | 3.48 × 10−04 | NA |
RNF43 | 52 | 12 | 2.09 × 10−03 | 3.900624188 |
FZD8 | 19 | 0 | 2.24 × 10−03 | Inf |
ZNRF3 | 30 | 3 | 2.34 × 10−03 | 7.558622414 |
Gene | Samples Mutated (BRAF Mutant) | Samples Mutated (BRAF Wild Type) | Adjusted p Value | Odds-Ratio (Mutant/Wild Type) |
---|---|---|---|---|
APC | 57 | 420 | 7.18 × 10−39 | 0.09 |
RNF43 | 82 | 29 | 2.90 × 10−26 | 11.52 |
ZNRF3 | 38 | 7 | 3.67 × 10−14 | 16.84 |
ITPR3 | 51 | 25 | 3.27 × 10−12 | 6.65 |
KMT2D | 66 | 49 | 2.53 × 10−11 | 4.64 |
TRRAP | 60 | 40 | 2.53 × 10−11 | 5.04 |
CREBBP | 51 | 37 | 9.61 × 10−09 | 4.38 |
DVL2 | 24 | 6 | 6.25 × 10−08 | 11.45 |
FZD8 | 20 | 3 | 8.60 × 10−08 | 18.77 |
CHD8 | 45 | 32 | 8.92 × 10−08 | 4.34 |
TERT | 19 | 3 | 2.34 × 10−07 | 17.74 |
LRP5 | 29 | 13 | 2.72 × 10−07 | 6.49 |
WNT16 | 25 | 9 | 3.74 × 10−07 | 7.96 |
SCRIB | 28 | 16 | 1.10 × 10−05 | 5.03 |
ROR2 | 29 | 18 | 1.10 × 10−05 | 4.64 |
BCL9L | 39 | 33 | 1.76 × 10−05 | 3.51 |
AKT1 | 16 | 4 | 1.95 × 10−05 | 11.00 |
SOX3 | 17 | 5 | 1.99 × 10−05 | 9.38 |
WNT4 | 13 | 2 | 3.38 × 10−05 | 17.66 |
Gene | Median Survival (Days) | |||||
---|---|---|---|---|---|---|
All Mutations | Truncating Mutations | |||||
Wild Type | Mutant | p Value | Wild Type | Mutant | p Value | |
WNT16 ^ | 2134 | 547 | 0.001 | 2134 | 547 | 0.001 |
RNF43 * | 752 | 2047 | 0.01 | 934 | 2047 | 0.04 |
CREBBP * | 958 | 2134 | 0.01 | 961 | NA | 0.14 |
APC * | 1390 | 504 | 0.03 | 1390 | 504 | 0.03 |
WNT11 ^ | 2134 | 188 | 0.059 | 2134 | 188 | 0.059 |
AXIN2 * | 958 | 1158 | 0.26 | 961 | 1158 | 0.21 |
KMT2D * | 958 | 1503 | 0.27 | 961 | 1503 | 0.4 |
AXIN1 * | 958 | 1503 | 0.35 | 961 | 1158 | 0.86 |
SOX9 * | 961 | 2047 | 0.49 | 1158 | 2047 | 0.88 |
GNG12 ^ | 2134 | NA | 0.52 | 2134 | 1503 | 0.93 |
MEN1 ^ | NA | 2134 | 0.54 | NA | 2134 | 0.54 |
PYGO2 ^ | NA | 1818 | 0.63 | NA | 1818 | 0.5 |
ZNRF3 ^ | 2134 | 2047 | 0.65 | 2134 | 2047 | 0.9 |
TRRAP ^ | NA | 2047 | 0.8 | 2134 | NA | 0.81 |
APC | p-Value 1 | |||||||
---|---|---|---|---|---|---|---|---|
Characteristic | n | Truncating Mutation | Missense Mutation | Wild-Type | Truncating vs. Missense | Truncating vs. Wild-Type | Missense vs. Wild-Type | |
Mean Age | Years | 273 | 60.8 | 72.4 | 70.6 | 2.03 × 10−5 | 9.3 × 10−6 | 0.34 |
Sex | Male | 87 (31.8%) | 18 (32%) | 6 (24%) | 63 (33%) | 0.48 | 0.86 | 0.36 |
Female | 187 (68.2%) | 39 (68%) | 19 (76%) | 129 (67%) | ||||
Tumour Side | Left | 42 (16.6%) | 13 (25%) | 1 (4%) | 28 (16%) | 0.02 | 0.16 | 0.08 |
Right | 211 (83.4%) | 40 (75%) | 23 (86%) | 148 (84%) | ||||
Stage | I | 32 (12.9%) | 3 (6%) | 2 (9%) | 27 (16%) | 0.01 | 0.002 | 0.32 |
II | 93 (37.7%) | 14 (27%) | 12 (55%) | 67 (39%) | ||||
III | 59 (23.9%) | 10 (19%) | 6 (27%) | 43 (25%) | ||||
IV | 63 (25.5%) | 25 (48%) | 2 (9%) | 36 (21%) | ||||
CIMP | High | 128 (81.0%) | 20 (83%) | 18 (95%) | 90 (78%) | 0.23 | 0.57 | 0.05 |
Negative | 30 (19.0%) | 4 (17%) | 1 (5%) | 25 (22%) | ||||
MSI | MSI | 136 (54.8%) | 22 (42%) | 21 (91%) | 93 (54%) | 5.3 × 10−5 | 0.14 | 0.0002 |
MSS | 112 (45.2%) | 30 (58%) | 2 (9%) | 80 (46%) |
Variable | Risk Ratio | 95% CI | p Value |
---|---|---|---|
Microsatellite Instability (MSS) | 2.41 | 1.18–4.95 | 0.016 |
Gender (Female) | 1.93 | 1.04–3.57 | 0.037 |
APC (Truncating) | 1.63 | 0.80–3.32 | 0.17 |
Stage (III/IV) | 1.56 | 0.66–3.69 | 0.31 |
Age (<50) | 1.2 | 0.53–2.71 | 0.65 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fennell, L.J.; Kane, A.; Liu, C.; McKeone, D.; Fernando, W.; Su, C.; Bond, C.; Jamieson, S.; Dumenil, T.; Patch, A.-M.; et al. APC Mutation Marks an Aggressive Subtype of BRAF Mutant Colorectal Cancers. Cancers 2020, 12, 1171. https://doi.org/10.3390/cancers12051171
Fennell LJ, Kane A, Liu C, McKeone D, Fernando W, Su C, Bond C, Jamieson S, Dumenil T, Patch A-M, et al. APC Mutation Marks an Aggressive Subtype of BRAF Mutant Colorectal Cancers. Cancers. 2020; 12(5):1171. https://doi.org/10.3390/cancers12051171
Chicago/Turabian StyleFennell, Lochlan J., Alexandra Kane, Cheng Liu, Diane McKeone, Winnie Fernando, Chang Su, Catherine Bond, Saara Jamieson, Troy Dumenil, Ann-Marie Patch, and et al. 2020. "APC Mutation Marks an Aggressive Subtype of BRAF Mutant Colorectal Cancers" Cancers 12, no. 5: 1171. https://doi.org/10.3390/cancers12051171
APA StyleFennell, L. J., Kane, A., Liu, C., McKeone, D., Fernando, W., Su, C., Bond, C., Jamieson, S., Dumenil, T., Patch, A.-M., Kazakoff, S. H., Pearson, J. V., Waddell, N., Leggett, B., & Whitehall, V. L. J. (2020). APC Mutation Marks an Aggressive Subtype of BRAF Mutant Colorectal Cancers. Cancers, 12(5), 1171. https://doi.org/10.3390/cancers12051171