The Impact of IL-6 and IL-10 Gene Polymorphisms in Diffuse Large B-Cell Lymphoma Risk and Overall Survival in an Arab Population: A Case-Control Study
Abstract
:1. Introduction
2. Results
2.1. Demographic and Clinical Data
2.2. Association Between IL-6 and IL-10 Gene Polymorphisms and the Risk of DLBCL
2.3. Association between IL-6 and IL-10 Gene Polymorphisms and the Survival Rate of DLBCL
3. Discussion
4. Material and Methods
4.1. Patients and Data Collection
4.2. DNA Analysis
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA 2016, 66, 7–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teras, L.R.; DeSantis, C.E.; Cerhan, J.R.; Morton, L.M.; Jemal, A.; Flowers, C.R. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA 2016, 66, 443–459. [Google Scholar] [CrossRef] [PubMed]
- Perry, A.M.; Diebold, J.; Nathwani, B.N.; MacLennan, K.A.; Müller-Hermelink, H.K.; Bast, M.; Boilesen, E.; Armitage, J.O.; Weisenburger, D.D. Non-Hodgkin lymphoma in the developing world: Review of 4539 cases from the International Non-Hodgkin Lymphoma Classification Project. Haematologica 2016, 101, 1244–1250. [Google Scholar] [CrossRef] [Green Version]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef]
- Horesh, N.; Horowitz, N.A. Does gender matter in non-Hodgkin lymphoma? Differences in epidemiology, clinical behavior, and therapy. Rambam Maimonides Med. J. 2014, 5, e0038. [Google Scholar] [CrossRef]
- Kamangar, F.; Dores, G.M.; Anderson, W.F. Patterns of cancer incidence, mortality, and prevalence across five continents: Defining priorities to reduce cancer disparities in different geographic regions of the world. J. Clin. Oncol. 2006, 24, 2137–2150. [Google Scholar] [CrossRef]
- Batista, J.L.; Birmann, B.M.; Epstein, M.M. Epidemiology of Hematologic Malignancies, Pathology and Epidemiology of Cancer; Springer: Berlin/Heidelberg, Germany, 2017; pp. 543–569. [Google Scholar]
- Morton, L.M.; Wang, S.S.; Cozen, W.; Linet, M.S.; Chatterjee, N.; Davis, S.; Severson, R.K.; Colt, J.S.; Vasef, M.A.; Rothman, N.; et al. Etiologic heterogeneity among non-Hodgkin lymphoma subtypes. Blood 2008, 112, 5150–5160. [Google Scholar] [CrossRef] [Green Version]
- Ollberding, N.J.; Aschebrook-Kilfoy, B.; Caces, D.B.; Smith, S.M.; Weisenburger, D.D.; Chiu, B.C. Dietary patterns and the risk of non-Hodgkin lymphoma. Public Health Nutr. 2014, 17, 1531–1537. [Google Scholar] [CrossRef] [Green Version]
- Crump, C.; Sundquist, J.; Sieh, W.; Winkleby, M.A.; Sundquist, K. Season of birth and risk of Hodgkin and non-Hodgkin lymphoma. Int. J. Cancer 2014, 135, 2735–2739. [Google Scholar] [CrossRef] [Green Version]
- Slager, S.L.; Benavente, Y.; Blair, A.; Vermeulen, R.; Cerhan, J.R.; Costantini, A.S.; Monnereau, A.; Nieters, A.; Clavel, J.; Call, T.G.; et al. Medical history, lifestyle, family history, and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma: The InterLymph Non-Hodgkin Lymphoma Subtypes Project. J. Natl. Cancer Inst. Monogr. 2014, 2014, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, N.; Jaffe, E.; Diebold, J.; Flandrin, G.; Muller-Hermelink, H.; Vardiman, J.; Lister, T.; Bloomfield, C. The World Health Organization Classification of Neoplasms of the Hematopoietic and Lymphoid Tissues: Report of the Clinical Advisory Committee Meeting, Airlie House, Virginia, November 1997. Hematol. J. 2000, 1, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, A.A.; Eisen, M.B.; Davis, R.E.; Ma, C.; Lossos, I.S.; Rosenwald, A.; Boldrick, J.C.; Sabet, H.; Tran, T.; Yu, X.; et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000, 403, 503–511. [Google Scholar] [CrossRef]
- Inglot, A.D. Classification of cytokines according to the receptor code. Arch. Immunol. Exp. 1997, 45, 353–357. [Google Scholar]
- Rothman, N.; Skibola, C.F.; Wang, S.S.; Morgan, G.; Lan, Q.; Smith, M.T.; Spinelli, J.J.; Willett, E.; de Sanjose, S.; Cocco, P. Genetic variation in TNF and IL10 and risk of non-Hodgkin lymphoma: A report from the InterLymph Consortium. Lancet Oncol. 2006, 7, 27–38. [Google Scholar] [CrossRef]
- Gu, X.; Shen, Y.; Fu, L.; Zuo, H.-Y.; Yasen, H.; He, P.; Guo, X.-H.; Shi, Y.-W.; Yusufu, M. Polymorphic variation of inflammation-related genes and risk of non-Hodgkin lymphoma for Uygur and Han Chinese in Xinjiang. Asian Pac. J. Cancer Prev. 2014, 15, 9177e83. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, K.R.; Rodrigo-Domingo, M.; Steffensen, R.; Baech, J.; Bergkvist, K.S.; Oosterhof, L.; Schmitz, A.; Bødker, J.S.; Johansen, P.; Vogel, U. Interactions between SNPs affecting inflammatory response genes are associated with multiple myeloma disease risk and survival. Leuk. Lymphoma 2017, 58, 2695–2704. [Google Scholar] [CrossRef]
- Ennas, M.G.; Moore, P.S.; Zucca, M.; Angelucci, E.; Cabras, M.G.; Melis, M.; Gabbas, A.; Serpe, R.; Madeddu, C.; Scarpa, A. Interleukin-1B (IL1B) and interleukin-6 (IL6) gene polymorphisms are associated with risk of chronic lymphocytic leukaemia. Hematol. Oncol. 2008, 26, 98–103. [Google Scholar] [CrossRef]
- Domingo-Domènech, E.; Benavente, Y.; González-Barca, E.; Montalban, C.; Gumà, J.; Bosch, R.; Wang, S.S.; Lan, Q.; Whitby, D.; de Sevilla, A.F. Impact of interleukin-10 polymorphisms (−1082 and −3575) on the survival of patients with lymphoid neoplasms. Haematologica 2007, 92, 1475–1481. [Google Scholar] [CrossRef] [Green Version]
- Kishimoto, T.; Akira, S.; Taga, T. Interleukin-6 and its receptor: A paradigm for cytokines. Science 1992, 258, 593–597. [Google Scholar] [CrossRef]
- Rose, T.M.; Bruce, A.G. Oncostatin M is a member of a cytokine family that includes leukemia-inhibitory factor, granulocyte colony-stimulating factor, and interleukin 6. Proc. Natl. Acad. Sci. USA 1991, 88, 8641–8645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Lupardus, P.; LaPorte, S.L.; Garcia, K.C. Structural biology of shared cytokine receptors. Annu. Rev. Immunol. 2009, 27, 29–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyajima, A.; Kitamura, T.; Harada, N.; Yokota, T.; Arai, K.-I. Cytokine receptors and signal transduction. Annu. Rev. Immunol. 1992, 10, 295–331. [Google Scholar] [CrossRef]
- Sadowski, H.B.; Shuai, K.; Darnell, J.E.; Gilman, M.Z. A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 1993, 261, 1739–1744. [Google Scholar] [CrossRef]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Hadden, J.W. Immunodeficiency and cancer: Prospects for correction. Int. Immunopharmacol. 2003, 3, 1061–1071. [Google Scholar] [CrossRef]
- Karin, M.; Greten, F.R. NF-κB: Linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. 2005, 5, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Schuler, M.; Huber, C.; Peschel, C. Cytokines in the pathophysiology and treatment of chronic B-cell malignancies. Ann. Hematol. 1995, 71, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Kurzrock, R. Cytokine deregulation in hematological malignancies: Clinical and biological implications. Clin. Cancer Res. 1997, 3, 2581–2584. [Google Scholar]
- Blay, J.-Y.; Negrier, S.; Combaret, V.; Attali, S.; Goillot, E.; Merrouche, Y.; Mercatello, A.; Ravault, A.; Tourani, J.-M.; Moskovtchenko, J.-F. Serum level of interleukin 6 as a prognosis factor in metastatic renal cell carcinoma. Cancer Res. 1992, 52, 3317–3322. [Google Scholar]
- Seymour, J.F.; Talpaz, M.; Cabanillas, F.; Wetzler, M.; Kurzrock, R. Serum interleukin-6 levels correlate with prognosis in diffuse large-cell lymphoma. J. Clin. Oncol. 1995, 13, 575–582. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.J.; Nelson, G.W. Human genes that limit AIDS. Nat. Genet. 2004, 36, 565–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lech-Maranda, E.; Baseggio, L.; Bienvenu, J.; Charlot, C.; Berger, F.; Rigal, D.; Warzocha, K.; Coiffier, B.; Salles, G. Interleukin-10 gene promoter polymorphisms influence the clinical outcome of diffuse large B-cell lymphoma. Blood 2004, 103, 3529–3534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forrest, M.S.; Skibola, C.F.; Lightfoot, T.J.; Bracci, P.M.; Willett, E.V.; Smith, M.T.; Holly, E.A.; Roman, E. Polymorphisms in innate immunity genes and risk of non-Hodgkin lymphoma. Br. J. Haematol. 2006, 134, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T.; Yasukawa, K.; Harada, H.; Taga, T.; Watanabe, Y.; Matsuda, T.; Kashiwamura, S.-I.; Nakajima, K.; Koyama, K.; Iwamatsu, A. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 1986, 324, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, M.J.; Chow, D.-C.; Brevnova, E.E.; Garcia, K.C. Hexameric structure and assembly of the interleukin-6/IL-6 α-receptor/gp130 complex. Science 2003, 300, 2101–2104. [Google Scholar] [CrossRef]
- Kolarich, D.; Lepenies, B.; Seeberger, P.H. Glycomics, glycoproteomics and the immune system. Curr. Opin. Chem. Biol. 2012, 16, 214–220. [Google Scholar] [CrossRef]
- Kumar, S.; Ingle, H.; Prasad, D.V.R.; Kumar, H. Recognition of bacterial infection by innate immune sensors. Crit. Rev. Microbiol. 2013, 39, 229–246. [Google Scholar] [CrossRef]
- Rock, F.L.; Hardiman, G.; Timans, J.C.; Kastelein, R.A.; Bazan, J.F. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA 1998, 95, 588–593. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.K.; Murphy, K.M.; Sher, A. Functional diversity of helper T lymphocytes. Nature 1996, 383, 787–793. [Google Scholar] [CrossRef]
- Aderem, A.; Ulevitch, R.J. Toll-like receptors in the induction of the innate immune response. Nature 2000, 406, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.B.; Lehrnbecher, T.; Samuels, S.; Stein, S.; Mol, F.; Metcalf, J.A.; Wyvill, K.; Steinberg, S.M.; Kovacs, J.; Blauvelt, A. An IL6 promoter polymorphism is associated with a lifetime risk of development of Kaposi sarcoma in men infected with human immunodeficiency virus. Blood 2000, 96, 2562–2567. [Google Scholar] [CrossRef] [PubMed]
- Pawlikowska, L.; Tran, M.N.; Achrol, A.S.; McCulloch, C.E.; Ha, C.; Lind, D.L.; Hashimoto, T.; Zaroff, J.; Lawton, M.T.; Marchuk, D.A. Polymorphisms in genes involved in inflammatory and angiogenic pathways and the risk of hemorrhagic presentation of brain arteriovenous malformations. Stroke 2004, 35, 2294–2300. [Google Scholar] [CrossRef] [PubMed]
- Mohlig, M.; Boeing, H.; Spranger, J.; Osterhoff, M.; Kroke, A.; Fisher, E.; Bergmann, M.M.; Ristow, M.; Hoffmann, K.; Pfeiffer, A.F. Body mass index and C-174G interleukin-6 promoter polymorphism interact in predicting type 2 diabetes. J. Clin. Endocrinol. Metab. 2004, 89, 1885–1890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ota, N.; Hunt, S.C.; Nakajima, T.; Suzuki, T.; Hosoi, T.; Orimo, H.; Shirai, Y.; Emi, M. Linkage of interleukin 6 locus to human osteopenia by sibling pair analysis. Hum. Genet. 1999, 105, 253–257. [Google Scholar] [CrossRef]
- Sawczenko, A.; Azooz, O.; Paraszczuk, J.; Idestrom, M.; Croft, N.M.; Savage, M.O.; Ballinger, A.B.; Sanderson, I.R. Intestinal inflammation-induced growth retardation acts through IL-6 in rats and depends on the–174 IL-6 G/C polymorphism in children. Proc. Natl. Acad. Sci. USA 2005, 102, 13260–13265. [Google Scholar] [CrossRef] [Green Version]
- Lan, Q.; Zheng, T.; Rothman, N.; Zhang, Y.; Wang, S.S.; Shen, M.; Berndt, S.I.; Zahm, S.H.; Holford, T.R.; Leaderer, B. Cytokine polymorphisms in the Th1/Th2 pathway and susceptibility to non-Hodgkin lymphoma. Blood 2006, 107, 4101–4108. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.S.; Cerhan, J.R.; Hartge, P.; Davis, S.; Cozen, W.; Severson, R.K.; Chatterjee, N.; Yeager, M.; Chanock, S.J.; Rothman, N. Common genetic variants in proinflammatory and other immunoregulatory genes and risk for non-Hodgkin lymphoma. Cancer Res. 2006, 66, 9771–9780. [Google Scholar] [CrossRef] [Green Version]
- Talaat, R.M.; Abdel-Aziz, A.M.; El-Maadawy, E.A.; Abdel-Bary, N. CD38 and interleukin 6 gene polymorphism in egyptians with diffuse large B-cell lymphoma (DLBCL). Immunol. Investig. 2015, 44, 265–278. [Google Scholar] [CrossRef]
- Eskdale, J.; Kube, D.; Tesch, H.; Gallagher, G. Mapping of the human IL10 gene and further characterization of the 5’flanking sequence. Immunogenetics 1997, 46, 120–128. [Google Scholar] [CrossRef]
- Hovsepian, E.; Penas, F.; Siffo, S.; Mirkin, G.A.; Goren, N.B. IL-10 inhibits the NF-κB and ERK/MAPK-mediated production of pro-inflammatory mediators by up-regulation of SOCS-3 in Trypanosoma cruzi-infected cardiomyocytes. PLoS ONE 2013, 8, e79445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Zhang, R.; Xu, X.; Liu, Y.; Zhang, H.; Zhai, X.; Hu, X. IL-10 reduces levels of apoptosis in Toxoplasma gondii-infected trophoblasts. PLoS ONE 2013, 8, e56455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaouat, G.; Meliani, A.A.; Martal, J.; Raghupathy, R.; Elliott, J.; Elliot, J.; Mosmann, T.; Wegmann, T. IL-10 prevents naturally occurring fetal loss in the CBA x DBA/2 mating combination, and local defect in IL-10 production in this abortion-prone combination is corrected by in vivo injection of IFN-tau. J. Immunol. 1995, 154, 4261–4268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, L.; Chapman, C.; Dunstan, R.; Bell, M.; Joske, D. Polymorphisms in the interleukin 10 gene promoter are associated with susceptibility to aggressive non-Hodgkin’s lymphoma. Leuk. Lymphoma 2003, 44, 251–255. [Google Scholar] [CrossRef]
- Turner, D.; Williams, D.; Sankaran, D.; Lazarus, M.; Sinnott, P.; Hutchinson, I. An investigation of polymorphism in the interleukin-10 gene promoter. Eur. J. Immunogenet. 1997, 24, 1–8. [Google Scholar] [CrossRef]
- Cao, H.-Y.; Zou, P.; Zhou, H. Genetic association of interleukin-10 promoter polymorphisms and susceptibility to diffuse large B-cell lymphoma: A meta-analysis. Gene 2013, 519, 288–294. [Google Scholar] [CrossRef]
- Bogunia-Kubik, K.; Mazur, G.; Wrobel, T.; Kuliczkowski, K.; Lange, A. Interleukin-10 gene polymorphisms influence the clinical course of non-Hodgkin’s lymphoma. Tissue Antigens 2008, 71, 146–150. [Google Scholar] [CrossRef]
- Berglund, M.; Thunberg, U.; Roos, G.; Rosenquist, R.; Enblad, G. The interleukin-10 gene promoter polymorphism (-1082) does not correlate with clinical outcome in diffuse large B-cell lymphoma. Blood 2005, 105, 4894–4895. [Google Scholar] [CrossRef]
- Purdue, M.P.; Lan, Q.; Kricker, A.; Grulich, A.E.; Vajdic, C.M.; Turner, J.; Whitby, D.; Chanock, S.; Rothman, N.; Armstrong, B.K. Polymorphisms in immune function genes and risk of non-Hodgkin lymphoma: Findings from the New South Wales non-Hodgkin Lymphoma Study. Carcinogenesis 2007, 28, 704–712. [Google Scholar] [CrossRef]
- Lim, Y.-Y.; Chin, Y.-M.; Tai, M.-C.; Fani, S.; Chang, K.-M.; Ong, T.-C.; Bee, P.-C.; Gan, G.-G.; Ng, C.-C. Analysis of interleukin-10 promoter single nucleotide polymorphisms and risk of non-Hodgkin lymphoma in a Malaysian population. Leuk. Lymphoma 2015, 56, 163–168. [Google Scholar] [CrossRef]
Category | Value N(%) | |
Demographic Data | Cases | Controls |
Gender | ||
Male | 66 (52.8) | 92 (38.7) |
Female | 59 (47.2) | 146 (61.3) |
Age in Years * | ||
0–14 | (0.0) | 3 (1.3) |
15–19 | 8 (6.4) | 18 (7.6) |
20–40 | 18 (14.4) | 89 (37.4) |
41–55 | 31 (24.8) | 59 (24.8) |
>55 | 68 (54.4) | 69 (28.9) |
Mean (Range) | 53.7 (1–89) | 43.2 (6–89) |
Median (IQR) | 57 (44–66) | 44 (24.2–57) |
Clinical Data | ||
Survival Status | ||
Alive | 69 (55.2) | − |
Dead | 56 (44.8) | − |
Survival Months | − | |
Median | 55 | − |
B-Symptoms | ||
Yes | 15 (14.9) | - |
No | 86 (85.1) | - |
Ann Arbor Stage at Diagnosis | ||
0 | 2 (1.6) | − |
1 | 25 (20) | − |
2 | 9 (7.2) | − |
3 | 11 (8.8) | − |
4 | 74 (59.2) | − |
Unknown | 4 (3.2) | − |
Serum LDH | ||
Mean (Range) | 635 (2–4422) | − |
Median (IQR) | 423 (194.5–790) | − |
Total Protein | − | |
Mean (Range) | 58.6 (4–93.3) | − |
Median (IQR) | 65.8 (57–73) | − |
Serum Albumin | − | |
Mean (Range) | 35.4 (3–87.8) | − |
Median (IQR) | 38.4 (33–43) | − |
Total Monocytes | ||
Mean (Range) | 6.9 (1–22) | − |
Median (IQR) | 6.3 (4.3–8.5) | − |
SNP-ID | Gene | Chr ^ | Bp * | Primer Forward | Primer Reverse |
---|---|---|---|---|---|
rs1800795 | IL-6 | 7 | 22727062 | ACGTTGGATGAGCCTCAATGACGACCTAAG | ACGTTGGATGGATTGTGCAATGTGACGTCC |
rs1800796 | IL-6 | 7 | 22726627 | ACGTTGGATGTCTTCTGTGTTCTGGCTCTC | ACGTTGGATGTGGAGACGCCTTGAAGTAAC |
rs1800797 | IL-6 | 7 | 22726602 | ACGTTGGATGTGGAGACGCCTTGAAGTAAC | ACGTTGGATGTCTTCTGTGTTCTGGCTCTC |
rs1800871 | IL-10 | 1 | 206773289 | ACGTTGGATGGGTGTACCCTTGTACAGGTG | ACGTTGGATGATGCTAGTCAGGTAGTGCTC |
rs1800872 | IL-10 | 1 | 206773062 | ACGTTGGATGAAAGGAGCCTGGAACACATC | ACGTTGGATGTCCTCAAAGTTCCCAAGCAG |
rs1800890 | IL-10 | 1 | 206776020 | ACGTTGGATGCAAGCCCAGATGCATAGTAG | ACGTTGGATGCTGATTTCCCAGTACATCCC |
rs1800896 | IL-10 | 1 | 206773552 | ACGTTGGATGATTCCATGGAGGCTGGATAG | ACGTTGGATGGACAACACTACTAAGGCTTC |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Khatib, S.M.; Abdo, N.; AL-Eitan, L.N.; Al-Mistarehi, A.-H.; Zahran, D.J.; Kewan, T.Z. The Impact of IL-6 and IL-10 Gene Polymorphisms in Diffuse Large B-Cell Lymphoma Risk and Overall Survival in an Arab Population: A Case-Control Study. Cancers 2020, 12, 382. https://doi.org/10.3390/cancers12020382
Al-Khatib SM, Abdo N, AL-Eitan LN, Al-Mistarehi A-H, Zahran DJ, Kewan TZ. The Impact of IL-6 and IL-10 Gene Polymorphisms in Diffuse Large B-Cell Lymphoma Risk and Overall Survival in an Arab Population: A Case-Control Study. Cancers. 2020; 12(2):382. https://doi.org/10.3390/cancers12020382
Chicago/Turabian StyleAl-Khatib, Sohaib M., Nour Abdo, Laith N. AL-Eitan, Abdel-Hameed Al-Mistarehi, Deeb Jamil Zahran, and Tariq Zuheir Kewan. 2020. "The Impact of IL-6 and IL-10 Gene Polymorphisms in Diffuse Large B-Cell Lymphoma Risk and Overall Survival in an Arab Population: A Case-Control Study" Cancers 12, no. 2: 382. https://doi.org/10.3390/cancers12020382
APA StyleAl-Khatib, S. M., Abdo, N., AL-Eitan, L. N., Al-Mistarehi, A.-H., Zahran, D. J., & Kewan, T. Z. (2020). The Impact of IL-6 and IL-10 Gene Polymorphisms in Diffuse Large B-Cell Lymphoma Risk and Overall Survival in an Arab Population: A Case-Control Study. Cancers, 12(2), 382. https://doi.org/10.3390/cancers12020382