Clinical and Pathological Characteristics of Metastatic Renal Cell Carcinoma Patients Needing a Second-Line Therapy: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Evidence Acquisition
3. Evidence Synthesis
3.1. Patients’ Demographics and Tumor Characteristics
3.2. Treatment History
3.2.1. First Line Therapy
3.2.2. Progression Free Survival (PFS) and Objective Response Rates
3.2.3. Reason for Discontinuation
3.3. Disease Characteristics at Initiation of Second Line Therapy
3.3.1. Eastern Cooperative Oncology Group Performance Status (ECOG PS) Score
3.3.2. Prognostic Scores
3.3.3. Number of Metastasis and Metastatic Sites
3.4. Second Line Therapy
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Flanigan, R.C.; Campbell, S.C.; Clark, J.I.; Picken, M.M. Metastatic renal cell carcinoma. Curr. Treat. Options Oncol. 2003, 4, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Maia, M.C.; Dizman, N.; Govindarajan, A.; Pal, S.K. Metastasis in renal cell carcinoma: Biology and implications for therapy. Asian J. Urol. 2016, 3, 286–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tannir, N.M.; Pal, S.K.; Atkins, M.B. Second-Line Treatment Landscape for Renal Cell Carcinoma: A Comprehensive Review. Oncologist 2018, 23, 540–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwab, M.; Hofmann, R.; Heers, H.; Hegele, A. mRCC Outcome in the Treatment of Metastatic Renal Cell Carcinoma—A German Single-center Real-world Experience. Vivo 2018, 32, 1617–1622. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.K.; Gandhi, S.; George, S. Second-line systemic therapy in metastatic renal-cell carcinoma: A review. Urol. Oncol. 2017, 35, 640–646. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Ann. Intern. Med. 2009, 151, W65–W94. [Google Scholar] [CrossRef] [Green Version]
- Jadad, A.R. Randomised Controlled Trials; BMJ Publishing Group: London, UK, 1998. [Google Scholar]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (minors): Development and validation of a new instrument. Anz. J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef]
- Eggers, H.; Ivanyi, P.; Hornig, M.; Grünwald, V. Predictive Factors for Second-Line Therapy in Metastatic Renal Cell Carcinoma: A Retrospective Analysis. J. Kidney Cancer Vhl. 2017, 4, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Terakawa, T.; Furukawa, J.; Harada, K.; Hinata, N.; Nakano, Y.; Fujisawa, M. Clinical outcomes of second-line treatment following prior targeted therapy in patients with metastatic renal cell carcinoma: A comparison of axitinib and nivolumab. Int. J. Clin. Oncol. 2020, 25, 1678–1686. [Google Scholar] [CrossRef]
- Tomita, Y.; Tatsugami, K.; Nakaigawa, N.; Osawa, T.; Oya, M.; Kanayama, H.; Nakayama Kondoh, C.; Sassa, N.; Nishimura, K.; Nozawa, M.; et al. Cabozantinib in advanced renal cell carcinoma: A phase II, open-label, single-arm study of Japanese patients. Int. J. Urol. 2020, 27, 952–959. [Google Scholar] [CrossRef]
- Hamieh, L.; Beck, R.L.; Le, V.H.; Hsieh, J.J. The Efficacy of Lenvatinib Plus Everolimus in Patients with Metastatic Renal Cell Carcinoma Exhibiting Primary Resistance to Front-Line Targeted Therapy or Immunotherapy. Clin. Genitourin. Cancer 2020, 18, 252–257.e2. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Takagi, T.; Kondo, T.; Kobayashi, H.; Iizuka, J.; Fukuda, H.; Ishihara, H.; Okumi, M.; Ishida, H.; Tanabe, K. Efficacy of axitinib in patients with metastatic renal cell carcinoma refractory to nivolumab therapy. Jpn. J. Clin. Oncol. 2019, 49, 576–580. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.Y.; Kotecha, R.R.; Lemke, E.A.; Chandramohan, A.; Chaim, J.L.; Msaouel, P.; Xiao, L.; Gao, J.; Campbell, M.T.; Zurita, A.J.; et al. Outcomes of patients with metastatic clear-cell renal cell carcinoma treated with second-line VEGFR-TKI after first-line immune checkpoint inhibitors. Eur. J. Cancer 2019, 114, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Bersanelli, M.; Iacovelli, R.; Buti, S.; Houede, N.; Laguerre, B.; Procopio, G.; Lheureux, S.; Fischer, R.; Negrier, S.; Ravaud, A.; et al. Metastatic Renal Cell Carcinoma Rapidly Progressive to Sunitinib: What to Do Next? Eur. Urol. Oncol. 2019, 19, S2588. [Google Scholar] [CrossRef] [Green Version]
- Hasanov, E.; Tidwell, R.S.S.; Fernandez, P.; Park, L.; McMichael, C.; Tannir, N.M.; Jonasch, E. Phase II Study of Carfilzomib in Patients With Refractory Renal Cell Carcinoma. Clin. Genitourin. Cancer 2019, 17, 451–456. [Google Scholar] [CrossRef]
- Semrad, T.J.; Groshen, S.; Luo, C.; Pal, S.; Vaishampayan, U.; Joshi, M.; Quinn, D.I.; Mack, P.C.; Gandara, D.R.; Lara, P.N. Randomized Phase 2 Study of Trebananib (AMG 386) with or without Continued Anti-Vascular Endothelial Growth Factor Therapy in Patients with Renal Cell Carcinoma Who Have Progressed on Bevacizumab, Pazopanib, Sorafenib, or Sunitinib—Results of NCI/CTEP Protocol 9048. Kidney Cancer 2019, 3, 51–61. [Google Scholar]
- Auvray, M.; Auclin, E.; Barthelemy, P.; Bono, P.; Kellokumpu-Lehtinen, P.; Gross-Goupil, M.; De Velasco, G.; Powles, T.; Mouillet, G.; Vano, Y.A.; et al. Second-line targeted therapies after nivolumab-ipilimumab failure in metastatic renal cell carcinoma. Eur. J. Cancer 2019, 108, 33–40. [Google Scholar] [CrossRef]
- Ishihara, H.; Kondo, T.; Yoshida, K.; Omae, K.; Takagi, T.; Iizuka, J.; Tanabe, K. Time to progression after first-line tyrosine kinase inhibitor predicts survival in patients with metastatic renal cell carcinoma receiving second-line molecular-targeted therapy. Urol. Oncol. 2017, 35, e1–e542. [Google Scholar] [CrossRef]
- Lakomy, R.; Poprach, A.; Bortlicek, Z.; Melichar, B.; Chloupkova, R.; Vyzula, R.; Zemanova, M.; Kopeckova, K.; Svoboda, M.; Slaby, O.; et al. Utilization and efficacy of second-line targeted therapy in metastatic renal cell carcinoma: Data from a national registry. BMC Cancer 2017, 17, 880. [Google Scholar] [CrossRef] [Green Version]
- Davis, I.D.; Xie, W.; Pezaro, C.; Donskov, F.; Wells, J.C.; Agarwal, N.; Srinivas, S.; Yuasa, T.; Beuselinck, B.; Wood, L.A.; et al. Efficacy of Second-line Targeted Therapy for Renal Cell Carcinoma According to Change from Baseline in International Metastatic Renal Cell Carcinoma Database Consortium Prognostic Category. Eur. Urol. 2017, 71, 970–978. [Google Scholar] [CrossRef]
- D’Aniello, C.; Vitale, M.G.; Farnesi, A.; Calvetti, L.; Laterza, M.M.; Cavaliere, C.; Della Pepa, C.; Conteduca, V.; Crispo, A.; De Vita, F.; et al. Axitinib after Sunitinib in Metastatic Renal Cancer: Preliminary Results from Italian “Real-World” SAX Study. Front. Pharmacol. 2016, 7, 331. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Hutson, T.E.; Glen, H.; Michaelson, M.D.; Molina, A.; Eisen, T.; Jassem, J.; Zolnierek, J.; Maroto, J.P.; Mellado, B.; et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: A randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015, 16, 1473–1482. [Google Scholar] [CrossRef] [Green Version]
- Choueiri, T.K.; Escudier, B.; Powles, T.; Mainwaring, P.N.; Rini, B.I.; Donskov, F.; Hammers, H.; Hutson, T.E.; Lee, J.L.; Peltola, K.; et al. METEOR Investigators. Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1814–1823. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, L.; Kube, U.; Doehn, C.; Steiner, T.; Goebell, P.J.; Kindler, M.; Herrmann, E.; Janssen, J.; Weikert, S.; Scheffler, M.T.; et al. Everolimus in metastatic renal cell carcinoma after failure of initial anti-VEGF therapy: Final results of a noninterventional study. BMC Cancer 2015, 15, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutson, T.E.; Escudier, B.; Esteban, E.; Bjarnason, G.A.; Lim, H.Y.; Pittman, K.B.; Senico, P.; Niethammer, A.; Lu, D.R.; Hariharan, S.; et al. Randomized phase III trial of temsirolimus versus sorafenib as second-line therapy after sunitinib in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 2014, 32, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Signorovitch, J.E.; Vogelzang, N.J.; Pal, S.K.; Lin, P.L.; George, D.J.; Wong, M.K.; Liu, Z.; Wang, X.; Culver, K.; Scott, J.A.; et al. Comparative effectiveness of second-line targeted therapies for metastatic renal cell carcinoma: Synthesis of findings from two multi-practice chart reviews in the United States. Curr. Med. Res. Opin. 2014, 30, 2343–2353. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.K.; Yang, H.; Signorovitch, J.E.; Wang, X.; Liu, Z.; Liu, N.S.; Qi, C.Z.; George, D.J. Comparative outcomes of everolimus, temsirolimus and sorafenib as second targeted therapies for metastatic renal cell carcinoma: A US medical record review. Curr. Med. Res. Opin. 2014, 30, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Lee, J.L.; Park, I.; Park, S.; Ahn, Y.; Ahn, J.H.; Ahn, S.; Song, C.; Hong, J.H.; Kim, C.S.; et al. Comparative efficacy of vascular endothelial growth factor (VEGF) tyrosine kinase inhibitor (TKI) and mammalian target of rapamycin (mTOR) inhibitor as second-line therapy in patients with metastatic renal cell carcinoma after the failure of first-line VEGF TKI. Med. Oncol. 2012, 29, 3291–3297. [Google Scholar]
- Busch, J.; Seidel, C.; Erber, B.; Issever, A.S.; Hinz, S.; Kempkensteffen, C.; Magheli, A.; Miller, K.; Grünwald, V.; Weikert, S. Retrospective comparison of triple-sequence therapies in metastatic renal cell carcinoma. Eur. Urol. 2013, 64, 62–70. [Google Scholar] [CrossRef]
- Trask, P.C.; Bushmakin, A.G.; Cappelleri, J.C.; Tarazi, J.; Rosbrook, B.; Bycott, P.; Kim, S.; Stadler, W.M.; Rini, B. Baseline patient-reported kidney cancer-specific symptoms as an indicator for median survival in sorafenib-refractory metastatic renal cell carcinoma. J. Cancer Surviv. 2011, 5, 255–262. [Google Scholar] [CrossRef]
- Rini, B.I.; Escudier, B.; Tomczak, P.; Kaprin, A.; Szczylik, C.; Hutson, T.E.; Michaelson, M.D.; Gorbunova, V.A.; Gore, M.E.; Rusakov, I.G.; et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): A randomised phase 3 trial. Lancet 2011, 378, 1931–1939. [Google Scholar] [CrossRef]
- Zimmermann, K.; Schmittel, A.; Steiner, U.; Asemissen, A.M.; Knoedler, M.; Thiel, E.; Miller, K.; Keilholz, U. Sunitinib treatment for patients with advanced clear-cell renal-cell carcinoma after progression on sorafenib. Oncology 2009, 76, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, G.; Cartenì, G.; Autorino, R.; Bruni, G.; Tudini, M.; Rizzo, M.; Aieta, M.; Gonnella, A.; Rescigno, P.; Perdonà, S.; et al. Phase II study of sorafenib in patients with sunitinib-refractory metastatic renal cell cancer. J. Clin. Oncol. 2009, 27, 4469–4474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamaskar, I.; Garcia, J.A.; Elson, P.; Wood, L.; Mekhail, T.; Dreicer, R.; Rini, B.I.; Bukowski, R.M. Antitumor effects of sunitinib or sorafenib in patients with metastatic renal cell carcinoma who received prior antiangiogenic therapy. J. Urol. 2008, 179, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Michaelson, M.D.; Redman, B.G.; Hudes, G.R.; Wilding, G.; Figlin, R.A.; Ginsberg, M.S.; Kim, S.T.; Baum, C.M.; DePrimo, S.E.; et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 2006, 24, 16–24. [Google Scholar] [CrossRef]
- Escudier, B.; Eisen, T.; Stadler, W.M.; Szczylik, C.; Oudard, S.; Siebels, M.; Negrier, S.; Chevreau, C.; Solska, E.; Desai, A.A.; et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 2007, 356, 125–134. [Google Scholar] [CrossRef]
- Schiavina, R.; Mari, A.; Antonelli, A.; Bertolo, R.; Bianchi, G.; Borghesi, M.; Brunocilla, E.; Fiori, C.; Longo, N.; Martorana, G.; et al. A snapshot of nephron-sparing surgery in Italy: A prospective, multicenter report on clinical and perioperative outcomes (the RECORd 1 project). Eur. J. Surg. Oncol. 2015, 41, 346–352. [Google Scholar] [CrossRef]
- Ljungberg, B.; Albiges, L.; Bensalah, K.; Bex, A.; Giles, R.H.; Hora, M.; Kuczyk, M.A.; Lam, T.; Marconi, L.; Merseburger, A.S.; et al. EAU Guidelines on Renal Cell Carcinoma; European Association of Urology: Arnhem, The Netherlands, 2020. [Google Scholar]
- Motzer, R.J.; Jonasch, E.; Agarwal, N.; Bhayani, S.; Bro, W.P.; Chang, S.S.; Choueiri, T.K.; Costello, B.A.; Derweesh, I.H.; Fishman, M.; et al. Kidney cancer, version 2.2017, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 2017, 15, 804–834. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, H.; Chen, B. Nivolumab as Programmed Death-1 (PD-1) Inhibitor for Targeted Immunotherapy in Tumor. J. Cancer 2017, 8, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M.; Usami, E.; Teramachi, H.; Yoshimura, T. A comparative study of nivolumab and axitinib in terms of overall survival, treatment continuation, and cost for patients with metastatic renal cell carcinoma. Mol. Clin. Oncol. 2020, 12, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Bowles, D.W.; Kessler, E.R.; Jimeno, A. Multi-targeted tyrosine kinase inhibitors in clinical development: Focus on XL-184 (cabozantinib). Drugs Today 2011, 47, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Suyama, K.; Iwase, H. Lenvatinib: A Promising Molecular Targeted Agent for Multiple Cancers. Cancer Control. 2018, 25, 1073274818789361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stafford, H.S.; Saltzstein, S.L.; Shimasaki, S.; Sanders, C.; Downs, T.M.; Sadler, G.R. Racial/ethnic and gender disparities in renal cell carcinoma incidence and survival. J. Urol. 2008, 179, 1704–1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, T.L.; Deal, A.M.; Krishnan, B.; Nielsen, M.E.; Smith, A.B.; Kim, W.Y.; Milowsky, M.I. Racial disparities in survival among patients with advanced renal cell carcinoma in the targeted therapy era. Cancer 2016, 122, 2988–2995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clocchiatti, A.; Cora, E.; Zhang, Y.; Dotto, G.P. Sexual dimorphism in cancer. Nat. Rev. Cancer 2016, 16, 330–339. [Google Scholar] [CrossRef] [Green Version]
- Mancini, M.; Righetto, M.; Baggio, G. Gender-Related Approach to Kidney Cancer Management: Moving Forward. Int. J. Mol. Sci. 2020, 21, 3378. [Google Scholar] [CrossRef]
- Mancini, M.; Righetto, M.; Baggio, G. Spotlight on gender-specific disparities in bladder cancer. Urologia 2020, 87, 103–114. [Google Scholar] [CrossRef]
- Zhang, G.; Zhu, Y.; Dong, D.; Gu, W.; Zhang, H.; Sun, L.; Ye, D. Clinical outcome of advanced and metastatic renal cell carcinoma treated with targeted therapy: Is there a difference between young and old patients? Onco Targets Ther. 2014, 7, 2043–2052. [Google Scholar] [CrossRef] [Green Version]
- Vaishampayan, U. Evolving Treatment Paradigms in Non-clear Cell Kidney Cancer. Curr. Treat. Options Oncol. 2018, 19, 5. [Google Scholar] [CrossRef]
- De Velasco, G.; Xie, W.; Donskov, F.; Albiges, L.; Beuselinck, B.; Srinivas, S.; Agarwal, N.; Lee, J.L.; Brugarolas, J.; Wood, L.A.; et al. Discontinuing VEGF-targeted Therapy for Progression Versus Toxicity Affects Outcomes of Second-line Therapies in Metastatic Renal Cell Carcinoma. Clin. Genitourin. Cancer 2017, 15, 403–410.e2. [Google Scholar] [CrossRef]
- Shimizu, Y.; Iguchi, T.; Tamada, S.; Yasuda, S.; Kato, M.; Ninomiya, N.; Yamasaki, T.; Nakatani, T. Oncological outcomes classified according to metastatic lesions in the era of molecular targeted drugs for metastatic renal cancer. Mol. Clin. Oncol. 2018, 8, 791–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singla, N.; Ghandour, R.A.; Margulis, V. Is cytoreductive nephrectomy relevant in the immunotherapy era? Curr. Opin. Urol. 2019, 29, 526–530. [Google Scholar] [CrossRef] [PubMed]
Author (Year) | Study Design | Study Period | Jadad Score | MINOR Score | Sample Size (n) | Ethnic Origin (n) | Age at Progression Mean (Range) | Male:Female | Histology of Primary Tumour (%) | T-Stage (%) | Fuhrman or WHO/ISUP Grade (%) | Nephrectomy n (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Suzuki (2020) (a) [10] | R | 2016–2019 | - | 14 | 41 | n/a | 70 (46–88) | 33:8 | Clear Cell (82.9) Other (17.1) | n/a | n/a | 34 (82.9) |
Suzuki (2020) (b) [10] | 39 | 67 (39–87) | 29:10 | Clear Cell (74.4) Other (25.6) | 34 (87.2) | |||||||
Tomita (2020) [11] | P | 2017–2020 | - | - | 35 | n/a | 63 (42–84) | 24:11 | Clear Cell (100) | n/a | n/a | 34 (97.1) |
Hamieh (2020) [12] | P | n/a–2019 | - | - | 7 | Caucasian (7) | 57 (39–63) | 7:0 | Clear Cell (100) | n/a | n/a | 6 (86.0) |
Yoshida (2019) [13] | R | n/a–2018 | - | 8 | 6 | n/a | 65.2 (49–83) | 5:1 | Clear Cell (83.3) Acquried cystic disease associated RCC (16.7) | T1b (16.6) T2 (16.6) T3a (66.6) | n/a | 6 (100) |
Shah (2019) [14] | R | 2015–2018 | 11 | 70 | n/a | 59 (44–75) | 50:20 | Clear Cell (100) | n/a | n/a | 60 (86.0) | |
Bersanelli (2019) [15] | R | 2005–2011 | - | 12 | 150 | n/a | n/a | 115:35 | Clear Cell (77.0) Papillary (13.5) Pure sarcomatoid (5.4) Sarcomatoid component (13.0) Others (4.0) | T1 (6.0) T2 (14.0) T3 (58.0) T4 (8.7) | n/a | 129 (86.0) |
Hasanov (2019) [16] | P | 2013–2019 | - | - | 9 | White or Caucasian (8) Hispanic or Latino (1) | 59 (53–73) | 5:4 | Clear Cell (100) | n/a | n/a | 8 (89.0) |
Semrad (2018) (a) [17] | RCT | 2012–2018 | 3 | - | 17 | White (9) American Indian/Alaska native (2) Black (2) Hispanic (4) | 64 (49–76) | 13:4 | Clear Cell (100) | n/a | n/a | n/a |
Semrad (2018) (b) [17] | 18 | White (12) Asian/Pacific Islander (1) Black (1) Hispanic (4) | 59 (46–74) | 14:4 | ||||||||
Auvray (2018) [18] | R | 2015–2018 | 12 | 33 | n/a | 61 (40–77) | 23:10 | Clear Cell (100) | n/a | n | 25 (76.0) | |
Ishihara (2017) [19] | R | 2007–2016 | - | 9 | 60 | n/a | n/a | 42:18 | Clear Cell (76.7) Other (23.3) | n/a | n/a | n/a |
Lakomy (2017) [20] | R | 2014–2016 | - | 13 | 1029 | n/a | 59 (33–81) | 740:248 | Clear Cell (94.1) Papillary (4.85) Other (1.05) | n/a | n/a | 849 (85.9) |
Eggers (2017) [9] | R | 2005–2012 | - | 10 | 105 | n/a | n/a | 74:31 | Clear Cell (83.2) Papillary (4.3) Other (4.4) | T1 (15.2) T2 (21.0) T3 (40.0) T4 (3.8) | G1 (8.6) G2/3: (80.9) | n/a |
Davis (2016) [21] | R | 2003–2015 | 10 | 1516 | n/a | n/a | 1110:406 | Clear Cell (89.0) Other (11.0) Sarcomatoid component (11.0) | n/a | n/a | 1256 (83.0) | |
D’Aniello (2016) [22] | R | 2014–2016 | - | 8 | 62 | n/a | 62 (36–86) * | 55:7 | Clear Cell (94.2) Other (4.8) | n/a | n/a | 54 (87.1) |
Motzer (2015) (a) [23] | RCT | 2012–2013 | 4 | - | 51 | n/a | 61 (44–79) | 35:16 | Clear Cell (100) | n/a | n/a | 44 (86.0) |
Motzer (2015) (b) [23] | 52 | 64 (41–79) | 39:13 | 43 (83.0) | ||||||||
Motzer (2015) (c) [23] | 50 | 59 (37–77) | 38:12 | 48 (96.0) | ||||||||
Choueiri (2015) (a) [24] | RCT | 2013–2014 | 3 | - | 330 | White (269) Asian (21) Black (6) Other (19) Not reported (15) Missing (0) | 63 (32–86) | 253:77 | n/a | n/a | n/a | 284 (86.0) |
Choueiri (2015) (b) [24] | 328 | White (263) Asian (26) Black (3) Other (13) Not reported (22) Missing (1) | 62 (31–84) | 241:86 | 280 (85.0) | |||||||
Bergmann (2015) [25] | P | 2009–2013 | - | - | 334 | n/a | 68 (22–89) | 250:84 | Clear Cell (88.0) Non-Clear Cell (7.0) Missing (5.0) | n/a | n/a | 300 (90.0) |
Hutson (2014) (a) [26] | RCT | 2007–2011 | 4 | - | 259 | White (178) Asian (38) Other (43) | 60 (19–82) | 193:66 | Clear Cell (83.0) Non-Clear Cell (17.0) | n/a | n/a | 223 (86.0) |
Hutson (2014) (b) [26] | 253 | White (163) Asian (50) Other (40) | 61 (21–80) | 192:61 | Clear Cell (82.0) Non-Clear Cell (18.0) | 219 (87.0) | ||||||
Signorovitch (2014) [27] | R | 2019–2012 | - | 12 | 281 | n/a | n/a | 182:99 | Clear Cell (84.0) Non-Clear Cell (16.0) | n/a | n/a | 130 (46.3) |
Wong (2014) [28] | R | 2011 | - | 13 | 534 | White (421) Others (113) | 64 (34–88) | 376:158 | Clear Cell (89.0) Non-Clear Cell (11.0) | n/a | n/a | 89 (16.7) |
Park (2012) [29] | R | 2005–2011 | 14 | 83 | n/a | 55 (26–84) | 61:22 | Clear Cell (78.0) Non-Clear Cell (22.0) | n/a | n/a | 67 (81.0) | |
Busch (2013) [30] | R | 2005–2011 | - | 18 | 103 | n/a | n/a | 67:36 | Clear Cell (86.0) Non-Clear Cell (10.0) Unknown (7.0) | n/a | n/a | 100 (97.0) |
Trask (2011) [31] | RCT | 2006 | 1 | - | 62 | White (60) Asian (1) Other (1) | n/a | 42:20 | Clear Cell (82.2) Other (17.8) | T4 (95.1) Other (4.9) | n/a | 62 (100) |
Rini (2011) (a) [32] | RCT | 2008–2010 | 4 | - | 361 | White (278) Black (1) Asian (77) Other (5) | 61 (20–82) | 265:96 | Clear Cell (100) | n/a | n/a | n/a |
Rini (2011) (b) [32] | 362 | White (278) Black (1) Asian (77) Other (5) | 61 (22–80) | 258:104 | ||||||||
Zimmerman (2009) [33] | R | 2005–2006 | - | 12 | 22 | n/a | 61 (39–78) | 16:6 | Clear Cell (100) | n/a | n/a | 12 (54.5) |
Di Lorenzo (2009) [34] | P | 2006–2008 | - | - | 52 | n/a | 60 (40–78) | 35:17 | Clear Cell (86.5) Papillary (9.6) Sarcomatoid (3.8) | n/a | n/a | 49 (94.2) |
Tamaskar (2008) [35] | R | n/a | - | 12 | 30 | n/a | 62 (42–77) | 24:6 | Clear Cell (93.3) Papillary + Clear Cell (6.6) | n/a | n/a | 30 (100) |
Motzer (2006) [36] | P | 2003 | - | - | 63 | n/a | 60 (24–87) | 43:20 | Clear Cell (87.0) Papillary (6.0) Sarcomatoid variant (2.0) Unknown (5.0) | n/a | n/a | 58 (92.0) |
Escudier (2004) (a) [37] | RCT | 2003–2005 | 5 | - | 451 | n/a | 58 (19–86) | 315:58 | Clear Cell (100) | n/a | n/a | 422 (94.0) |
Escudier (2004) (b) [37] | 452 | 59 (29–84) | 340:59 | Clear Cell (100) | 421 (93.0) |
Author (Year) | First Line Regimen (n) | Reason for Discontinuation n (%) | First-line PFS (Months) Mean (Range) | First-Line Response Rate (%) | ECOG PS Score (n) | Prognostic Category n (%) | Metastatic Sites (n) | Involved Metastatic Sites (n) | Second Line Regimen (%) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Toxicity | Progression | Favorable /Good | Intermediate | Poor | ||||||||
Suzuki (2020) (a) [10] | Sunitinib (18) Pazopanib (19) Sorafenib (2) Temsirolimus (2) | 20 (48.8) | 21 (51.2) | 12.7(6.2–45.1) | n/a | n/a | 3 (7.3) # | 24 (58.5) # | 14 (34.2) # | 1 (23) ≥2 (18) | n/a | Axitinib 41 (100) |
Suzuki (2020) (b) [10] | Sunitinib (20) Pazopanib (18) Sorafenib (1) | 11 (28.2) | 28 (71.8) | 13.3 (7.1 -16.9) | n/a | 2 (25.1) # | 23 (59.0) # | 14 (35.9) # | 1 (21) ≥2 (18) | Nivolumab 39 (100) | ||
Tomita (2020) [11] | Sunitinib (24) Axitinib (18) Pazopanib (7) Nivolumab (11) Avelumab (3) Pembrolizumab (1) | n/a | n/a | n/a | n/a | n/a | 11 (31.4) ° | 19 (62.9) ° | 5 (14.3) | 1 (6) 2 (11) ≥3 (3) | Bone (8) Lung (21) Liver (9) Lung or liver, and bone (25) Lymph node (11) Other (15) | Cabozantinib 35 (100) |
Hamieh (2020) [12] | Sunitinib (2) Pazopanib (1) Ipilimumab + Nivolumab (3) Cabozantinib (1) | n/a | n/a | 1.5 (0.8 -3.0) | n/a | n/a | 0 (0) # | 4 (57.1) # | 3 (42.8) # | n/a | Lung (6) Bone (3) Brain (4) Liver (1) | Lenvatinib + Everolisimus 7 (100) |
Yoshida (2019) [13] | Sorafenib (2) Sunitinib (3) IL2 (1) + Nivolumab | n/a | n/a | n/a | n/a | n/a | 0 (0) # | 6 (100) # | 0 (0) # | 1 (2) 2 (3) 3 (1) | Lung (n/a) Lymph node (n/a) Right adrenal gland (n/a) | Axitinib 6 (100) |
Shah (2019) [14] | Anti-PD-(L)1 single agent (12) PD-1 + CTLA-4 blockade (33) PD-(L)1 + anti-VEGF therapy (25) | 12 (17.0) | 58 (83.0) | n/a | n/a | n/a | 8 (11.0) # | 48 (69.0) # | 14 (20.0) # | n/a | Lung (61) Bone (35) Liver (12) Lymph node (48) Adrenal gland (22) | Pazopanib 19 (27) Sunitinib 6 (9) Axitinib 25 (36) Cabozantinib 20 (28) |
Bersanelli (2019) [15] | Sunitinib (150) | n/a (26.3) | n/a (61.7) | n/a | n/a | n/a | 16 (10.7) ° | 95 (63.7) ° | 28 (18.9) ° | 1 (19) 2 (33) ≥3 (48) | Lung (70) Lymph node (59) Bone (31) Liver (25) Brain (11) Renal bed (9) | VEGF -TKI (n/a) mTORI (n/a) |
Hasanov (2019) [16] | Sunitinib (7) Everolimus (6) Pazopanib (6) Temsirolimus (4) Capecitabine (3) Gemcitabine (3) Axitinib (2) Bevacizumab (1) Sorafenib (1) Tivozanib (1) | n/a | n/a | 1.8 (0.8–3.6) | n/a | 0 (6) 1 (2) 2 (1) | 1 (11.0) ° | 6 (67) ° | 2 (22) ° | 1 (1) 2 (3) 3 (1) 4 (2) 6 (1) 10 (1) | Lung (8) Mediastinum (4) Liver (3) Lymph node (2) Chest wall (1) | Carfilzomib 9 (100) |
Semrad (2018) (a) [17] | Bevacizumab (5) Pazopanib (6) Sorafenib (2) Sunitinib (4) | n/a | n/a | n/a | n/a | 0 (12) 1 (5) | n/a | n/a | n/a | Trebabanib 17 (48.5) | ||
Semrad (2018) (b) [17] | Bevacizumab (10) Pazopanib (5) Sorafenib (2) Sunitinib (1) | 0 11) 1 (7) | Trebabanib + anti VEGF 18 (51.5) | |||||||||
Auvray (2018) [18] | Nivolumab -ipilimumab (33) | 8 (24.2) | 25 (75.8) | 8.0 (5.0–13.0) | n/a | n/a | 4 (12.1) # | 23 (69.7) # | 6 (18.2) # | n/a | n/a | Sunitinib 17 (51.5) Axitinib 8 (24.2) Pazopanib 6 (18.2) Cabozantinib 2 (6.1) |
Ishihara (2017) [19] | Sunitinib (37) Sorafenib (21) Pazopanib (2) | 0 (0) | 60 (100) | n/a | n/a | n/a | 9 (15.0) ° | 44 (73.3) ° | 7 (11.7) ° | 1 (18) ≥2 (42) | Lung (50) Liver (10) Bone (12) Lymph node (19) | Sunitinib13 (21.6) Sorafenib 2 (3.69) Axitinib 30 (50) Pazopanib 3 (5) Temsirolimus 4 (6.7) Everolimus 8 (13.3) |
Lakomy (2017) [20] | Bevacizumab + interferon-alpha (35) Sorafenib (232) Sunitinib (655) Temsirolimus (23) Pazopanib (84) | n/a | n/a | 10 (n/a) | n/a | 0 (182) 1 (487) 2 (46) 3 (1) Unknown (272) | 361 (36.5) ° | 573 (58.0) ° | 54 (5.46) ° | n/a | n/a | Everolimus 520 (50.5) Sorafenib 240 (23.3) Sunitinib 228 (22.1) Axitinib 29 (2.8) Pazopanib 10 (0.97) Temsirolimus 1 (0.09) Bevacizumab + interferon-alpha 1 (0.09) |
Eggers (2017) [9] | Sunitinib (n/a) Sorafenib (n/a) Axitinib (n/a) Pazopanib (n/a) Cytokine (n/a) | n/a | n/a | n/a | n/a | 0 (75) ≥1 (8) n/a (22) | 8 (7.6) ° | 30 (28.6) ° | 2 (1.9) ° | 1 (44) >1 (41) n/a (20) | n/a | n/a |
Davis (2016) [21] | Sunitinib (1068) Sorafenib (279) Axitinib (4) Bevacizumab (55) Pazopanib (110) | n/a | n/a | 8.1 (3.9-16.0) | n/a | n/a | 329 (22) ° | 902 (60) ° | 285 (19) ° | n/a | n/a | Sunitinib 278 (18.0) Sorafenib 325 (21.0) Axitinib 107 (7.1) Pazopanib 120 (7.9) Cabozantinib 16 (1.1) Bevacizumab 28 (1.8) Temsirolimus 133 (8.8) Everolimus 403 (27.0) INF/IL-2 13 (0.9) Clinical trial drugs 93 (6.1) |
D’Aniello (2016) [22] | Sunitinib (62) | n/a | n/a | 7.18 (4.04-13.4) | n/a | 0 (42) 1 (18) 2 (2) | 15 (24.2) ° | 43 (69.4) ° | 4 (6.5) ° | n/a | Lung: (29) Bone: (8) Liver: (4) Lymph-node: (9) Other: (12) | Axitinib 62 (100) |
Motzer (2015) (a) [23] | Axitinib (1) Bevacizumab (0) Pazopanib (9) Sorafenib (1) Sunitinib (36) Tivozanib (3) Other (1) | n/a | n/a | n/a | CR 1 (2) PR 14 (28) SD 20 (39) PD 7 (14) n/a 9 (18) | 0 (27) 1 (24) | 12 (24.0) ° | 19 (37.0) ° | 20 (39.0) ° | 1 (18) 2 (15) ≥3 (18) | Bone (12) Liver (10) Lung (27) Lymph nodes (25) | Lenvatinib + Everolimus 51 (100) |
Motzer (2015) (b) [23] | Axitinib (2) Bevacizumab (1) Pazopanib (13) Sorafenib (0) Sunitinib (35) Tivozanib (1) Other (0) | PR 10 (19) SD 28 (54) PD 10 (19) n/a 4 (8) | 0 (29) 1 (23) | 11 (21.0) ° | 18 (35.0) ° | 23 (44.0) ° | 1 (9) 2 (15) ≥3 (28) | Bone (13) Liver (14) Lung (35) Lymph nodes (31) | Single agent Lenvatinib 52 (100) | |||
Motzer (2015) (c) [23] | Axitinib (0) Bevacizumab (4) Pazopanib (13) Sorafenib (2) Sunitinib (28) Tivozanib (2) Other (1) | PR 10 (20) SD 21 (42) PD 15 (30) n/a 9 (8) | 0 (28) 1 (22) | 12 (24.0) ° | 19 (38.0) ° | 19 (38.0) ° | 1 (5) 2 (15) ≥3 (30) | Bone (16) Liver (13) Lung (35) Lymph nodes (33) | Single agent Everolimus 50 (100) | |||
Choueiri (2015) (a) [24] | Sunitinib (210) Pazopanib (144) Axitinib (52) Sorafenib (21) Bevacizumab (5) IL-2 (20) Interferon alfa (19) Nivolumab (17) | n/a | n/a | n/a | n/a | 0 (226) 1 (104) | 150 (45.0) ° | 137 (42.0) ° | 43 (13.0) ° | n/a | n/a | Cabozantinib 330 (50.1) |
Choueiri (2015) (b) [24] | Sunitinib (205) Pazopanib (136) Axitinib (55) Sorafenib (31) Bevacizumab (11) IL-2 (29) Interferon alfa (24) Nivolumab (14) | 0 (217) 1 (111) | 150 (46.0) ° | 135 (41.0) ° | 43 (13.0) ° | Everolimus 328 (49.9) | ||||||
Bergmann (2015) [25] | Sunitinib (260) Sorafenib (68) Pazopanib (12) Bevacizumab (41) Cytokines (33) | n/a | n/a | n/a | n/a | n/a | 84 (35.0) ° | 134 (56.0) ° | 20 (8.0) ° | n/a | Lung (226) Lymph node (145) Bone (125) Liver (87) Adrenal gland (47) | Everolimus 334 (100) |
Hutson (2014) (a) [26] | Sunitinib (259) | n/a | n/a | n/a | n/a | 0 (103) 1 (150) Other (6) | 50 (19.0) ° | 178 (69.0) ° | 31 (12.0) ° | n/a | n/a | Temsirolsimus 259 (100) |
Hutson (2014) (b) [26] | Sunitinib (253) | 0 (113) 1 (139) Other (1) | 44 (17.0) ° | 177 (70.0) ° | 32 (13.0) ° | Sorafenib 253 (100) | ||||||
Signorovitch (2014) [27] | Sunitinib (206) Sorafenib (49) Pazopanib (26) | n/a | n/a | n/a | n/a | 0 (40) ≥1 (234) | 67 (23.8) ° | 138 (49.1) ° | 30 (10.7) ° | n/a | Lung (232) Lymph nodes (152) Bone (148) Liver (76) Adrenal gland (35) Soft tissue (49) Central nervous system (13) Other (6) | Everolimus 138 (49.1) Temsirolimus 64 (22.8) Sorafenib 20 (7.1) Sunitinib 16 (5.7) Pazopanib 35 (12.5) Axitinib 8 (2.8) |
Wong (2014) [28] | Sunitinib (459) Sorafenib (50) Pazopanib (25) | n/a | n/a | n/a | n/a | n/a | n/a | n/a | Lung (379) Lymph nodes (146) Bone (262) Liver (164) Adrenal gland (77) Soft tissue (49) Central nervous system (16) | Everolimus 233 (43.6) Temsirolsimus 178 (33.3) Sorafenib 123 (23.0) | ||
Park (2012) [29] | Sunitinib (60) Sorafenib (16) Pazotinib (7) | n/a | 0 | n/a | ≥ SD 66 (79.0) PD 14 (17.0) n/a 4 (5.0) | n/a | n/a | ≤2 (44) ≥3 (39) | n/a | VEGF TKI 41 (49.4) mTORI: 42 (50.6) | ||
Busch (2013) [30] | Sunitinib (20) Sorafenib (12) Bevacizumab (3) Pazopanib (1) | n/a | 19 (18.4) | 9.1 (6.8–11.5) | CR 1 (1.9) PR 22 (21.4) SD 42 (40.8) PD 47 (40.8) | 0 (69) 1 (10) 2 (1) | n/a | 1 (46) ≥3 (46) | Bone (23) Liver (23) | Sunitinib 21 (20.4) Sorafenib 39 (37.4) Everolimus 35 (34.0) Temsirolimus 5 (4.9) Other 9 (8.7) | ||
Trask (2011) [31] | Sorafenib (62) | n/a | n/a | 7.4 (6.7–11.0) | n/a | 0 (21) 1 (41) | n/a | n/a | Lung (44) Node (30) Liver (20) Soft Tissue (11) Bone (8) Other (30) | Axitinib 62 (100) | ||
Rini (2011) (a) [32] | Sunitinib (194) Cytokines (126) Bevacizumab (29) Temsirolimus (12) | n/a | n/a | n/a | n/a | 0 (195) 1 (162) ≥1 (1) | 100 (28.0) ° | 134 (37.0) ° | 118 (33.0) ° | n/a | n/a | Axitinib 361 (100) |
Rini (2011) (b) [32] | Sunitinib (195) Cytokines (125) Bevacizumab (30) Temsirolimus (12) | 0 (200) 1 (160) ≥1 (0) | 101 (28.0) ° | 130 (36.0) ° | 120 (33.0) ° | Sorafenib 362 (100) | ||||||
Zimmerman (2009) [33] | Sorafenib (22) | n/a | n/a | 12.5 (n/a) | PR 7 (31.8%) SD 15 (68.2%) | n/a | 10 (45.5) ° | 12 (54.5) ° | 0 (0) ° | 1 (3) 2 (1) ≥ 3 (18) | Lung (16) Liver (11) Lymph nodes (11) Bone (10) Brain (5) | Sunitinib 22 (100) |
Di Lorenzo (2009) [34] | Interferon- alfa (5) IL-2 (4) Sunitinib (50) Sunitinib + Interferon (2) | n/a | n/a | n/a | CR 1 (1.9) PR 21 (40.4) SD 7 (13.5) PD 23 (44.2) | 0 (33) 1 (15) 2 (4) | 40 (76.9) ° | 9 (17.3) ° | 3 (5.78) ° | 1 (24) 2 (18) ≥3 (10) | Lung (38) Liver (12) Lymph nodes (12) Adrenal (5) Bone (4) Kidney (3) Soft tissue (2) | Sorafenib 52 (100) |
Tamaskar (2008) [35] | Thalidomide (6) Lenalidomide (5) Volociximab (6) Bevacizumab (7) AG13736 (2) Sunitinib (5) Sorafenib (4) | n/a | n/a | n/a | n/a | n/a | n/a | n/a | Lung (21) Lymph node (18) Bone (13) Liver (11) Soft tissue (22) Brain (5) | Sunitinib and/or Sorafenib (n/a) | ||
Motzer (2006) [36] | Interferon–apha (35) IL-2 (19) Interferon-alpha + IL-2 (9) | n/a | n/a | n/a | 6% | 0 (34) 1(29) | 34 (54.0) ° | 29 (46.0) ° | 0 (0) ° | 1 (8) ≥ 2 (55) | Lung (52) Liver (10) Bone (32) | Sunitinib 63 (100) |
Escudier (2004) (a) [37] | Cytokine-based (374) IL (191) Interferon (307) Both IL-2 and interferon (124) | n/a | n/a | n/a | n/a | 0 (219) 1 (223) 2 (7) Unknown (2) | 233 (52.0) ° | 218 (48.0) ° | 0 (0) ° | 1 (62) 2 (131) >2 (256) Unknown (2) | Lung (348) Liver (116) | Sorafenib 451 (100) |
Escudier (2004) (b) [37] | Cytokine-based (368) IL (189) Interferon (314) Both IL-2 and interferon (135) | 0 (210) 1 (236) 2 (4) Unknown (2) | 228 (50.0) ° | 223 (50) ° | 0 (0) ° | 1 (63) 2 (129) >2 (258) | Lung (348) Liver (117) | Placebo 452 (100) |
Characteristic | Axitinib (n = 532) | Cabozantinib (n = 365) | Nivolumab (n = 39) | Everolimus + Levatinib (n = 58) |
---|---|---|---|---|
Male:Female | 400:132 | 277:88 | 29:10 | 42:16 |
Age at progression, years (mean) | 64.5 | 63.0 | 63.0 | 59.0 |
Histology of Primary Tumor, n (%) | ||||
Clear cell carcinoma | 510 (95.9) | 35 (9.5) | 29 (74.4) | 58 (100) |
Non-Clear cell carcinoma | 22 (4.1) | 0 (0) | 10 (25.6) | - |
Not specified | 0 (0) | 330 (90.6) | 0 (0) | - |
T-Stage, n (%) | ||||
T1 | 1 (0.2) | n/a | n/a | n/a |
T2 | 1 (0.2) | n/a | n/a | n/a |
T3 | 4 (0.7) | n/a | n/a | n/a |
T4 | 59 (11.1) | n/a | n/a | n/a |
Not specified | 467 (87.8) | n/a | n/a | n/a |
Fuhrman or WHO/ISUP Grade, n (%) | n/a | n/a | n/a | n/a |
Prior nephrectomy, n (%) | 156 (29.3) | 268 (73.4) | 34 (87.2) | 50 (86.2) |
Reason for Discontinuation, n (%) | ||||
Progression | 21 (3.9) | n/a | 28 (71.8) | n/a |
Toxicity | 20 (3.7) | n/a | 11 (28.2) | n/a |
Not specified | 491 (92.2) | n/a | 0 (0) | n/a |
ECOG PS Score, n (%) | ||||
0 | 258 (48.5) | 226 (61.9) | n/a | 27 (46.5) |
1 | 221 (41.5) | 104 (28.5) | n/a | 24 (41.4) |
2 | 3 (0.6) | 0 (0) | n/a | 0 (0) |
Not specified | 50 (9.4) | 35 (9.6) | n/a | 7 (12.1) |
Prognostic Category, n (%) | ||||
Favorable/Good | 118 (22.2) | 161 (44.1) | 2 (5.1) | 12 (20.8) |
Intermediate | 207 (38.9) | 156 (42.7) | 23 (59.0) | 23 (39.6) |
Poor | 136 (25.6) | 48 (13.2) | 14 (35.9) | 23 (39.6) |
Not specified | 71 (13.3) | 0 (0) | 0 (0) | - |
Metastatic sites, n (%) | ||||
1 | 25 (4.7) | 6 (1.6) | 21 (53.8) | 18 (31.0) |
≥2 | 22 (4.1) | 14 (3.8) | 18 (46.2) | 33 (56.9) |
Not specified | 485 (91.2) | 345 (94.6) | 0 (0) | 7 (12.1) |
Involved Metastatic Sites, n (%) | ||||
Lung | 73 (13.7) | 21 (5.7) | n/a | 33 (56.9) |
Liver | 24 (4.5) | 9 (2.5) | n/a | 11 (18.9) |
Lymph node | 39 (7.3) | 11 (3.0) | n/a | 25 (43.1) |
Bone | 16 (3.0) | 8 (2.2) | n/a | 15 (25.9) |
Other | 53 (9.9) | 15 (4.1) | n/a | 4 (6.9) |
Not specified | 408 (77.7) | 330 (90.4) | n/a | 0 (0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longo, N.; Capece, M.; Celentano, G.; La Rocca, R.; Califano, G.; Collà Ruvolo, C.; Buonerba, C.; Esposito, F.; Napolitano, L.; Mangiapia, F.; et al. Clinical and Pathological Characteristics of Metastatic Renal Cell Carcinoma Patients Needing a Second-Line Therapy: A Systematic Review. Cancers 2020, 12, 3634. https://doi.org/10.3390/cancers12123634
Longo N, Capece M, Celentano G, La Rocca R, Califano G, Collà Ruvolo C, Buonerba C, Esposito F, Napolitano L, Mangiapia F, et al. Clinical and Pathological Characteristics of Metastatic Renal Cell Carcinoma Patients Needing a Second-Line Therapy: A Systematic Review. Cancers. 2020; 12(12):3634. https://doi.org/10.3390/cancers12123634
Chicago/Turabian StyleLongo, Nicola, Marco Capece, Giuseppe Celentano, Roberto La Rocca, Gianluigi Califano, Claudia Collà Ruvolo, Carlo Buonerba, Fabio Esposito, Luigi Napolitano, Francesco Mangiapia, and et al. 2020. "Clinical and Pathological Characteristics of Metastatic Renal Cell Carcinoma Patients Needing a Second-Line Therapy: A Systematic Review" Cancers 12, no. 12: 3634. https://doi.org/10.3390/cancers12123634
APA StyleLongo, N., Capece, M., Celentano, G., La Rocca, R., Califano, G., Collà Ruvolo, C., Buonerba, C., Esposito, F., Napolitano, L., Mangiapia, F., Fusco, F., Mirone, V., & Creta, M. (2020). Clinical and Pathological Characteristics of Metastatic Renal Cell Carcinoma Patients Needing a Second-Line Therapy: A Systematic Review. Cancers, 12(12), 3634. https://doi.org/10.3390/cancers12123634