The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Frequency of the CHEK2 Variant c.349A>G
2.2. Identification of IBD Haplotype and Phylogeographic Analysis
2.3. Age Estimation of the CHEK2 Variant c.349A>G
2.4. Haplotype Analysis Using Microsatellites
3. Discussion
4. Materials and Methods
4.1. Portuguese Early-Onset/Familial PrCa Sample Collection
4.2. Genotyping of the CHEK2 Variant c.349A>G
4.3. Statistical Analysis
4.4. Practical Sample Collection
4.5. OncoArray Genotyping and Quality Control
4.6. Identity-By-Descent Analysis and Phylogeographic Haplotype Reconstruction
4.7. Age Estimation of the CHEK2 Variant c.349A>G
4.8. Microsatellite Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bashir, M.N. Epidemiology of prostate cancer. Asian Pac. J. Cancer Prev. 2015, 16, 5137–5141. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Al Olama, A.A.; Kote-Jarai, Z.; Schumacher, F.R.; Wiklund, F.; Berndt, S.I.; Benlloch, S.; Giles, G.G.; Severi, G.; Neal, D.E.; Hamdy, F.C.; et al. A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Hum. Mol. Genet. 2013, 22, 408–415. [Google Scholar] [CrossRef][Green Version]
- Schumacher, F.R.; Al Olama, A.A.; Berndt, S.I.; Benlloch, S.; Ahmed, M.; Saunders, E.J.; Dadaev, T.; Leongamornlert, D.; Anokian, E.; Cieza-Borrella, C.; et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 2018, 50, 928–936. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Al Olama, A.A.; Kote-Jarai, Z.; Giles, G.G.; Guy, M.; Morrison, J.; Severi, G.; Leongamornlert, D.A.; Tymrakiewicz, M.; Jhavar, S.; Saunders, E.; et al. Multiple loci on 8q24 associated with prostate cancer susceptibility. Nat. Genet. 2009, 41, 1058–1060. [Google Scholar] [CrossRef] [PubMed]
- Eeles, R.A.; Kote-Jarai, Z.; Al Olama, A.A.; Giles, G.G.; Guy, M.; Severi, G.; Muir, K.; Hopper, J.L.; Henderson, B.E.; Haiman, C.A.; et al. Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nat. Genet. 2009, 41, 1116–1121. [Google Scholar] [CrossRef]
- Eeles, R.; Goh, C.; Castro, E.; Bancroft, E.; Guy, M.; Al Olama, A.A.; Easton, D.; Kote-Jarai, Z. The genetic epidemiology of prostate cancer and its clinical implications. Nat. Rev. Urol. 2014, 11, 18–31. [Google Scholar] [CrossRef]
- Al Olama, A.A.; Kote-Jarai, Z.; Berndt, S.I.; Conti, D.V.; Schumacher, F.; Han, Y.; Benlloch, S.; Hazelett, D.J.; Wang, Z.; Saunders, E.; et al. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat. Genet. 2014, 46, 1103–1109. [Google Scholar] [CrossRef][Green Version]
- Brechka, H.; Bhanvadia, R.R.; VanOpstall, C.; Griend, D.J.V. HOXB13 mutations and binding partners in prostate development and cancer: Function, clinical significance, and future directions. Genes Dis. 2017, 4, 75–87. [Google Scholar] [CrossRef]
- Ewing, C.M.; Ray, A.M.; Lange, E.M.; Zuhlke, K.A.; Robbins, C.M.; Tembe, W.D.; Wiley, K.E.; Isaacs, S.D.; Johng, D.; Wang, Y.; et al. Germline mutations in HOXB13 and prostate-cancer risk. N. Engl. J. Med. 2012, 366, 141–149. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kote-Jarai, Z.; Mikropoulos, C.; Leongamornlert, D.A.; Dadaev, T.; Tymrakiewicz, M.; Saunders, E.J.; Jones, M.; Jugurnauth-Little, S.; Govindasami, K.; Guy, M.; et al. Prevalence of the HOXB13 G84E germline mutation in British men and correlation with prostate cancer risk, tumour characteristics and clinical outcomes. Ann. Oncol. 2015, 26, 756–761. [Google Scholar] [CrossRef]
- Breyer, J.P.; Avritt, T.G.; McReynolds, K.M.; Dupont, W.D.; Smith, J.R. Confirmation of the HOXB13 G84E germline mutation in familial prostate cancer. Cancer Epidemiol. Biomark. Prev. 2012, 21, 1348–1353. [Google Scholar] [CrossRef][Green Version]
- Castro, E.; Eeles, R. The role of BRCA1 and BRCA2 in prostate cancer. Asian J. Androl. 2012, 14, 409–414. [Google Scholar] [CrossRef][Green Version]
- Maia, S.; Cardoso, M.; Paulo, P.; Pinheiro, M.; Pinto, P.; Santos, C.; Pinto, C.; Peixoto, A.; Henrique, R.; Teixeira, M.R. The role of germline mutations in the BRCA1/2 and mismatch repair genes in men ascertained for early-onset and/or familial prostate cancer. Fam. Cancer 2016, 15, 111–121. [Google Scholar] [CrossRef]
- Petrovics, G.; Price, D.K.; Lou, H.; Chen, Y.; Garland, L.; Bass, S.; Jones, K.; Kohaar, I.; Ali, A.; Ravindranath, L.; et al. Increased frequency of germline BRCA2 mutations associates with prostate cancer metastasis in a racially diverse patient population. Prostate Cancer Prostatic Dis. 2019, 22, 406–410. [Google Scholar] [CrossRef]
- Grindedal, E.M.; Møller, P.; Eeles, R.; Stormorken, A.T.; Bowitz-Lothe, I.M.; Landrø, S.M.; Clark, N.; Kvåle, R.; Shanley, S.; Mæhle, L. Germline mutations in mismatch repair genes associated with prostate cancer. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2460–2467. [Google Scholar] [CrossRef][Green Version]
- Guedes, L.B.; Antonarakis, E.S.; Schweizer, M.T.; Mirkheshti, N.; Almutairi, F.; Park, J.C.; Glavaris, S.; Hicks, J.; Eisenberger, M.A.; De Marzo, A.M.; et al. MSH2 loss in primary prostate cancer. Clin. Cancer Res. 2017, 23, 6863–6874. [Google Scholar] [CrossRef][Green Version]
- Seppälä, E.H.; Ikonen, T.; Mononen, N.; Autio, V.; Rökman, A.; Matikainen, M.P.; Tammela, T.L.J.; Schleutker, J. CHEK2 variants associate with hereditary prostate cancer. Br. J. Cancer 2003, 89, 1966–1970. [Google Scholar] [CrossRef][Green Version]
- Cybulski, C.; Huzarski, T.; Górski, B.; Masojć, B.; Mierzejewski, M.; Dȩbniak, T.; Gliniewicz, B.; Matyjasik, J.; Złowocka, E.; Kurzawski, G.; et al. A novel founder CHEK2 mutation is associated with increased prostate cancer risk. Cancer Res. 2004, 64, 2677–2679. [Google Scholar] [CrossRef][Green Version]
- Ertych, N.; Stolz, A.; Valerius, O.; Braus, G.H.; Bastians, O. CHK2-BRCA1 tumor-suppressor axis restrains oncogenic Aurora-A kinase to ensure proper mitotic microtubule assembly. Proc. Natl. Acad. Sci. USA 2016, 113, 1817–1822. [Google Scholar] [CrossRef][Green Version]
- Wang, Y.; Dai, B.; Ye, D. CHEK2 mutation and risk of prostate cancer: A systematic review and meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 15708–15715. [Google Scholar]
- Southey, M.C.C.; Goldgar, D.E.E.; Winqvist, R.; Pylkäs, K.; Couch, F.; Tischkowitz, M.; Foulkes, W.D.D.; Dennis, J.; Michailidou, K.; van Rensburg, E.J.J.; et al. PALB2, CHEK2 and ATM rare variants and cancer risk: Data from COGS. J. Med. Genet. 2016, 53, 800–811. [Google Scholar] [CrossRef][Green Version]
- Xiang, H.P.; Geng, X.P.; Ge, W.W.; Li, H. Meta-analysis of CHEK2 1100delC variant and colorectal cancer susceptibility. Eur. J. Cancer 2011, 47, 2546–2551. [Google Scholar] [CrossRef] [PubMed]
- Aldubayan, S.H.; Pyle, L.C.; Gamulin, M.; Kulis, T.; Moore, N.D.; Taylor-Weiner, A.; Hamid, A.A.; Reardon, B.; Wubbenhorst, B.; Godse, R.; et al. Association of inherited pathogenic variants in checkpoint kinase 2 (CHEK2) with susceptibility to testicular germ cell tumors. JAMA Oncol. 2019, 5, 514–522. [Google Scholar] [CrossRef]
- Shaag, A.; Walsh, T.; Renbaum, P.; Kirchhoff, T.; Nafa, K.; Shiovitz, S.; Mandell, J.B.; Welcsh, P.; Lee, M.K.; Ellis, N.; et al. Functional and genomic approaches reveal an ancient CHEK2 allele associated with breast cancer in the Ashkenazi Jewish population. Hum. Mol. Genet. 2005, 14, 555–563. [Google Scholar] [CrossRef][Green Version]
- Paulo, P.; Maia, S.; Pinto, C.; Pinto, P.; Monteiro, A.; Peixoto, A.; Teixeira, M.R. Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer. PLoS Genet. 2018, 14, e1007355. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Maia, S.; Cardoso, M.; Pinto, P.; Pinheiro, M.; Santos, C.; Peixoto, A.; Bento, M.J.; Oliveira, J.; Henrique, R.; Jerónimo, C.; et al. Identification of two novel HOXB13 germline mutations in Portuguese prostate cancer patients. PLoS ONE 2015, 10, e0132728. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Eccles, D. Worldmap Wdb Combined. Available online: http://user.interface.org.nz/~gringer/hacking/wdb2svg.txt (accessed on 6 January 2020).
- Easton, D. CHEK2*1100delC and susceptibility to breast cancer: A collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies. Am. J. Hum. Genet. 2004, 74, 1175–1182. [Google Scholar] [CrossRef][Green Version]
- Peixoto, A.; Santos, C.; Pinto, P.; Pinheiro, M.; Rocha, P.; Pinto, C.; Bizarro, S.; Veiga, I.; Principe, A.S.; Maia, S.; et al. The role of targeted BRCA1/BRCA2 mutation analysis in hereditary breast/ovarian cancer families of Portuguese ancestry. Clin. Genet. 2015, 88, 41–48. [Google Scholar] [CrossRef]
- Rebbeck, T.R.; Friebel, T.M.; Friedman, E.; Hamann, U.; Huo, D.; Kwong, A.; Olah, E.; Olopade, O.I.; Solano, A.R.; Teo, S.H.; et al. Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations. Hum. Mutat. 2018, 39, 593–620. [Google Scholar] [CrossRef][Green Version]
- Weischer, M.; Bojesen, S.E.; Ellervik, C.; Tybjærg-Hansen, A.; Nordestgaard, B.G. CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: Meta-analyses of 26,000 patient cases and 27,000 controls. J. Clin. Oncol. 2008, 26, 542–548. [Google Scholar] [CrossRef][Green Version]
- Apostolou, P.; Fostira, F. Hereditary breast cancer: The Era of new susceptibility genes. Biomed. Res. Int. 2013, 2013, 11. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Schutte, M.; Seal, S.; Barfoot, R.; Meijers-Heijboer, H.; Wasielewski, M.; Evans, D.G.; Eccles, D.; Meijers, C.; Lohman, F.; Klijn, J.; et al. Variants in CHEK2 other than 1100delC do not make a major contribution to breast cancer susceptibility. Am. J. Hum. Genet. 2003, 72, 1023–1028. [Google Scholar] [CrossRef][Green Version]
- Li, J.; Williams, B.L.; Haire, L.F.; Goldberg, M.; Wilker, E.; Durocher, D.; Yaffe, M.B.; Jackson, S.P.; Smerdon, S.J. Structural and functional versatility of the FHA domain in DNA-damage signaling by the tumor suppressor kinase Chk2. Mol. Cell 2002, 9, 1045–1054. [Google Scholar] [CrossRef]
- Sodha, N.; Mantoni, T.S.; Tavtigian, S.V.; Eeles, R.; Garrett, M.D. Rare germ line CHEK2 variants identified in breast cancer families encode proteins that show impaired activation. Cancer Res. 2006, 66, 8966–8970. [Google Scholar] [CrossRef][Green Version]
- Wu, X.; Dong, X.; Liu, W.; Chen, J. Characterization of CHEK2 mutations in prostate cancer. Hum. Mutat. 2006, 27, 742–747. [Google Scholar] [CrossRef]
- Angèle, S.; Falconer, A.; Edwards, S.M.; Dörk, T.; Bremer, M.; Moullan, N.; Chapot, B.; Muir, K.; Houlston, R.; Norman, A.R.; et al. ATM polymorphisms as risk factors for prostate cancer development. Br. J. Cancer 2004, 91, 783–787. [Google Scholar] [CrossRef] [PubMed]
- Leongamornlert, D.; Mahmud, N.; Tymrakiewicz, M.; Saunders, E.; Dadaev, T.; Castro, E.; Goh, C.; Govindasami, K.; Guy, M.; O’Brien, L.; et al. Germline BRCA1 mutations increase prostate cancer risk. Br. J. Cancer 2012, 106, 1697–1701. [Google Scholar] [CrossRef][Green Version]
- Kote-Jarai, Z.; Leongamornlert, D.; Saunders, E.; Tymrakiewicz, M.; Castro, E.; Mahmud, N.; Guy, M.; Edwards, S.; O’Brien, L.; Sawyer, E.; et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: Implications for genetic testing in prostate cancer patients. Br. J. Cancer 2011, 105, 1230–1234. [Google Scholar] [CrossRef]
- Karlsson, R.; Aly, M.; Clements, M.; Zheng, L.; Adolfsson, J.; Xu, J.; Grönberg, H.; Wiklund, F. A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk. Eur. Urol. 2014, 65, 169–176. [Google Scholar] [CrossRef][Green Version]
- Leslie, S.; Winney, B.; Hellenthal, G.; Davison, D.; Boumertit, A.; Day, T.; Hutnik, K.; Royrvik, E.C.; Cunliffe, B.; Lawson, D.J.; et al. The fine-scale genetic structure of the British population. Nature 2015, 519, 309–314. [Google Scholar] [CrossRef][Green Version]
- Meijers-Heijboer, H.; Van den Ouweland, A.; Klijn, J.; Wasielewski, M.; De Shoo, A.; Oldenburg, R.; Hollestelle, A.; Houben, M.; Crepin, E.; Van Veghel-Plandsoen, M.; et al. Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations: The CHEK2-breast cancer consortium. Nat. Genet. 2002, 31, 55–59. [Google Scholar] [CrossRef]
- Vahteristo, P.; Bartkova, J.; Eerola, H.; Syrjäkoski, K.; Ojala, S.; Kilpivaara, O.; Tamminen, A.; Kononen, J.; Aittomäki, K.; Heikkilä, P.; et al. A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am. J. Hum. Genet. 2002, 71, 432–438. [Google Scholar] [CrossRef][Green Version]
- Heather, P. Empires and Barbarians: Migration, Development, and the Birth of Europe; Pan Macmillan: London, UK, 2010; pp. 1–734. [Google Scholar]
- Bryc, K.; Durand, E.Y.; Macpherson, J.M.; Reich, D.; Mountain, J.L. The genetic ancestry of african americans, latinos, and european Americans across the United States. Am. J. Hum. Genet. 2015, 96, 37–53. [Google Scholar] [CrossRef][Green Version]
- McEvoy, B.P.; Lind, J.M.; Wang, E.T.; Moyzis, R.K.; Visscher, P.M.; Van Holst Pellekaan, S.M.; Wilton, A.N. Whole-genome genetic diversity in a sample of Australians with deep aboriginal ancestry. Am. J. Hum. Genet. 2010, 87, 297–305. [Google Scholar] [CrossRef][Green Version]
- Greenwood, C.M.T.; Sun, S.; Veenstra, J.; Hamel, N.; Niell, B.; Gruber, S.; Foulkes, W.D. How old is this mutation?—A study of three Ashkenazi Jewish founder mutations. BMC Genet. 2010, 11, 39. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cybulski, C.; Górski, B.; Huzarski, T.; Masojć, B.; Mierzejewski, M.; Dȩbniak, T.; Teodorczyk, U.; Byrski, T.; Gronwald, J.; Matyjasik, J.; et al. CHEK2 is a multiorgan cancer susceptibility gene. Am. J. Hum. Genet. 2004, 75, 1131–1135. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pinto, P.; Paulo, P.; Santos, C.; Rocha, P.; Pinto, C.; Veiga, I.; Pinheiro, M.; Peixoto, A.; Teixeira, M.R. Implementation of next-generation sequencing for molecular diagnosis of hereditary breast and ovarian cancer highlights its genetic heterogeneity. Breast Cancer Res. Treat. 2016, 159, 245–256. [Google Scholar] [CrossRef]
- Roy, R.; Chun, J.; Powell, S.N. BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat. Rev. Cancer 2012, 12, 68–78. [Google Scholar] [CrossRef][Green Version]
- Susswein, L.R.; Marshall, M.L.; Nusbaum, R.; Vogel Postula, K.J.; Weissman, S.M.; Yackowski, L.; Vaccari, E.M.; Bissonnette, J.; Booker, J.K.; Cremona, M.L.; et al. Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. Genet. Med. 2016, 18, 823–832. [Google Scholar] [CrossRef][Green Version]
- Pinto, P.; Peixoto, A.; Santos, C.; Rocha, P.; Pinto, C.; Pinheiro, M.; Leça, L.; Martins, A.T.; Ferreira, V.; Bartosch, C.; et al. Analysis of founder mutations in rare tumors associated with hereditary breast/ovarian cancer reveals a novel association of BRCA2 mutations with ampulla of vater carcinomas. PLoS ONE 2016, 11, e0161438. [Google Scholar] [CrossRef]
- Amos, C.I.; Dennis, J.; Wang, Z.; Byun, J.; Schumacher, F.R.; Gayther, S.A.; Casey, G.; Hunter, D.J.; Sellers, T.A.; Gruber, S.B.; et al. The oncoarray consortium: A network for understanding the genetic architecture of common cancers. Cancer Epidemiol. Biomark. Prev. 2017, 26, 126–135. [Google Scholar] [CrossRef][Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef][Green Version]
- Browning, S.R.; Browning, B.L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 2007, 81, 1084–1097. [Google Scholar] [CrossRef][Green Version]
- Browning, B.L.; Browning, S.R. Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 2013, 194, 459–471. [Google Scholar] [CrossRef][Green Version]
- Bandelt, H.J.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Leigh, J.W.; Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Reeve, J.P.; Rannala, B. DMLE+: Bayesian linkage disequilibrium gene mapping. Bioinformatics 2002, 18, 894–895. [Google Scholar] [CrossRef][Green Version]
- Genin, E.; Tullio-Pelet, A.; Begeot, F.; Lyonnet, S.; Abel, L. Estimating the age of rare disease mutations: The example of Triple-A syndrome. J. Med. Genet. 2004, 41, 445–449. [Google Scholar] [CrossRef][Green Version]
- Pin, E.; Pastrello, C.; Tricarico, R.; Papi, L.; Quaia, M.; Fornasarig, M.; Carnevali, I.; Oliani, C.; Fornasin, A.; Agostini, M.; et al. MUTYH c.933+3A>C, associated with a severely impaired gene expression, is the first Italian founder mutation in MUTYH-Associated Polyposis. Int. J. Cancer 2013, 132, 1060–1069. [Google Scholar] [CrossRef]
- Nachman, M.W.; Crowell, S.L. Estimate of the mutation rate per nucleotide in humans. Genetics 2000, 156, 297–304. [Google Scholar]
- Consortium, T.G.P.; Auton, A.; Abecasis, G.R.; Altshuler, D.M.; Durbin, R.M.; Abecasis, G.R.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; et al. A global reference for human genetic variation. Nature 2015, 526, 68. [Google Scholar] [CrossRef][Green Version]
- Williams, J.E.; Zaremba, E.; Jackson, B.; Nikuni, T.; Griffin, A. Dynamical instability of a condensate induced by a rotating thermal gas. Phys. Rev. Lett. 2002, 88, 704011–704014. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef][Green Version]
Microsatellite Markers | ||||||
---|---|---|---|---|---|---|
Family | D22S310 | D22S689 | CHEK2 | D22S275 (Intragenic) | D22S1150 | D22S280 |
1 * | 181 | 294 | _ | 159 | 216 | 211 |
2 * | 183 | 294 | _ | 159 | 220 | 211 |
3 * | 181 | 294 | _ | 159 | 216 | 205/211 |
4 * | 179 | 294 | _ | 159 | 216/220 | 205 |
5 * | 183/187 | 290/294 | _ | 159/163 | 218/220 | 205/211 |
6 | 185/189 | 294 | _ | 159/161 | 216/220 | 205 |
7 | 187 | 294 | _ | 159 | 216 | 211 |
8 | 185 | 294 | _ | 159 | 216 | 211 |
9 | 177/185 | 294/298 | _ | 159/161 | 220 | 209 |
10 | 179/187 | 294 | _ | 159/167 | 218/220 | 205/209 |
11 | 177/189 | 294 | _ | 159 | 216 | 205 |
12 | 185 | 294 | _ | 159 | 216 | 205/209 |
13 | 185 | 294 | _ | 159 | 220 | 209 |
14 | 177/181 | 294/302 | _ | 159 | 216/226 | 205/213 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandão, A.; Paulo, P.; Maia, S.; Pinheiro, M.; Peixoto, A.; Cardoso, M.; Silva, M.P.; Santos, C.; Eeles, R.A.; Kote-Jarai, Z.; Muir, K.; UKGPCS Collaborators; Schleutker, J.; Wang, Y.; Pashayan, N.; Batra, J.; APCB BioResource; Grönberg, H.; Neal, D.E.; Nordestgaard, B.G.; Tangen, C.M.; Southey, M.C.; Wolk, A.; Albanes, D.; Haiman, C.A.; Travis, R.C.; Stanford, J.L.; Mucci, L.A.; West, C.M.L.; Nielsen, S.F.; Kibel, A.S.; Cussenot, O.; Berndt, S.I.; Koutros, S.; Sørensen, K.D.; Cybulski, C.; Grindedal, E.M.; Park, J.Y.; Ingles, S.A.; Maier, C.; Hamilton, R.J.; Rosenstein, B.S.; Vega, A.; The IMPACT Study Steering Committee and Collaborators; Kogevinas, M.; Wiklund, F.; Penney, K.L.; Brenner, H.; John, E.M.; Kaneva, R.; Logothetis, C.J.; Neuhausen, S.L.; Ruyck, K.D.; Razack, A.; Newcomb, L.F.; Canary PASS Investigators; Lessel, D.; Usmani, N.; Claessens, F.; Gago-Dominguez, M.; Townsend, P.A.; Roobol, M.J.; The Profile Study Steering Committee; The PRACTICAL Consortium; Teixeira, M.R. The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor. Cancers 2020, 12, 3254. https://doi.org/10.3390/cancers12113254
Brandão A, Paulo P, Maia S, Pinheiro M, Peixoto A, Cardoso M, Silva MP, Santos C, Eeles RA, Kote-Jarai Z, Muir K, UKGPCS Collaborators, Schleutker J, Wang Y, Pashayan N, Batra J, APCB BioResource, Grönberg H, Neal DE, Nordestgaard BG, Tangen CM, Southey MC, Wolk A, Albanes D, Haiman CA, Travis RC, Stanford JL, Mucci LA, West CML, Nielsen SF, Kibel AS, Cussenot O, Berndt SI, Koutros S, Sørensen KD, Cybulski C, Grindedal EM, Park JY, Ingles SA, Maier C, Hamilton RJ, Rosenstein BS, Vega A, The IMPACT Study Steering Committee and Collaborators, Kogevinas M, Wiklund F, Penney KL, Brenner H, John EM, Kaneva R, Logothetis CJ, Neuhausen SL, Ruyck KD, Razack A, Newcomb LF, Canary PASS Investigators, Lessel D, Usmani N, Claessens F, Gago-Dominguez M, Townsend PA, Roobol MJ, The Profile Study Steering Committee, The PRACTICAL Consortium, Teixeira MR. The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor. Cancers. 2020; 12(11):3254. https://doi.org/10.3390/cancers12113254
Chicago/Turabian StyleBrandão, Andreia, Paula Paulo, Sofia Maia, Manuela Pinheiro, Ana Peixoto, Marta Cardoso, Maria P. Silva, Catarina Santos, Rosalind A. Eeles, Zsofia Kote-Jarai, Kenneth Muir, UKGPCS Collaborators, Johanna Schleutker, Ying Wang, Nora Pashayan, Jyotsna Batra, APCB BioResource, Henrik Grönberg, David E. Neal, Børge G. Nordestgaard, Catherine M. Tangen, Melissa C. Southey, Alicja Wolk, Demetrius Albanes, Christopher A. Haiman, Ruth C. Travis, Janet L. Stanford, Lorelei A. Mucci, Catharine M. L. West, Sune F. Nielsen, Adam S. Kibel, Olivier Cussenot, Sonja I. Berndt, Stella Koutros, Karina Dalsgaard Sørensen, Cezary Cybulski, Eli Marie Grindedal, Jong Y. Park, Sue A. Ingles, Christiane Maier, Robert J. Hamilton, Barry S. Rosenstein, Ana Vega, The IMPACT Study Steering Committee and Collaborators, Manolis Kogevinas, Fredrik Wiklund, Kathryn L. Penney, Hermann Brenner, Esther M. John, Radka Kaneva, Christopher J. Logothetis, Susan L. Neuhausen, Kim De Ruyck, Azad Razack, Lisa F. Newcomb, Canary PASS Investigators, Davor Lessel, Nawaid Usmani, Frank Claessens, Manuela Gago-Dominguez, Paul A. Townsend, Monique J. Roobol, The Profile Study Steering Committee, The PRACTICAL Consortium, and Manuel R. Teixeira. 2020. "The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor" Cancers 12, no. 11: 3254. https://doi.org/10.3390/cancers12113254