Efficacy of Cancer Immunotherapy: An Umbrella Review of Meta-Analyses of Randomized Controlled Trials
Abstract
:1. Introduction
2. Results
2.1. Monoclonal Antibodies
2.2. Adoptive Cell Immunotherapy
2.3. Immunomodulatory Cytokines
2.4. Cancer Vaccine
3. Discussion
4. Materials and Methods
4.1. Search Strategy and Selection Criteria
4.2. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature 2011, 480, 480–489. [Google Scholar] [CrossRef]
- Ventola, C.L. Cancer Immunotherapy, Part 1: Current Strategies and Agents. Pharm. Ther. 2017, 42, 375–383. [Google Scholar]
- Galluzzi, L.; Vacchelli, E.; Bravo-San Pedro, J.M.; Buque, A.; Senovilla, L.; Baracco, E.E.; Bloy, N.; Castoldi, F.; Abastado, J.P.; Agostinis, P.; et al. Classification of current anticancer immunotherapies. Oncotarget 2014, 5, 12472–12508. [Google Scholar] [CrossRef]
- Iwai, Y.; Hamanishi, J.; Chamoto, K.; Honjo, T. Cancer immunotherapies targeting the PD-1 signaling pathway. J. Biomed. Sci. 2017, 24, 26. [Google Scholar] [CrossRef]
- Schmidt-Wolf, I.G.; Negrin, R.S.; Kiem, H.P.; Blume, K.G.; Weissman, I.L. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J. Exp. Med. 1991, 174, 139–149. [Google Scholar] [CrossRef]
- Wang, Q.J.; Wang, H.; Pan, K.; Li, Y.Q.; Huang, L.X.; Chen, S.P.; He, J.; Ke, M.L.; Zhao, J.J.; Li, J.J.; et al. Comparative study on anti-tumor immune response of autologous cytokine-induced killer (CIK) cells, dendritic cells-CIK (DC-CIK), and semi-allogeneic DC-CIK. Chin. J. Cancer 2010, 29, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Melief, C.J.; van Hall, T.; Arens, R.; Ossendorp, F.; van der Burg, S.H. Therapeutic cancer vaccines. J. Clin. Investig. 2015, 125, 3401–3412. [Google Scholar] [CrossRef]
- Wang, X.; Bao, Z.; Zhang, X.; Li, F.; Lai, T.; Cao, C.; Chen, Z.; Li, W.; Shen, H.; Ying, S. Effectiveness and safety of PD-1/PD-L1 inhibitors in the treatment of solid tumors: A systematic review and meta-analysis. Oncotarget 2017, 8, 59901–59914. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Pala, L.; Bagnardi, V.; De Pas, T.; Martinetti, M.; Viale, G.; Gelber, R.D.; Goldhirsch, A. Cancer immunotherapy efficacy and patients’ sex: A systematic review and meta-analysis. Lancet Oncol. 2018, 19, 737–746. [Google Scholar] [CrossRef]
- Kleinovink, J.W.; Marijt, K.A.; Schoonderwoerd, M.J.A.; van Hall, T.; Ossendorp, F.; Fransen, M.F. PD-L1 expression on malignant cells is no prerequisite for checkpoint therapy. Oncoimmunology 2017, 6, e1294299. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Liang, X.; Jiang, J.; Zhou, X.; Huang, R.; Chu, Z.; Zhan, Q. A systematic review and meta-analysis of immunochemotherapy with rituximab for B-cell non-Hodgkin’s lymphoma. Acta Oncol. 2010, 49, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H.; Bohlius, J.F.; Trelle, S.; Skoetz, N.; Reiser, M.; Kober, T.; Schwarzer, G.; Herold, M.; Dreyling, M.; Hallek, M.; et al. Immunochemotherapy with rituximab and overall survival in patients with indolent or mantle cell lymphoma: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2007, 99, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Yang, W. A meta-analysis on Rituximab combined CHOP chemotherapy for non-Hodgkin lymphoma in China. Saudi Med. J. 2011, 32, 675–678. [Google Scholar] [PubMed]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Vist, G.E.; Falck-Ytter, Y.; Schunemann, H.J. What is “quality of evidence” and why is it important to clinicians? BMJ 2008, 336, 995–998. [Google Scholar] [CrossRef] [PubMed]
- Riley, R.D.; Higgins, J.P.; Deeks, J.J. Interpretation of random effects meta-analyses. BMJ 2011, 342, d549. [Google Scholar] [CrossRef] [PubMed]
- Coory, M.D. Comment on: Heterogeneity in meta-analysis should be expected and appropriately quantified. Int. J. Epidemiol. 2010, 39, 932–933. [Google Scholar] [CrossRef]
- Belbasis, L.; Bellou, V.; Evangelou, E.; Ioannidis, J.P.; Tzoulaki, I. Environmental risk factors and multiple sclerosis: An umbrella review of systematic reviews and meta-analyses. Lancet Neurol. 2015, 14, 263–273. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Spiegelhalter, D.J. A re-evaluation of random-effects meta-analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 2009, 172, 137–159. [Google Scholar] [CrossRef]
- IntHout, J.; Ioannidis, J.P.; Rovers, M.M.; Goeman, J.J. Plea for routinely presenting prediction intervals in meta-analysis. BMJ Open 2016, 6, e010247. [Google Scholar] [CrossRef]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Sterne, J.A.; Sutton, A.J.; Ioannidis, J.P.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rucker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, H.; Ananthan, A.; Rao, S.; Patole, S. Odds ratio vs risk ratio in randomized controlled trials. Postgrad. Med. 2015, 127, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, J.P.; Trikalinos, T.A. An exploratory test for an excess of significant findings. Clin. Trials 2007, 4, 245–253. [Google Scholar] [CrossRef]
- Zhuansun, Y.; Huang, F.; Du, Y.; Lin, L.; Chen, R.; Li, J. Anti-PD-1/PD-L1 antibody versus conventional chemotherapy for previously-treated, advanced non-small-cell lung cancer: A meta-analysis of randomized controlled trials. J. Thorac. Dis. 2017, 9, 655–665. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, K.H.; Eisenhut, M.; Vliet, H.J.; Shin, J.I.; Kronbichler, A. Efficacy of Cancer Immunotherapy: An Umbrella Systematic Review and Meta-Analyses of Randomized Controlled Trials from–Articles and–Original Meta-Analyses. PROSPERO 2018, CRD42018096274. Available online: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=96274 (accessed on 15 October 2019).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Cochran, W.G. The Combination of Estimates from Different Experiments. Biometrics 1954, 10, 101–129. [Google Scholar] [CrossRef]
- Ioannidis, J.P.; Patsopoulos, N.A.; Evangelou, E. Uncertainty in heterogeneity estimates in meta-analyses. BMJ 2007, 335, 914–916. [Google Scholar] [CrossRef]
- Ioannidis, J.P. Excess significance bias in the literature on brain volume abnormalities. Arch. Gen. Psychiatry 2011, 68, 773–780. [Google Scholar] [CrossRef]
- Ioannidis, J.P.A. Clarifications on the application and interpretation of the test for excess significance and its extensions. J. Math. Psychol. 2013, 57, 184–187. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
Author, Year | Comparison | Cancer Type | RCT n. | Intervention /Control | Outcome | Metrics | R/N/S † | R p-Value | R SE (95% CI) | I2(%) | 95% Prediction interval | Egger p-Value | Excess Significance | Level of Evidence |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anti-PD-1/PD-L1 mAb | ||||||||||||||
Guan et al. 2016 | Anti-PD-1/PD-L1 vs CTx | Advanced melanoma | 3 | 843/699 | PFS | HR | 0/1/3 | <0.001 | 0.50 (0.43–0.59) | 18 | 0.32–0.80 | 0.24 | p > 0.1 | Convincing |
Guan et al. 2016 | Anti-PD-1/PD-L1 vs CTx | Advanced melanoma | 3 | 843/699 | Overall response | RR | 0/0/4 | <0.001 | 3.23 (2.37–4.41) | 0 | 1.64–6.39 | 0.19 | p > 0.1 | Convincing |
Hao et al. 2017 | Nivolumab vs ipilimumab | Metastatic advanced melanoma | 2 | 871/593 | PFS | HR | 0/0/2 | <0.001 | 0.58 (0.48–0.69) | 0 | - | - | p > 0.1 | Weak |
Hao et al. 2017 | Nivolumab + ipilimumab vs ipilimumab | Metastatic advanced melanoma | 2 | 410/362 | PFS | HR | 0/0/2 | <0.001 | 0.40 (0.31–0.52) | 0 | - | - | NA | Weak |
Hao et al. 2017 | Nivolumab or pembrolizumab vs CTx | Metastatic advanced melanoma | 3 | 843/520 | PFS | HR | 0/1/2 | <0.001 | 0.43 (0.37–0.50) | 0 | 0.16–1.14 | 0.09 | NA | Weak |
Wang et al. 2017 | Anti-PD-1/PD-L1 vs CT | Melanoma | 6 | 1198/974 | Objective response | RR | 0/0/6 | <0.001 | 2.89 (2.03–4.11) | 70 | 0.98–8.52 | 0.51 | p > 0.1 | Suggestive |
Yun et al. 2016 | Anti-PD-1 or Anti-CTLA-4 vs CTx or VAX | Metastatic, unresectable, cutaneous melanoma | 4 | 1328/923 | OS | RR | 0/0/4 | 0.001 | 0.72 (0.60–0.88) | 83 | 0.30–1.75 | 0.25 | p > 0.1 | Suggestive |
Yun et al. 2016 | Anti-PD-1 or Anti-CTLA-4 vs CTx or VAX | Metastatic, unresectable, cutaneous melanoma | 6 | 1961/1235 | PFS | RR | 0/2/4 | <0.001 | 0.84 (0.77–0.92) | 84 | 0.61–1.16 | 0.17 | p > 0.1 | Suggestive |
Zhuansun et al. 2017 | Anti-PD-1/PD-L1 vs CTx | Pretreated advanced NSCLC | 4 | 1261/913 | OS | HR | 0/1/3 | <0.001 | 0.68 (0.61–0.75) | 0 | 0.53–0.86 | 0.99 | p > 0.1 | Convincing |
Zhuansun et al. 2017 | Anti-PD-1/PD-L1 vs CTx | Pretreated advanced NSCLC | 4 | 1261/913 | PFS | HR | 0/2/2 | 0.009 | 0.81 (0.70–0.95) | 57 | 0.45–1.49 | 0.89 | p > 0.1 | Suggestive |
Wang et al. 2017 | Anti-PD-1/PD-L1 vs CT | Melanoma or NSCLC or RCC | 10 | 3105/2141 | PFS | HR | 0/4/6 | <0.001 | 0.65 (0.53–0.79) | 81 | 0.33–1.26 | 0.23 | p > 0.1 | Suggestive |
Wang et al. 2017 | Anti-PD-1/PD-L1 vs CT | Melanoma or NSCLC or RCC | 9 | 2035/1812 | Objective response | RR | 0/0/9 | <0.001 | 2.92 (2.07–4.12) | 80 | 0.93–9.19 | 0.55 | p > 0.1 | Suggestive |
Wang et al. 2017 | Anti-PD-1/PD-L1 vs CT | Melanoma or NSCLC or RCC | 9 | 2035/1812 | Stable disease rate | RR | 0/4/5 | <0.001 | 0.58 (0.45–0.75) | 81 | 0.24–1.36 | 0.59 | p > 0.1 | Suggestive |
Anti-PD-1/PD-L1 solid tumor OS|| | Anti-PD-1/PD-L1 vs CT | Gastric or gastro-esophageal junction cancer or head-and-neck squamous cell carcinoma or melanoma or NSCLC or RCC or urothelial cancer | 16 | 4681/3582 | OS | HR | 0/3/13 | <0.001 | 0.73 (0.68–0.79) | 39 | 0.59–0.92 | 0.72 | p > 0.1 | Convincing |
Anti-PD-1/PD-L1 solid tumor PFS|| | Anti-PD-1/PD-L1 vs CT | Gastric or gastro-oesophageal junction cancer or head-and-neck squamous cell carcinoma or melanoma or NSCLC or RCC or urothelial cancer | 18 | 5672/4076 | PFS | HR | 0/9/10 | <0.001 | 0.73 (0.65–0.84) | 87 | 0.41–1.30 | 0.25 | p > 0.1 | Suggestive |
Anti-CD20 mAb | ||||||||||||||
Bauer et al. 2012 | Rituximab + CTx vs CTx | Chronic lymphocytic leukemia | 3 | 710/711 | PFS | HR | 0/1/2 | <0.001 | 0.65 (0.52–0.83) | 50 | 0.06–7.00 | 0.75 | p > 0.1 | Suggestive |
Bauer et al. 2012 | Rituximab + CTx vs CTx | Chronic lymphocytic leukemia | 3 | 710/711 | Overall response | RR | 0/1/2 | <0.001 | 1.14 (1.08–1.20) | 0 | 0.81–1.61 | 0.63 | p > 0.1 | Suggestive |
Nunes et al. 2015 | Rituximab + CTx vs CTx | Chronic lymphocytic leukemia | 4 | 1231/1202 | Complete remission | OR | 0/1/3 | <0.001 | 2.59 (2.14–3.14) | 0 | 1.70–3.96 | 0.13 | p > 0.1 | Convincing |
Gao et al. 2010 | Rituximab + CTx vs CTx | B-cell non-Hodgkin’s lymphoma | 11 | 2486/2447 | OS | RR | 0/6/5 | <0.001 | 1.08 (1.05–1.11) | 20 | 1.02–1.14 | 0.28 | p > 0.1 | Convincing |
Gao et al. 2010 | Rituximab + CTx vs CTx | B-cell non-Hodgkin’s lymphoma | 11 | 2470/2333 | DCR | RR | 0/4/7 | <0.001 | 1.36 (1.26–1.46) | 51 | 1.11–1.67 | 0.21 | p > 0.1 | Convincing |
Hou et al. 2011 | Rituximab + CTx vs CTx | B-cell non-Hodgkin’s lymphoma | 7 | 178/179 | Complete response | OR | 0/5/2 | <0.001 | 2.99 (1.90–4.71) | 0 | 1.65–5.43 | 0.54 | p > 0.1 | Suggestive |
Schulz et al. 2007 | Rituximab + CTx vs CTx | Indolent or mantle cell lymphoma | 7 | 994/949 | OS | HR | 0/4/3 | 0.001 | 0.70 (0.57–0.87) | 19 | 0.46–1.08 | 0.82 | p > 0.1 | Suggestive |
Schulz et al. 2007 | Rituximab + CTx vs CTx | Indolent or mantle cell lymphoma | 7 | 978/935 | DCR | HR | 0/1/6 | <0.001 | 0.70 (0.59–0.84) | 72 | 0.40–1.24 | 0.51 | p > 0.1 | Suggestive |
Vidal et al. 2017 | Rituximab maintenance vs obs or treatment only at relapse | Follicular lymphoma | 9 | 1145/1170 | OS | HR | 0/8/1 | 0.007 | 0.79 (0.66–0.94) | 0 | 0.64–0.97 | 0.91 | p > 0.1 | Suggestive |
Zhou et al. 2017 | Rituximab maintenance vs obs | Diffuse large B-Cell lymphoma | 3 | 658/661 | PFS | HR | 0/1/2 | 0.017 | 0.71 (0.54–0.94) | 43 | 0.05–10.68 | 0.67 | p > 0.1 | Suggestive |
Zhou et al. 2017 | Rituximab maintenance vs obs | Diffuse large B-Cell lymphoma | 4 | 735/686 | Event-free survival | HR | 0/3/1 | 0.004 | 0.80 (0.69–0.93) | 0 | 0.58–1.11 | 0.78 | p > 0.1 | Suggestive |
Author, Year | Comparison | Cancer Type | RCT n. | Intervention /Control | Outcome | Metrics | R/N/S † | R p-Value | R SE (95% CI) | I2(%) | 95% Prediction Interval | Egger p-Value | Excess Significance | Level of Evidence |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dendritic cells with cytokine-induced killer cells | ||||||||||||||
Su et al. 2016 | DC/CIK vs obs with backbone TACE | HCC | 5 | 250/245 | DCR | OR | 0/3/2 | 0.033 | 1.84 (1.05–3.24) | 18 | 0.35–9.60 | 0.55 | p > 0.1 | Suggestive |
Su et al. 2016 | DC/CIK vs obs with backbone TACE | HCC | 3 | 104/106 | 1-year OS | OR | 0/3/0 | 0.027 | 2.00 (1.08–3.70) | 0 | 0.04–107.12 | 0.12 | p > 0.1 | Weak |
Wang et al. 2015 | DC/CIK + CT vs CT | NSCLC | 5 | 191/192 | PFS | HR | 0/2/3 | <0.001 | 0.53 (0.39–0.71) | 0 | 0.32–0.86 | 0.76 | p > 0.1 | Suggestive |
Zheng et al. 2015 | DC/CIK + CTx vs CTx | NSCLC | 3 | 141/141 | DCR | RR | 0/1/2 | 0.007 | 1.26 (1.07–1.50) | 10 | 0.36–4.47 | 0.22 | p > 0.1 | Suggestive |
DC/CIK NSCLC OS|| | DC/CIK + CT vs CT | NSCLC | 10 | 387/427 | Longest OS reported | RR | 0/7/3 | <0.001 | 0.82 (0.75–0.89) | 0 | 0.74–0.90 | 0.19 | p > 0.1 | Suggestive |
Lan et al. 2015 | DC/CIK + CTx vs CTx | Solid tumor, NSCLC or rectal cancer or colorectal cancer or colon cancer or breast cancer or gastric cancer | 5 | 195/202 | 3-year OS | OR | 0/4/1 | 0.007 | 0.37 (0.18–0.77) | 35 | 0.06–2.51 | 0.28 | p > 0.1 | Suggestive |
Lan et al. 2015 | DC/CIK + CTx vs CTx | Solid tumor, NSCLC or rectal cancer or colorectal cancer or colon cancer or breast cancer or gastric cancer | 6 | 207/224 | Overall response | OR | 0/5/1 | 0.005 | 0.54 (0.35–0.83) | 0 | 0.30–0.99 | 0.36 | p > 0.1 | Suggestive |
Cytokine-induced killer cells | ||||||||||||||
Li et al. 2016 | Adjuvant CIK vs no AT | Treated HCC, Barcelona-clinic liver cancer B or earlier stage | 7 | 460/405 | PFS | RR | 0/5/2 | 0.004 | 0.76 (0.63–0.91) | 66 | 0.45–1.29 | 0.02 | p > 0.1 | Weak |
Li et al. 2016 | Adjuvant CIK vs no AT | Treated HCC, Barcelona-clinic liver cancer B or earlier stage | 5 | 380/335 | OS | RR | 0/3/2 | 0.021 | 0.78 (0.64–0.96) | 42 | 0.44–1.39 | 0.04 | p > 0.1 | Weak |
Wang et al. 2016 | CIK vs no AT after resection | Resected HCC | 5 | 402/357 | 3-year OS | RR | 0/5/0 | 0.010 | 1.15 (1.03–1.28) | 0 | 0.97–1.36 | 0.91 | p > 0.1 | Weak |
Wang et al. 2016 | CIK vs no AT after resection | Resected HCC | 5 | 402/357 | 3-year recurrence-free survival | RR | 0/4/1 | 0.007 | 1.33 (1.08–1.64) | 7 | 0.90–1.98 | 0.87 | p > 0.1 | Suggestive |
Yu et al. 2017 | Adjuvant CIK + CT vs CT | HCC | 7 | 451/422 | OS | HR | 0/3/4 | <0.001 | 0.64 (0.51–0.82) | 50 | 0.34–1.23 | 0.25 | p > 0.1 | Suggestive |
Other adoptive cellular immunotherapies | ||||||||||||||
Yuan et al. 2017 | Postoperative ACI (CIK or LAK + IL-2 or lymphocytes) vs no AT | Pretreated HCC, not advanced | 6 | 407/362 | 3-year mortality | RR | 0/5/1 | 0.009 | 0.71 (0.55–0.92) | 0 | 0.49–1.02 | 0.81 | p > 0.1 | Suggestive |
Yuan et al. 2017 | Postoperative ACI (CIK or LAK + IL-2 or lymphocytes) vs no AT | Pretreated HCC, not advanced | 6 | 407/362 | 3-year recurrence rate | RR | 0/5/1 | 0.001 | 0.81 (0.72–0.92) | 0 | 0.68–0.97 | 0.30 | p > 0.1 | Suggestive |
Zeng et al. 2016 | Postoperative ACI (AKT-DC or DC/CIK or LAK + IL-2 or TIL + rIL-2) + CT vs CT | Resected NSCLC | 4 | 234/238 | OS | HR | 0/3/1 | 0.013 | 0.59 (0.39–0.89) | 40 | 0.14–2.56 | 0.16 | p > 0.1 | Suggestive |
Zhao et al. 2017 | ACI (LAK + IL-2 or DC/CIK or CIK or AKT or TIL) vs CT | NSCLC, operated or non-operated | 11 | 669/755 | 2-year OS | RR | 0/5/6 | <0.001 | 1.43 (1.30–1.58) | 0 | 1.28–1.61 | 0.24 | p > 0.1 | Convincing |
Zhao et al. 2017 | ACI (LAK + IL-2 or DC/CIK or CIK or AKT or TIL) vs CT | NSCLC, operated or non-operated | 8 | 529/613 | 3-year OS | RR | 0/5/3 | <0.001 | 1.45 (1.24–1.69) | 0 | 1.19–1.76 | 0.31 | p > 0.1 | Suggestive |
Zhao et al. 2017 | ACI (LAK + IL-2 or DC/CIK or CIK or AKT or TIL) vs CT | NSCLC, operated or non-operated | 4 | 187/229 | 1-year PFS | RR | 0/2/2 | 0.031 | 1.46 (1.24–1.72) | 0 | 1.02–2.09 | 0.16 | p > 0.1 | Suggestive |
Tang et al. 2013 | ACI (autolymphocyte or LAK or CIK) vs no ACI | Metastatic RCC | 4 | 235/224 | 1-year OS | RR | 0/3/1 | <0.001 | 1.33 (1.15–1.54) | 0 | 0.97–1.83 | 0.205 | p > 0.1 | Suggestive |
Author, Year | Comparison | Cancer Type | RCT n. | Intervention /Control | Outcome | Metrics | R/N/S † | R p-Value | R SE (95% CI) | I2(%) | 95% Prediction Interval | Egger p-Value | Excess Significance | Level of Evidence |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Interferon-α | ||||||||||||||
Thirion, et al. 2000 | IFN-α + 5FU vs leucovorin + 5FU | Colorectal cancer | 7 | 744/744 | OS | HR | 0/7/0 | 0.403 | 1.02 (0.98–1.05) | 0 | 0.96–1.08 | 0.38 | p > 0.1 | No association |
Thirion, et al. 2000 | IFN-α + 5FU vs 5FU, with or without leucovorin in both arms | Colorectal cancer | 12 | 879/887 | OS | HR | 0/12/0 | 0.203 | 1.02 (0.99–1.05) | 0 | 0.99–1.06 | 0.97 | p > 0.1 | No association |
Jiang, et al. 2013 | Post-surgical adjuvant IFN (mostly IFN-α) vs p after surgical resection or TACE | Pretreated HCC, viral hepatitis related | 9 | 498/451 | Mortality | OR | 0/6/3 | <0.001 | 0.43 (0.32–0.56) | 0 | 0.31–0.59 | 0.91 | p > 0.1 | Suggestive |
Jiang, et al. 2013 | Post-surgical adjuvant IFN (mostly IFN-α) vs p after surgical resection or TACE | Pretreated HCC, viral hepatitis related | 9 | 499/476 | Recurrence rate | OR | 0/8/1 | 0.003 | 0.66 (0.51–0.87) | 0 | 0.48–0.92 | 0.08 | p > 0.1 | Weak |
Ives, et al. 2007 | IFN-α + CTx vs CTx | Metastatic melanoma | 11 | 683/607 | Overall response | OR | 0/8/3 | <0.001 | 0.58 (0.44–0.77) | 0 | 0.40–0.84 | 0.49 | p > 0.1 | Convincing |
Ives, et al. 2007 | IFN-α + CTx vs CTx | Metastatic melanoma | 10 | 662/583 | Complete response | OR | 0/8/2 | <0.001 | 0.33 (0.19–0.57) | 0 | 0.17–0.64 | 0.54 | p > 0.1 | Convincing |
Ives, et al. 2017 | Adjuvant IFN-α vs obs | High-risk, malignant melanoma | 18 | 4520/3179 | OS | HR | 0/17/1 | 0.017 | 0.91 (0.84–0.98) | 0 | 0.83–0.99 | 0.22 | p > 0.1 | Suggestive |
Ives, et al. 2017 | Adjuvant IFN-α vs obs | High-risk, malignant melanoma | 18 | 4520/3177 | Event-free survival | HR | 0/18/0 | <0.001 | 0.86 (0.80–0.92) | 0 | 0.79–0.93 | 0.23 | p > 0.1 | Weak |
Mocellin, et al. 2013 | Adjuvant IFN-α vs CT | Metastatic melanoma | 15 | 5412/3771 | OS | HR | 1/10/4 | 0.004 | 0.91 (0.85–0.97) | 5 | 0.82–1.00 | 0.06 | p > 0.1 | Weak |
Mocellin, et al. 2013 | Adjuvant IFN-α vs CT | Metastatic melanoma | 17 | 5638/3963 | Disease-free survival | HR | 0/10/7 | <0.001 | 0.82 (0.77–0.88) | 13 | 0.73–0.93 | 0.03 | p > 0.1 | Weak |
Pirard, et al. 2004 | Postsurgical adjuvant IFN-α vs control | Postsurgical Melanoma, stage IV unincluded | 10 | 1483/1508 | Recurrence rate | OR | 0/7/3 | <0.001 | 0.74 (0.62–0.88) | 17 | 0.53–1.03 | 0.68 | p > 0.1 | Suggestive |
Wheatley, et al. 2003 | IFN-α vs obs | Metastatic, high-risk melanoma | 14 | 3144/2037 | Recurrence-free survival | HR | 0/11/3 | <0.001 | 0.92 (0.88–0.97) | 5 | 0.86–0.99 | 0.07 | NA | Weak |
Xin, et al. 2016 | IFN-α + dacarbazine vs dacarbazine | Cutaneous malignant melanoma | 8 | 438/357 | Overall response | RR | 0/6/2 | <0.001 | 1.59 (1.21–2.09) | 0 | 1.13–2.24 | 0.40 | p > 0.1 | Suggestive |
Xin, et al. 2016 | IFN-α + dacarbazine vs dacarbazine | Cutaneous malignant melanoma | 8 | 438/357 | Complete response | RR | 0/6/2 | <0.001 | 3.12 (1.75–5.56) | 0 | 1.46–6.66 | 0.52 | p > 0.1 | Suggestive |
Baldo, et al. 2010 | IFN-α maintenance therapy + CT vs CT or obs | Follicular lymphoma | 6 | 686/671 | PFS | HR | 0/3/3 | <0.001 | 0.65 (0.54–0.79) | 31 | 0.42–1.02 | 0.14 | p > 0.1 | Suggestive |
Rossi, et al. 2010 | IFN-α maintenance or consolidation therapy vs p or obs | NSCLC | 4 | 253/235 | OS | HR | 0/3/1 | 0.016 | 0.78 (0.64–0.96) | 0 | 0.50–1.22 | 0.51 | p > 0.1 | Suggestive |
Canil, et al. 2010 | IFN-α vs CT | Inoperable RCC, metastatic or advanced | 6 | 472/475 | Mortality | HR | 0/4/2 | 0.001 | 0.79 (0.69–0.91) | 4 | 0.64–0.99 | 0.65 | p > 0.1 | Suggestive |
Canil, et al. 2010 | IFN-α vs CT | Inoperable RCC, metastatic or advanced | 7 | 493/496 | Response | OR | 0/3/4 | <0.001 | 6.87 (3.29–14.35) | 0 | 2.61–18.05 | 0.47 | p > 0.1 | Suggestive |
Unverzagt, et al. 2017 | IFN-α monotherapy vs standard targeted therapy | Metastatic RCC | 2 | 582/584 | OS | HR | 1/1/0 | 0.001 | 1.28 (1.10–1.49) ‡ | 0 | - | - | p > 0.1 | Weak |
Unverzagt, et al. 2017 | IFN-α monotherapy vs standard targeted therapy | Metastatic RCC | 2 | 582/584 | PFS | HR | 2/0/0 | <0.001 | 2.23 (1.79–2.76) ‡ | 0 | - | - | p > 0.1 | Weak |
Interleukin-2 and others | ||||||||||||||
Roviello, et al. 2017 | IL-2 + CTx vs CTx | Colorectal cancer | 4 | 153/150 | Objective response | RR | 0/3/1 | 0.003 | 1.65 (1.19–2.28) | 0 | 0.81–3.36 | 0.60 | p > 0.1 | Suggestive |
Buyse, et al. 2011 | IL-2 remission maintenance monotherapy vs obs | Acute myeloid leukemia | 6 | 725/730 | OS | HR | 0/6/0 | 0.843 | 1.01 (0.95–1.06) | 0 | 0.93–1.09 | 0.39 | p > 0.1 | No association |
Hamm, et al. 2008 | IL-2 + IFN-α + CTx vs CTx | Metastatic malignant melanoma | 5 | 364/365 | OS | HR | 0/5/0 | 0.642 | 0.95 (0.78–1.16) | 26 | 0.59–1.55 | 0.09 | NA | No association |
Hamm, et al. 2008 | IL-2 + IFN-α + CTx vs CTx | Metastatic malignant melanoma | 6 | 568/566 | Overall response | RR | 0/5/1 | <0.001 | 1.52 (1.24–1.87) | 0 | 1.14–2.04 | 0.19 | p > 0.1 | Suggestive |
Ives, et al. 2007 | IL-2 + IFN-α + CTx vs CTx | Metastatic melanoma | 7 | 607/599 | OS | OR | 0/7/0 | 0.729 | 1.07 (0.74–1.55) | 36 | 0.46–2.50 | 0.96 | p > 0.1 | No association |
Ives, et al. 2007 | IL-2 + IFN-α + CTx vs CTx | Metastatic melanoma | 7 | 527/564 | Overall response | OR | 0/6/1 | <0.001 | 0.58 (0.44–0.77) | 33 | 0.40–0.84 | 0.17 | p > 0.1 | Suggestive |
Hotte, et al. 2007 | IL-2 based regimen + CTx vs CT or IFN | Unresectable or metastatic RCC | 2 | 319/100 | 1-year mortality | RR | 0/0/2 | 0.003 | 0.56 (0.38–0.82) | 19 | - | - | p > 0.1 | Weak |
Rossi, et al. 2010 | IFN-γ maintenance or consolidation therapy vs p or obs | Small-cell lung cancer | 2 | 116/111 | OS | HR | 0/2/0 | 0.538 | 1.09 (0.82–1.46) | 0 | - | - | p > 0.1 | No association |
Cancer vaccine | ||||||||||||||
Cao, et al. 2014 | DC vs non-DC | High-grade glioma | 3 | 44/42 | 2-year OS | OR | 0/3/0 | 0.038 | 3.41 (1.07–10.81) | 0 | - | - | p > 0.1 | Weak |
Kawalec, et al. 2012 | Sipuleucel-T vs p | Castration-resistant prostate cancer | 3 | 488/249 | OS | HR | 0/1/2 | <0.001 | 0.73 (0.60–0.88) | 0 | 0.22–2.44 | 0.71 | p > 0.1 | Suggestive |
Ding, et al. 2014 | VAX (Tecemotide or EGF vaccine or SRL172 or TG4010 or MAGE-A3 or L-BLP25) vs CTx or obs or α-tocopherol | NSCLC | 6 | 1363/876 | OS | OR | 0/4/2 | 0.001 | 0.56 (0.39–0.79) | 65 | 0.34–0.92 | 0.99 | p > 0.1 | Weak |
Yu, et al. 2017 | VAX vs CTx or p | Advanced NSCLC | 3 | 1014/595 | PFS | OR | 0/1/2 | 0.015 | 1.31 (1.05–1.63) | 49 | 0.32–5.33 | 0.62 | p > 0.1 | Suggestive |
Zhou, et al. 2016 | VAX (EGF vaccine or BLP-25 or TG4010, etc) vs P | Advanced NSCLC | 5 | 1314/884 | OS | HR | 0/4/1 | 0.002 | 0.83 (0.74–0.93) | 17 | 0.64–1.07 | 0.20 | p > 0.1 | Suggestive |
Zhou, et al. 2016 | VAX (EGF vaccine or BLP-25 or TG4010, etc) vs CTx | Advanced NSCLC | 4 | 300/302 | OS | HR | 0/4/0 | 0.012 | 0.77 (0.63–0.94) | 0 | 0.50–1.20 | 0.55 | p > 0.1 | Weak |
Bai, et al. 2017 | Postsurgical AIT (IL-2 + IFN-α or IFN-α2b or IFN-α, etc) vs no AT | Locally advanced RCC | 5 | 941/902 | OS | HR | 0/5/0 | 0.345 | 1.08 (0.92–1.28) | 0 | 0.83–1.42 | 0.32 | NA | No association |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.Y.; Lee, K.H.; Eisenhut, M.; van der Vliet, H.J.; Kronbichler, A.; Jeong, G.H.; Shin, J.I.; Gamerith, G. Efficacy of Cancer Immunotherapy: An Umbrella Review of Meta-Analyses of Randomized Controlled Trials. Cancers 2019, 11, 1801. https://doi.org/10.3390/cancers11111801
Kim JY, Lee KH, Eisenhut M, van der Vliet HJ, Kronbichler A, Jeong GH, Shin JI, Gamerith G. Efficacy of Cancer Immunotherapy: An Umbrella Review of Meta-Analyses of Randomized Controlled Trials. Cancers. 2019; 11(11):1801. https://doi.org/10.3390/cancers11111801
Chicago/Turabian StyleKim, Jong Yeob, Keum Hwa Lee, Michael Eisenhut, Hans J. van der Vliet, Andreas Kronbichler, Gwang Hun Jeong, Jae Il Shin, and Gabriele Gamerith. 2019. "Efficacy of Cancer Immunotherapy: An Umbrella Review of Meta-Analyses of Randomized Controlled Trials" Cancers 11, no. 11: 1801. https://doi.org/10.3390/cancers11111801
APA StyleKim, J. Y., Lee, K. H., Eisenhut, M., van der Vliet, H. J., Kronbichler, A., Jeong, G. H., Shin, J. I., & Gamerith, G. (2019). Efficacy of Cancer Immunotherapy: An Umbrella Review of Meta-Analyses of Randomized Controlled Trials. Cancers, 11(11), 1801. https://doi.org/10.3390/cancers11111801