Inherited Variants in BLM and the Risk and Clinical Characteristics of Breast Cancer
Abstract
:1. Introduction
2. Results
3. Discussion
4. Material and methods
4.1. Hereditary Breast Cancer Cases
4.2. Unselected Cases of Breast Cancer
4.3. Controls
4.4. Sequencing of the BLM Gene
4.5. Genotyping
4.6. Loss of Heterozygosity Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ellis, N.A.; Groden, J.; Ye, T.Z.; Straughen, J.; Lennon, D.J.; Ciocci, S.; Proytcheva, M.; German, J. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 1995, 83, 655–666. [Google Scholar] [CrossRef]
- Fares, F.; Badarneh, K.; Abosaleh, M.; Harari-Shaham, A.; Diukman, R.; David, M. Carrier frequency of autosomal-recessive disorders in the Ashkenazi Jewish population: Should the rationale for mutation choice for screening be reevaluated? Prenat. Diagn. 2008, 28, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.K.; Hickson, I.D. RecQ helicases: Multifunctional genome caretakers. Nat. Rev. Cancer 2009, 9, 644–654. [Google Scholar] [CrossRef] [PubMed]
- Tikoo, S.; Sengupta, S. Time to bloom. Genome Integr. 2010, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- Ralf, C.; Hickson, I.D.; Wu, L. The Bloom’s syndrome helicase can promote the regression of a model replication fork. J. Biol. Chem. 2006, 281, 22839–22846. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Hickson, I.D. The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 2003, 426, 870–874. [Google Scholar] [CrossRef] [PubMed]
- Bischof, O.; Kim, S.H.; Irving, J.; Beresten, S.; Ellis, N.A.; Campisi, J. Regulation and localization of the Bloom syndrome protein in response to DNA damage. J. Cell Biol. 2001, 153, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Futaki, M.; Liu, J.M. Chromosomal breakage syndromes and the BRCA1 genome surveillance complex. Trends Mol. Med. 2001, 7, 560–565. [Google Scholar] [CrossRef]
- Suhasini, A.N.; Brosh, R.M. Fanconi anemia and Bloom’s syndrome crosstalk through FANCJ-BLM helicase interaction. Trends Genet. 2012, 28, 7–13. [Google Scholar] [CrossRef]
- GERMAN, J.; ARCHIBALD, R.; BLOOM, D. CHROMOSOMAL BREAKAGE IN A RARE AND PROBABLY GENETICALLY DETERMINED SYNDROME OF MAN. Science 1965, 148, 506–507. [Google Scholar] [CrossRef]
- Cunniff, C.; Djavid, A.R.; Carrubba, S.; Cohen, B.; Ellis, N.A.; Levy, C.F.; Jeong, S.; Lederman, H.M.; Vogiatzi, M.; Walsh, M.F.; et al. Health supervision for people with Bloom syndrome. Am. J. Med. Genet. 2018, 176, 1872–1881. [Google Scholar] [CrossRef] [PubMed]
- Sokolenko, A.P.; Iyevleva, A.G.; Preobrazhenskaya, E.V.; Mitiushkina, N.V.; Abysheva, S.N.; Suspitsin, E.N.; Kuligina, E.S.h.; Gorodnova, T.V.; Pfeifer, W.; Togo, A.V.; et al. High prevalence and breast cancer predisposing role of the BLM c.1642 C>T (Q548X) mutation in Russia. Int. J. Cancer 2012, 130, 2867–2873. [Google Scholar] [CrossRef] [PubMed]
- Prokofyeva, D.; Bogdanova, N.; Dubrowinskaja, N.; Bermisheva, M.; Takhirova, Z.; Antonenkova, N.; Turmanov, N.; Datsyuk, I.; Gantsev, S.; Christiansen, H.; et al. Nonsense mutation p.Q548X in BLM, the gene mutated in Bloom’s syndrome, is associated with breast cancer in Slavic populations. Breast Cancer Res. Treat. 2013, 137, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Anisimenko, M.S.; Kozyakov, A.E.; Paul, G.A.; Kovalenko, S.P. The frequency of the BLM p.Q548X (c.1642C>T) mutation in breast cancer patients from Russia is no higher than in the general population. Breast Cancer Res. Treat. 2014, 148, 689–690. [Google Scholar] [CrossRef] [PubMed]
- Suspitsin, E.N.; Sibgatullina, F.I.; Lyazina, L.V.; Imyanitov, E.N. First Two Cases of Bloom Syndrome in Russia: Lack of Skin Manifestations in a BLM c.1642C>T (p.Q548X) Homozygote as a Likely Cause of Underdiagnosis. Mol. Syndromol. 2017, 8, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Gruber, S.B.; Ellis, N.A.; Scott, K.K.; Almog, R.; Kolachana, P.; Bonner, J.D.; Kirchhoff, T.; Tomsho, L.P.; Nafa, K.; Pierce, H.; et al. BLM heterozygosity and the risk of colorectal cancer. Science 2002, 297, 2013. [Google Scholar] [CrossRef] [PubMed]
- Cleary, S.P.; Zhang, W.; Di Nicola, N.; Aronson, M.; Aube, J.; Steinman, A.; Haddad, R.; Redston, M.; Gallinger, S.; Narod, S.A. Heterozygosity for the BLM(Ash) mutation and cancer risk. Cancer Res. 2003, 63, 1769–1771. [Google Scholar]
- Baris, H.N.; Kedar, I.; Halpern, G.J.; Shohat, T.; Magal, N.; Ludman, M.D.; Shohat, M. Prevalence of breast and colorectal cancer in Ashkenazi Jewish carriers of Fanconi anemia and Bloom syndrome. Isr. Med. Assoc. J. 2007, 9, 847–850. [Google Scholar]
- Laitman, Y.; Boker-Keinan, L.; Berkenstadt, M.; Liphsitz, I.; Weissglas-Volkov, D.; Ries-Levavi, L.; Sarouk, I.; Pras, E.; Friedman, E. The risk for developing cancer in Israeli ATM, BLM, and FANCC heterozygous mutation carriers. Cancer Genet. 2016, 209, 70–74. [Google Scholar] [CrossRef]
- German, J.; Sanz, M.M.; Ciocci, S.; Ye, T.Z.; Ellis, N.A. Syndrome-causing mutations of the BLM gene in persons in the Bloom’s Syndrome Registry. Hum. Mutat. 2007, 28, 743–753. [Google Scholar] [CrossRef]
- Knudson, A.G. Mutation and cancer: Statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 1971, 68, 820–823. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, I.P.; Roylance, R.; Houlston, R.S. Two hits revisited again. J. Med. Genet. 2001, 38, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Górski, B.; Debniak, T.; Masojć, B.; Mierzejewski, M.; Medrek, K.; Cybulski, C.; Jakubowska, A.; Kurzawski, G.; Chosia, M.; Scott, R.; et al. Germline 657del5 mutation in the NBS1 gene in breast cancer patients. Int. J. Cancer 2003, 106, 379–381. [Google Scholar] [CrossRef]
- Fodde, R.; Smits, R. Cancer biology. A matter of dosage. Science 2002, 298, 761–763. [Google Scholar] [CrossRef] [PubMed]
- Sodha, N.; Bullock, S.; Taylor, R.; Mitchell, G.; Guertl-Lackner, B.; Williams, R.D.; Bevan, S.; Bishop, K.; McGuire, S.; Houlston, R.S.; et al. CHEK2 variants in susceptibility to breast cancer and evidence of retention of the wild type allele in tumours. Br. J. Cancer 2002, 87, 1445–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldenburg, R.A.; Kroeze-Jansema, K.; Kraan, J.; Morreau, H.; Klijn, J.G.; Hoogerbrugge, N.; Ligtenberg, M.J.; van Asperen, C.J.; Vasen, H.F.; Meijers, C.; et al. The CHEK2*1100delC variant acts as a breast cancer risk modifier in non-BRCA1/BRCA2 multiple-case families. Cancer Res. 2003, 63, 8153–8157. [Google Scholar] [PubMed]
- Sodha, N.; Mantoni, T.S.; Tavtigian, S.V.; Eeles, R.; Garrett, M.D. Rare germ line CHEK2 variants identified in breast cancer families encode proteins that show impaired activation. Cancer Res. 2006, 66, 8966–8970. [Google Scholar] [CrossRef] [PubMed]
- Spring, K.; Ahangari, F.; Scott, S.P.; Waring, P.; Purdie, D.M.; Chen, P.C.; Hourigan, K.; Ramsay, J.; McKinnon, P.J.; Swift, M.; et al. Mice heterozygous for mutation in Atm, the gene involved in ataxia-telangiectasia, have heightened susceptibility to cancer. Nat. Genet. 2002, 32, 185–190. [Google Scholar] [CrossRef]
- Scott, S.P.; Bendix, R.; Chen, P.; Clark, R.; Dork, T.; Lavin, M.F. Missense mutations but not allelic variants alter the function of ATM by dominant interference in patients with breast cancer. Proc. Natl. Acad. Sci. USA 2002, 99, 925–930. [Google Scholar] [CrossRef] [Green Version]
- Kilpivaara, O.; Vahteristo, P.; Falck, J.; Syrjäkoski, K.; Eerola, H.; Easton, D.; Bartkova, J.; Lukas, J.; Heikkilä, P.; Aittomäki, K.; et al. CHEK2 variant I157T may be associated with increased breast cancer risk. Int. J. Cancer 2004, 111, 543–547. [Google Scholar] [CrossRef]
- Maxwell, K.N.; Wubbenhorst, B.; Wenz, B.M.; De Sloover, D.; Pluta, J.; Emery, L.; Barrett, A.; Kraya, A.A.; Anastopoulos, I.N.; Yu, S.; et al. BRCA locus-specific loss of heterozygosity in germline BRCA1 and BRCA2 carriers. Nat. Commun. 2017, 8, 319. [Google Scholar] [CrossRef] [PubMed]
- Cybulski, C.; Kluźniak, W.; Huzarski, T.; Wokołorczyk, D.; Kashyap, A.; Rusak, B.; Stempa, K.; Gronwald, J.; Szymiczek, A.; Bagherzadeh, M.; et al. The spectrum of mutations predisposing to familial breast cancer in Poland. Int. J. Cancer 2019. [Google Scholar] [CrossRef] [PubMed]
- Cybulski, C.; Kluźniak, W.; Huzarski, T.; Wokołorczyk, D.; Kashyap, A.; Jakubowska, A.; Szwiec, M.; Byrski, T.; Dębniak, T.; Górski, B.; et al. Clinical outcomes in women with breast cancer and a PALB2 mutation: A prospective cohort analysis. Lancet Oncol. 2015, 16, 638–644. [Google Scholar] [CrossRef]
- Cybulski, C.; Górski, B.; Debniak, T.; Gliniewicz, B.; Mierzejewski, M.; Masojć, B.; Jakubowska, A.; Matyjasik, J.; Złowocka, E.; Sikorski, A.; et al. NBS1 is a prostate cancer susceptibility gene. Cancer Res. 2004, 64, 1215–1219. [Google Scholar] [CrossRef] [PubMed]
Group | Total (n) | BLM p.Gln548Ter Mutation Positive | Prevalence (%) | OR (CI 95%) | p-Value |
---|---|---|---|---|---|
Patients with Breast Cancer | |||||
All cases | 14,804 | 82 | 0.55% | 1.0 (0.6–1.6) | 1.0 |
Age (years) | |||||
≤40 | 1791 | 14 | 0.78% | 1.4 (0.7–2.7) | 0.4 |
41–50 | 6145 | 34 | 0.55% | 1.0 (0.6–1.7) | 1.0 |
51–60 | 3289 | 16 | 0.49% | 0.9 (0.5–1.6) | 0.8 |
61–70 | 2247 | 12 | 0.53% | 1.0 (0.5–1.9) | 0.9 |
≥71 | 1332 | 6 | 0.45% | 0.8 (0.3–2.0) | 0.8 |
Number of Relatives with Breast Cancer * | |||||
0 | 11,387 | 64 | 0.56% | 1.0 (0.6–1,6) | 0.9 |
1 | 1719 | 8 | 0.47% | 0.8 (0.4–1.9) | 0.8 |
≥2 | 526 | 3 | 0.57% | 1.0 (0.3–3.4) | 1.0 |
Reference | |||||
Cancer-free controls | 4698 | 26 | 0.55% | - | - |
Characteristic | BLM p.Gln548Ter Positive Cases n = 82 | BLM p.Gln548Ter Negative Cases n= 14,722 | p-Value |
---|---|---|---|
Age at diagnosis (years) | 52.8 (29 – 79) | 53.7 (18–93) | 0.5 |
Histological features | |||
Ductal, grade 3 | 11/59 (18.6%) | 2409/11,560 (20.8%) | 0.8 |
Ductal, grade 1–2 | 25/59 (42.4%) | 4724/11,560 (40.1%) | 1.0 |
Ductal, grade unknown | 7/59 (11.9%) | 858/11,560 (7.4%) | 0.3 |
Medullary | 4/59 (6.8%) | 393/11,560 (3.4%) | 0.3 |
Lobular | 7/59 (11.9%) | 1502/11,560 (13.0%) | 0.9 |
Tubulolobular | 0/59 (0%) | 156/11,560 (1.3%) | 0.7 |
DCIS with microinvasion | 0/59 (0%) | 410/11,560 (3.5%) | 0.3 |
Other or undefined | 5/59 (8.5%) | 1108/11,560 (9.6%) | 0.9 |
Receptor status | |||
Oestrogen receptor-positive | 34/52 (65.4%) | 7004/10,372 (67.5%) | 0.9 |
Progesterone receptor-positive | 35/49 (71.4%) | 6959/9891 (70.4%) | 1.0 |
HER2-positive | 9/42 (21.4%) | 1520/8392 (18.1%) | 0.7 |
Triple-negative | 9/42 (21.4%) | 1387/8004 (17.3%) | 0.6 |
Size (cm) | |||
<1 | 3/47 (6.4%) | 1041/9621 (10.8%) | 0.5 |
1–1,9 | 20/47 (42.6%) | 3882/9621 (40.3%) | 0.9 |
2–4,9 | 22/47 (46.8%) | 4272/9621 (44.4%) | 0.9 |
≥5 | 2/47 (4.3%) | 426/9621 (4.4%) | 1.0 |
Lymph node-positive | 25/51 (49.0%) | 4423/9883 (44.8%) | 0.6 |
Bilateral | 4/63 (6.3%) | 563/11,984 (4.7%) | 0.7 |
Chemotherapy (yes) | 41/63 (65.1%) | 6499/10,680 (60.9%) | 0.6 |
Tamoxifen (yes) | 26/42 (61.9%) | 5228/7969 (65.6%) | 0.7 |
Vital status (deceased) | 15/81 (18.5%) | 2369/13,640 (17.4%) | 0.9 |
Cancer Site | Number (%) of Cancers in Relatives of BLM p.Gln548Ter Positive Women (n = 75 families) | Number (%) of Cancers in Relatives of BLM p.Gln548Ter Negative Women (n= 13,557 families) | p-Value | ||
---|---|---|---|---|---|
n | % | n | % | ||
Breast | 11 | 14.7% | 2234 | 16.5% | 0.8 |
Colon | 6 | 8.0% | 1041 | 7.7% | 0.9 |
Kidney | 3 | 4.0% | 376 | 2.8% | 0.8 |
Larynx | 0 | 0.0% | 525 | 3.9% | 0.2 |
Lung | 14 | 18.7% | 2007 | 14.8% | 0.4 |
Leukemia or Lymphoma | 3 | 4.0% | 525 | 3.9% | 0.9 |
Pancreas | 2 | 2.7% | 390 | 2.9% | 0.9 |
Prostate | 6 | 8.0% | 909 | 6.7% | 0.8 |
Stomach | 6 | 8.0% | 1161 | 8.6% | 0.9 |
Cervix or Endometrium | 9 | 12.0% | 1408 | 10.4% | 0.8 |
Ovary | 3 | 4.0% | 479 | 3.5% | 0.8 |
All cancers | 63 | 84.0% | 11,511 | 84.9% | 0.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kluźniak, W.; Wokołorczyk, D.; Rusak, B.; Huzarski, T.; Kashyap, A.; Stempa, K.; Rudnicka, H.; Jakubowska, A.; Szwiec, M.; Morawska, S.; et al. Inherited Variants in BLM and the Risk and Clinical Characteristics of Breast Cancer. Cancers 2019, 11, 1548. https://doi.org/10.3390/cancers11101548
Kluźniak W, Wokołorczyk D, Rusak B, Huzarski T, Kashyap A, Stempa K, Rudnicka H, Jakubowska A, Szwiec M, Morawska S, et al. Inherited Variants in BLM and the Risk and Clinical Characteristics of Breast Cancer. Cancers. 2019; 11(10):1548. https://doi.org/10.3390/cancers11101548
Chicago/Turabian StyleKluźniak, Wojciech, Dominika Wokołorczyk, Bogna Rusak, Tomasz Huzarski, Aniruddh Kashyap, Klaudia Stempa, Helena Rudnicka, Anna Jakubowska, Marek Szwiec, Sylwia Morawska, and et al. 2019. "Inherited Variants in BLM and the Risk and Clinical Characteristics of Breast Cancer" Cancers 11, no. 10: 1548. https://doi.org/10.3390/cancers11101548
APA StyleKluźniak, W., Wokołorczyk, D., Rusak, B., Huzarski, T., Kashyap, A., Stempa, K., Rudnicka, H., Jakubowska, A., Szwiec, M., Morawska, S., Gliniewicz, K., Mordak, K., Stawicka, M., Jarkiewicz-Tretyn, J., Cechowska, M., Domagała, P., Dębniak, T., Lener, M., Gronwald, J., ... Cybulski, C. (2019). Inherited Variants in BLM and the Risk and Clinical Characteristics of Breast Cancer. Cancers, 11(10), 1548. https://doi.org/10.3390/cancers11101548