Design Considerations for a Sub-mW Wireless Medical Body-Area Network Receiver Front End
Abstract
:1. Introduction
2. System Overview
3. Circuit Description
3.1. Passive Gain Boosting
3.2. Stability Analysis
3.3. Transformer Design and Optimization
4. Simulation Results
5. Conclusions
Author Contributions
Conflicts of Interest
References
- IEEE. 802.15.6-2012-IEEE Standard for Local and Metropolitan Area Networks—Part 15.6: Wireless Body Area Networks; IEEE: New York, NY, USA, 2012. [Google Scholar]
- Rahman, M.; Elbadry, M.; Harjani, R. A 2.5 nJ/bit multiband (MBAN & ISM) transmitter for IEEE 802.15.6 based on based on a hybrid polyphase-MUX/ILO-based-based modulator. In Proceedings of the 2014 IEEE Radio Frequency Integrated Circuits Symposium, Tampa, FL, USA, 1–3 June 2014; pp. 17–20. [Google Scholar]
- Bachmann, C.; van Schaik, G.-J.; Busze, B.; Konijnenburg, M.; Zhang, Y.; Stuyt, J.; Ashouei, M.; Dolmans, G.; Gemmeke, T.; de Groot, H. A 0.74 V 200 μW multi-standard transceiver digital baseband in 40 nm LP-CMOS for 2.4 GHz Bluetooth Smart/ZigBee/IEEE 802.15.6 personal area networks. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 186–187. [Google Scholar]
- Liu, Y.H.; Huang, X.; Vidojkovic, M.; Ba, A.; Harpe, P.; Dolmans, G.; De Grootet, H. A 1.9 nJ/b 2.4 GHz multistandard (Bluetooth low energy/Zigbee/IEEE802.15.6) transceiver for personal/body-area networks. In Proceedings of the 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 17–21 February 2013; pp. 446–447. [Google Scholar]
- Devita, G.; Wong, A.C.W.; Dawkins, M.; Glaros, K.; Kiani, U.; Lauria, F.; Madaka, V.; Omeni, O.; Schiff, J.; Vasudevan, A.; et al. A 5 mW multi-standard Bluetooth LE/IEEE 802.15.6 SoC for WBAN applications. In Proceedings of the 2014 40th European Solid State Circuits Conference (ESSCIRC), Venice Lido, Italy, 22–26 September 2014; pp. 283–286. [Google Scholar]
- Liu, Y.-H.; Ba, A.; van den Heuvel, J.H.C.; Philips, K.; Dolmans, G.; De Groot, H. A 1.2 nJ/b 2.4 GHz receiver with a sliding-IF phase-to-digital converter for wireless personal/body-area networks. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 166–167. [Google Scholar]
- Wang, K.; Koo, J.; Ruby, R.; Otis, B. A 1.8 mW PLL-free channelized 2.4 GHz ZigBee receiver utilizing fixed-LO temperature-compensated FBAR resonator. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 372–373. [Google Scholar]
- Chen, F.; Li, Y.; Liu, D.; Rhee, W.; Kim, J.; Kim, D.; Wang, Z. A 1mW 1Mb/s 7.75-to-8.25GHz chirp-UWB transceiver with low peak-power transmission and fast synchronization capability. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 162–163. [Google Scholar]
- Cheng, J.; Qi, N.; Chiang, P.Y.; Natarajan, A. A 1.3 mW 0.6 V WBAN-compatible sub-sampling PSK receiver in 65nm CMOS. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 168–169. [Google Scholar]
- Kopta, V.; Pengg, F.; le Roux, E.; Enz, C. A 2.4-GHz low power polar transmitter for wireless body area network applications. In Proceedings of the 2013 IEEE 11th International New Circuits and Systems Conference (NEWCAS), Paris, France, 16–19 June 2013; pp. 1–4. [Google Scholar]
- Vidojkovic, M.; Huang, X.; Wang, X.; Zhou, C.; Ba, A.; Lont, M.; Liu, Y.; Harpe, P.; Ding, M.; Busze, B.; et al. A 0.33nJ/b IEEE802.15.6/proprietary-MICS/ISM-band transceiver with scalable data-rate from 11kb/s to 4.5 Mb/s for medical applications. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 170–171. [Google Scholar]
- Van den Heuvel, J.H.C.; Wu, Y.; Baltus, P.G.M.; Linnartz, J.-P.M.G.; van Roermund, A.H.M. Front End Power Dissipation Minimization and Optimal Transmission Rate for Wireless Receivers. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 1566–1577. [Google Scholar] [CrossRef]
- Zhang, Y.; Pflug, H.; Visser, H.J.; Dolmans, G. Wirelessly powered energy autonomous sensor networks. In Proceedings of the 2014 IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 6–9 April 2014; pp. 2444–2449. [Google Scholar]
- Ibarra, E.; Antonopoulos, A.; Kartsakli, E.; Joel, J.P.C.; Verikoukis, R.C. Joint power-QoS control scheme for energy harvesting body sensor nodes. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, Australia, 10–14 June 2014; pp. 3511–3516. [Google Scholar]
- Bandyopadhyay, S.; Chandrakasan, A.P. Platform Architecture for Solar, Thermal, and Vibration Energy Combining with MPPT and Single Inductor. IEEE J. Solid State Circuits 2012, 47, 2199–2215. [Google Scholar] [CrossRef]
- Rahman, M.; Harjani, R. A Sub-1-V 194-W 31-dB FOM 2.3–2.5-GHz Mixer-First Receiver Frontend for WBAN with Mutual Noise Cancellation. IEEE Trans. Microw. Theory Tech. 2016, 64, 1102–1109. [Google Scholar] [CrossRef]
- Kargaran, E.; Manstretta, D.; Castello, R. A 30 μW, 3.3 dB NF CMOS LNA for Wearable WSN Applications. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017. [Google Scholar]
- Yu, W.H.; Yi, H.; Mak, P.I.; Yin, J.; Martins, R.P. A 0.18 V 382 μW Bluetooth low-energy (BLE) receiver with 1.33nW sleep power for energy-harvesting applications in 28 nm CMOS. In Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 414–415. [Google Scholar]
- Razavi, B. RF Microelectronics; Prentice-Hall: Englewood Cliffs, NJ, USA, 2012. [Google Scholar]
- Zhang, F.; Miyahara, Y.; Otis, B.P. Design of a 300-mV 2.4-GHz Receiver Using Transformer-Coupled Techniques. IEEE J. Solid State Circuits 2013, 48, 3190–3205. [Google Scholar] [CrossRef]
- Vinaya, M.M.; Paily, R.; Mahanta, A. A New PVT Compensation Technique Based on Current Comparison for Low-Voltage, Near Sub-Threshold LNA. IEEE Trans. Circuit Syst. I Regul. Pap. 2015, 62, 2908–2919. [Google Scholar]
- Kargaran, E.; Zoka, N.; Kouzani, A.Z.; Mafinezhad, K.; Nabovati, H. Highly Linear Low Voltage Low Power CMOS LNA. IEICE Electron. Express 2013, 10, 20130557. [Google Scholar] [CrossRef]
- Allidina, K.; El-Gamal, M. A 1 V CMOS LNA for low power ultra-wideband systems. In Proceedings of the IEEE International Conference on Electronics, Circuits and Systems (ICECS), St. Julien’s, Malta, 31 August–3 September 2008; pp. 165–168. [Google Scholar]
- Lu, Y.; Jin, J. 100-mV 44-μW 2.4-GHz LNA in 16 nm FinFET Technology. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016. [Google Scholar]
- Taris, T.; Begueret, J.B.; Deval, Y. A 60 μW LNA for 2.4 GHz Wireless Sensors Network Applications. In Proceedings of the IEEE Radio Frequency Integrated Circuit (RFIC) Symposium, Baltimore, MD, USA, 5–7 June 2011. [Google Scholar]
- Parvizi, M.; Allidina, K.; El-Gamal, M.N. Short Channel Output Conductance Enhancement through Forward Body Biasing to Realize a 0.5 V 250 μW 0.6–4.2 GHz Current-Reuse CMOS LNA. IEEE J. Solid-State Circuits 2016, 51, 574–586. [Google Scholar]
- Shameli, A.; Heydari, P. A Novel Ultra-Low Power (ULP) Low Noise Amplifier using Differential Inductor Feedback. In Proceedings of the 32nd European Solid-State Circuits Conference, Montreux, Switzerland, 19–21 September 2006. [Google Scholar]
References | ULV LNA | [17] | [21] | [22] | [23] | [24] | [25] | [26] | [27] |
Freq (GHz) | 2.4 | 2.4 | 2.14 | 5 | 0.1–1.6 | 2.4 | 2.4 | 0.6–3.1 | 1 |
Tech (nm) | 40 | 40 | 65 | 180 | 90 | 16 | 130 | 130 | 130 |
Vdd (V) | 0.18 | 0.8 | 0.6 | 0.6 | 1 | 0.1 | 0.4 | 0.4 | 1 |
Pdc (μW) | 30 | 30 | 402 | 1300 | 425 | 44 | 60 | 160 | 100 |
NF (dB) | 5.2 | 3.3 | 2.8 | 3.5 | 5.5 | 3 | 5.3 | 4.5 | 3.9 |
Gain (dB) | 14 | 14.2 | 9.2 | 12.5 | 10.5 | 10.8 | 13.1 | 13 | 16.9 |
IIP3 (dBm) | −8.6 | −11.6 | NA | −2 | −4.5 | −18 | −12.2 | −12 | −11.2 |
FOM | 10 | 10.4 | NA | 2.11 | 1.1 | 1.58 | 1.9 | 0.97 | 3.65 |
S/M | S | S | S | S | S | M | M | M | M |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kargaran, E.; Manstretta, D.; Castello, R. Design Considerations for a Sub-mW Wireless Medical Body-Area Network Receiver Front End. Micromachines 2018, 9, 31. https://doi.org/10.3390/mi9010031
Kargaran E, Manstretta D, Castello R. Design Considerations for a Sub-mW Wireless Medical Body-Area Network Receiver Front End. Micromachines. 2018; 9(1):31. https://doi.org/10.3390/mi9010031
Chicago/Turabian StyleKargaran, Ehsan, Danilo Manstretta, and Rinaldo Castello. 2018. "Design Considerations for a Sub-mW Wireless Medical Body-Area Network Receiver Front End" Micromachines 9, no. 1: 31. https://doi.org/10.3390/mi9010031
APA StyleKargaran, E., Manstretta, D., & Castello, R. (2018). Design Considerations for a Sub-mW Wireless Medical Body-Area Network Receiver Front End. Micromachines, 9(1), 31. https://doi.org/10.3390/mi9010031