Next Article in Journal
A Droplet Microfluidics Based Platform for Mining Metagenomic Libraries for Natural Compounds
Next Article in Special Issue
Editorial for the Special Issue on the Insights and Advancements in Microfluidics
Previous Article in Journal
Tool Run-Out Measurement in Micro Milling
Previous Article in Special Issue
Large-Area and High-Throughput PDMS Microfluidic Chip Fabrication Assisted by Vacuum Airbag Laminator
Article Menu
Issue 8 (August) cover image

Export Article

Open AccessFeature PaperPerspective
Micromachines 2017, 8(8), 231;

Digital PCR: Endless Frontier of ‘Divide and Conquer’

Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), College of Engineering, School of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
Author to whom correspondence should be addressed.
Received: 28 June 2017 / Revised: 18 July 2017 / Accepted: 18 July 2017 / Published: 25 July 2017
(This article belongs to the Special Issue Insights and Advancements in Microfluidics)
Full-Text   |   PDF [941 KB, uploaded 25 July 2017]   |  


Digital polymerase chain reaction (PCR) is becoming ever more recognized amid the overwhelming revolution in DNA quantification, genomics, genetics, and diagnostics led by technologies such as next generation sequencing and studies at the single-cell level. The demand to quantify the amount of DNA and RNA has been driven to the molecular level and digital PCR, with its unprecedented quantification capability, is sure to shine in the coming era. Two decades ago, it emerged as a concept; yet one decade ago, integration with microfluidics invigorated this field. Today, many methods have come to public knowledge and applications surrounding digital PCR is mounting. However, to reach wider accessibility and better practicality, efforts are needed to tackle the remaining problems. This perspective looks back at several inspiring and influential digital PCR approaches in the past and tries to provide a futuristic picture of the trends of digital PCR technologies to come. View Full-Text
Keywords: digital polymerase chain reaction (PCR); microfluidics; emulsion droplet; microwell chip digital polymerase chain reaction (PCR); microfluidics; emulsion droplet; microwell chip

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Liao, P.; Huang, Y. Digital PCR: Endless Frontier of ‘Divide and Conquer’. Micromachines 2017, 8, 231.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Micromachines EISSN 2072-666X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top