Fabrication and Actuation of an Electrowetting Droplet Array on a Flexible Substrate
Abstract
1. Introduction
1.1. Background
1.2. Concept and Acutation Mechanism
2. Materials and Methods
3. Results
3.1. Simulation
3.2. Experimental Results
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shields, C.W., IV; Reyes, C.D.; López, G.P. Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 2015, 15, 1230–1249. [Google Scholar] [CrossRef] [PubMed]
- Pollack, M.G.; Shenderov, A.D.; Fair, R.B. Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2002, 2, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Paik, P.; Pamula, V.K.; Pollack, M.G.; Fair, R.B. Electrowetting-based droplet mixers for microfluidic systems. Lab Chip 2003, 3, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.K.; Moon, H.; Kim, C. Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits. J. Microelectromech. Syst. 2003, 12, 70–80. [Google Scholar] [CrossRef]
- Jones, T.B.; Fowler, J.D.; Chang, Y.S.; Kim, C.J. Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation. Langmuir 2003, 19, 7646–7651. [Google Scholar] [CrossRef]
- Li, C.; Jiang, H. Electrowetting-driven variable-focus microlens on flexible surfaces. Appl. Phys. Lett. 2012, 100. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Huang, P.; Wang, T.; Peng, Y. Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting. Lab Chip 2008, 8, 1325–1331. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Dembo, M.; Wang, Y. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell Physiol. 2000, 279, 1345–1350. [Google Scholar]
- Steckl, A.J.; You, H.; Kim, D. Flexible electrowetting and electrowetting on flexible substrates. Proc. SPIE 2011, 7956, 1–6. [Google Scholar] [CrossRef]
- Fan, S.; Yang, H.; Hsu, W. Droplet-on-a-wristband : Chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules. Lab Chip 2011, 11, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.S.; Tu, H.; Xu, Y.; Jiang, H. Tunable dielectric liquid lens on flexible substrate. Appl. Phys. Lett. 2013, 103, 261113. [Google Scholar] [CrossRef] [PubMed]
- Murade, C.U.; Oh, J.M.; van den Ende, D.; Mugele, F. Electrowetting driven optical switch and tunable aperture. Opt. Express 2011, 19, 15525–15531. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Xu, S.; Ren, D.; Wu, S.-T. Novel optical switch with a reconfigurable dielectric liquid droplet. Opt. Express 2011, 19, 1985–1990. [Google Scholar] [CrossRef] [PubMed]
- Ashtiani, A.O.; Jiang, H. Design and fabrication of an electrohydrodynamically actuated microlens with areal density modulated electrodes. J. Micromech. Microeng. 2016, 26, 15004. [Google Scholar] [CrossRef]
- Li, C.; Jiang, H. Fabrication and characterization of flexible electrowetting on dielectrics (EWOD) microlens. Micromachines 2014, 5, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Schultz, A.; Chevalliot, S.; Kuiper, S.; Heikenfeld, J. Detailed analysis of defect reduction in electrowetting dielectrics through a two-layer “barrier” approach. Thin Solid Films 2013, 534, 348–355. [Google Scholar] [CrossRef]
- Asiri, H. Fabrication of Surface Plasmon Biosensors in CYTOP; University of Ottawa: Ottawa, ON, Canada, 2012. [Google Scholar]
- Liu, C.; Park, J.; Choi, J. A planar lens based on the electrowetting of two immiscible liquids. J. Micromech. Microeng. 2008, 18. [Google Scholar] [CrossRef]
- Than, P.; Preziosi, L.; Joseph, D.D.; Arney, M. Measurement of Interfacial Tension between Immiscible Liquids with the Spinning Rod Tensiometer. J. Colloid Interface Sci. 1988, 124, 552–559. [Google Scholar] [CrossRef]
- Khodayari, M.; Carballo, J.; Crane, N.B. A material system for reliable low voltage anodic electrowetting. Mater. Lett. 2012, 69, 96–99. [Google Scholar] [CrossRef][Green Version]
- Berry, S.; Kedzierski, J.; Abedian, B. Irreversible Electrowetting on Thin Fluropolymer Films. Langmuir 2007, 23, 12429–12435. [Google Scholar] [CrossRef] [PubMed]
Materials | Young’s Modulus (MPa) | Poisson’s Ratio |
---|---|---|
Copper | 1.1 × 105 | 0.343 |
CYTOP | 1500 | 0.42 |
Parylene C | 2758 | 0.4 |
PDMS | 0.5 | 0.48 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Grinsven, K.L.; Ousati Ashtiani, A.; Jiang, H. Fabrication and Actuation of an Electrowetting Droplet Array on a Flexible Substrate. Micromachines 2017, 8, 334. https://doi.org/10.3390/mi8110334
Van Grinsven KL, Ousati Ashtiani A, Jiang H. Fabrication and Actuation of an Electrowetting Droplet Array on a Flexible Substrate. Micromachines. 2017; 8(11):334. https://doi.org/10.3390/mi8110334
Chicago/Turabian StyleVan Grinsven, Kari L., Alireza Ousati Ashtiani, and Hongrui Jiang. 2017. "Fabrication and Actuation of an Electrowetting Droplet Array on a Flexible Substrate" Micromachines 8, no. 11: 334. https://doi.org/10.3390/mi8110334
APA StyleVan Grinsven, K. L., Ousati Ashtiani, A., & Jiang, H. (2017). Fabrication and Actuation of an Electrowetting Droplet Array on a Flexible Substrate. Micromachines, 8(11), 334. https://doi.org/10.3390/mi8110334