A Multi-Beam Phased Array Receiver Front-End with High Performance Ceramic SiP
Abstract
1. Introduction
2. System Design
2.1. System Architecture
2.2. Structure Profile
3. Antenna Patch Design
4. SiP Module Design and Simulation
4.1. Electromagnetic Structure Design
4.2. Structure Heat Dissipation Simulation
5. Motherboard Design
6. Measurement Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Rebeiz, G.M.; Paulsen, L.M. Advances in SATCOM Phased Arrays Using Silicon Technologies. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 1877–1879. [Google Scholar]
- Aljuhani, A.H.; Kanar, T.; Zihir, S.; Rebeiz, G.M. A 256-Element Ku-Band Polarization Agile SATCOM Receive Phased Array with Wide-Angle Scanning and High Polarization Purity. IEEE Trans. Microw. Theory Tech. 2021, 69, 2609–2628. [Google Scholar] [CrossRef]
- Gültepe, G.; Kanar, T.; Zihir, S.; Rebeiz, G.M. A 1024-Element Ku-Band SATCOM Phased-Array Transmitter with 45-dBW Single-Polarization EIRP. IEEE Trans. Microw. Theory Tech. 2021, 69, 4157–4168. [Google Scholar] [CrossRef]
- Boroujeni, S.R.; Mazaheri, M.H.; Ituah, S.; Wyrzykowska, A.; Ziabakhsh, S.; Palizban, A. A High-Efficiency 27–30-GHz 130-nm Bi-CMOS Transmitter Front End for SATCOM Phased Arrays. IEEE Trans. Microw. Theory Tech. 2021, 69, 4977–4985. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, C.; Zhang, X.; Wu, Y.; Yu, Y.; Liu, H. A Cost-Effective Ku-Band Phased Array in Package Integrating Multi-Independent CMOS Transceivers with On-Chip Antennas. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 1486–1489. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, D.; Zhang, X.; Zhao, C.; Liu, H.; Wu, Y. A Ku-Band Eight-Element Phased-Array Transmitter with Built-in Self-Test Capability in 180-nm CMOS Technology. IEEE Trans. Very Large Scale Integr. Syst. 2022, 30, 694–705. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, N.; Zhou, J.; Gao, H.; Wang, S.; Lu, H. A Compact Ka-Band Eight-Element Four-Beam Receiver for Low-Earth-Orbit Satellite Communications in 65-nm CMOS. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 883–886. [Google Scholar] [CrossRef]
- Aljuhani, A.H.; Kanar, T.; Zihir, S.; Rebeiz, G.M. A Scalable Dual-Polarized 256-Element Ku-Band SATCOM Phased-Array Transmitter with 36.5 dBW EIRP Per Polarization. In Proceedings of the 2018 48th European Microwave Conference (EuMC), Madrid, Spain, 25–27 September 2018; pp. 938–941. [Google Scholar]
- Li, M.; Gao, H.; Li, N.; Wang, S.; Zhang, Z.; Chen, P. A 17.7–19.2-GHz Receiver Front End with an Adaptive Analog Temperature-Compensation Scheme. IEEE Trans. Microw. Theory Tech. 2023, 71, 1068–1082. [Google Scholar] [CrossRef]
- Li, N.; Li, M.; Wang, S.; Zhang, Z.; Gao, H.; Kuan, Y.-C. A Four-Element 7.5–9-GHz Phased-Array Receiver with 1–8 Simultaneously Reconfigurable Beams in 65-nm CMOS. IEEE Trans. Microw. Theory Tech. 2021, 69, 1114–1126. [Google Scholar] [CrossRef]
- Gültepe, G.; Rebeiz, G.M. A 256-Element Dual-Beam Polarization-Agile SATCOM Ku-Band Phased-Array with 5-dB/K G/T. IEEE Trans. Microw. Theory Tech. 2021, 69, 4986–4994. [Google Scholar] [CrossRef]
- Sayginer, M.; Rebeiz, G.M. An Eight-Element 2–16-GHz Programmable Phased Array Receiver with One, Two, or Four Simultaneous Beams in SiGe BiCMOS. IEEE Trans. Microw. Theory Tech. 2016, 64, 4585–4597. [Google Scholar] [CrossRef]
- Kang, D.-W.; Koh, K.-J.; Rebeiz, G.M. A Ku-Band Two-Antenna Four-Simultaneous Beams SiGe BiCMOS Phased Array Receiver. IEEE Trans. Microw. Theory Tech. 2010, 58, 771–780. [Google Scholar] [CrossRef]
- Tabarani, F.; Boccia, L.; Purtova, T.; Shamsafar, A.; Schumacher, H.; Amendola, G. 0.25-μm BiCMOS System-on-Chip for K-/Ka-Band Satellite Communication Transmit–Receive Active Phased Arrays. IEEE Trans. Microw. Theory Tech. 2018, 66, 2325–2339. [Google Scholar] [CrossRef]
- Low, K.K.W.; Kanar, T.; Zihir, S.; Rebeiz, G.M. A 17.7–20.2-GHz 1024-Element K-Band SATCOM Phased-Array Receiver with 8.1-dB/K G/T, ±70° Beam Scanning, and High Transmit Isolation. IEEE Trans. Microw. Theory Tech. 2022, 70, 1769–1778. [Google Scholar] [CrossRef]
- Fu, X.; You, D.; Wang, Y.; Wang, X.; Fadila, A.A.; Liu, C. A Low-Power Radiation-Hardened Ka-Band CMOS Phased-Array Receiver for Small Satellite Constellation. IEEE J. Solid-State Circuits 2024, 59, 349–363. [Google Scholar] [CrossRef]
- Li, N.; Ma, Z.; Xie, X.; Yuan, Y.; Lan, B.; Lu, H. A Ka-Band 64-Element Four-Beam Phased Array Receiver with Inter-Beam Interference Cancellation. IEEE Trans. Microw. Theory Tech. 2025, 73, 221–233. [Google Scholar] [CrossRef]














| Environment Temperature (°C) | Device Operating Duration | Temperature Distribution of the Array Surface (°C) |
|---|---|---|
| 35 | Full-power operation | 58.6 |
| 55 | Full-power operation | 79.6 |
| 65 | Full-power operation | 90.1 |
| Frequency (GHz) | Number of Elements | Beam | Polarization | Scan Range (°) | Size (cm2) | G/T (dB/K) | |
|---|---|---|---|---|---|---|---|
| [12] | 10.7–12.7 | 16 × 16 | 2 | Dual-Linear | ±70 | 19.5 × 17 | 5 (Tant = 20 K) |
| [16] | 17.7–20.2 | 32 × 32 | 1 | Dual-Linear | ±70 | 22.4 × 25.2 | 6.05 (Tant = 290 K) |
| [17] | 29 | 16 × 16 | 1 | Linear | ±50 | 10.4 × 10.4 | 3.2 (Tant = 35 K) |
| [18] | 29.5 | 8 × 8 | 4 | Linear | ±50 | 4.4 × 4.4 | −7 (Tant = 290 K) |
| Prop. | 14–14.5 | 16 × 16 | 4 | Dual-Circular | ±45 | 16.8 × 16.8 | 1.1 (Tant = 295 K) |
| Beam Number | Theoretical Calculation of Beam Pointing Angle (°) | Measured Beam Pointing Angle (°) | Measured 3 dB BW (°) | BPE (°) | abs(BPE)/BW (%) |
|---|---|---|---|---|---|
| 1 | 0 | −0.20 | 6.08 | −0.2 | 3 |
| 2 | 0 | −0.28 | 6.34 | −0.28 | 4 |
| 3 | 0 | −0.25 | 6.39 | −0.25 | 4 |
| 4 | 0 | −0.43 | 6.34 | −0.43 | 7 |
| 1 | 30 | 30.30 | 6.69 | 0.3 | 4 |
| 2 | 30 | 30.56 | 6.83 | 0.56 | 8 |
| 3 | 30 | 30.26 | 6.78 | 0.26 | 4 |
| 4 | 30 | 29.62 | 6.48 | −0.38 | 6 |
| 1 | 45 | 44.42 | 8.7 | −0.58 | 7 |
| 2 | 45 | 44.54 | 8.69 | −0.46 | 5 |
| 3 | 45 | 44.80 | 8.89 | −0.2 | 2 |
| 4 | 45 | 44.74 | 8.75 | −0.26 | 3 |
| Beam Number | Beam Pointing Angle (°) | Measured Amplitude Level Value in the Maximum Direction (dB) | Maximum Measured Amplitude Level Value (dB) | Minimum Measured Amplitude Level Value (dB) | Beam Consistency (dB) |
|---|---|---|---|---|---|
| 1 | 0 | −1.71 | 0 | −1.71 | 1.71 |
| 2 | 0 | 0 | |||
| 3 | 0 | −1.31 | |||
| 4 | 0 | −1.06 | |||
| 1 | 30 | −1.47 | 0 | −1.47 | 1.47 |
| 2 | 30 | 0 | |||
| 3 | 30 | −0.80 | |||
| 4 | 30 | −0.33 | |||
| 1 | 45 | −1.73 | 0 | −1.73 | 1.73 |
| 2 | 45 | 0 | |||
| 3 | 45 | −1.51 | |||
| 4 | 45 | −0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, H.; Guo, L.-X.; Dun, S.; Li, X.; Xu, X. A Multi-Beam Phased Array Receiver Front-End with High Performance Ceramic SiP. Micromachines 2026, 17, 110. https://doi.org/10.3390/mi17010110
Zhang H, Guo L-X, Dun S, Li X, Xu X. A Multi-Beam Phased Array Receiver Front-End with High Performance Ceramic SiP. Micromachines. 2026; 17(1):110. https://doi.org/10.3390/mi17010110
Chicago/Turabian StyleZhang, Haifu, Li-Xin Guo, Shubo Dun, Xiaoming Li, and Xiaolong Xu. 2026. "A Multi-Beam Phased Array Receiver Front-End with High Performance Ceramic SiP" Micromachines 17, no. 1: 110. https://doi.org/10.3390/mi17010110
APA StyleZhang, H., Guo, L.-X., Dun, S., Li, X., & Xu, X. (2026). A Multi-Beam Phased Array Receiver Front-End with High Performance Ceramic SiP. Micromachines, 17(1), 110. https://doi.org/10.3390/mi17010110

