Editorial for the Topic on Magnetic Materials and Devices
Funding
Conflicts of Interest
References
- Jin, H.; Miyazaki, T. The Physics of Ferromagnetism; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 158, pp. 1–484. [Google Scholar] [CrossRef]
- Agrawal, R.; Srivastava, M.; Ningthoujam, R.S. Applications of Magnetic Materials. In Handbook of Materials Science; Ningthoujam, R.S., Tyagi, A.K., Eds.; Indian Institute of Metals Series; Springer: Singapore, 2024; Volume 2, pp. 147–200. [Google Scholar] [CrossRef]
- Bertram, H.N. Theory of Magnetic Recording; Cambridge University Press: Cambridge, UK, 2010; pp. 1–356. [Google Scholar] [CrossRef]
- Grünberg, P.A. Nobel Lecture: From Spin Waves to Giant Magnetoresistance and Beyond. Rev. Mod. Phys. 2008, 80, 1531. [Google Scholar] [CrossRef]
- Fert, A. Nobel Lecture: Origin, Development, and Future of Spintronics. Rev. Mod. Phys. 2008, 80, 1517. [Google Scholar] [CrossRef]
- Thiele, J.-U. Heat Assisted Magnetic Recording—The Long Journey from Basic Research to Full Scale Product Ramp. In Proceedings of the Global Physics Summit: Joint March Meeting and April Meeting, Anaheim, CA, USA, 16–21 March 2025; Available online: https://summit.aps.org/events/MAR-A52/8 (accessed on 1 July 2025).
- Parkin, S.; Jiang, X.; Kaiser, C.; Panchula, A.; Roche, K.; Samant, M. Magnetically Engineered Spintronic Sensors and Memory. Proc. IEEE 2003, 91, 661. [Google Scholar] [CrossRef]
- Parkin, S.; Kaiser, C.; Panchula, A.; Rice, P.M.; Hughes, B.; Samant, M.; Yang, S. Giant Tunnelling Magnetoresistance at Room Temperature with MgO (100) Tunnel Barriers. Nat. Mater. 2004, 3, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Yuasa, S.; Fukushima, A.; Yakushiji, K.; Nozaki, T.; Konoto, M.; Maehara, H. Future Prospects of MRAM technologies. In Proceedings of the 2013 IEEE International Electron Devices Meeting, Washington, DC, USA, 9–11 December 2013; pp. 3.1.1–3.1.4. [Google Scholar] [CrossRef]
- Tehrani, S.; Slaughter, J.M.; Deherrera, M.; Engel, B.N.; Rizzo, N.D.; Salteret, J. Magnetoresistive Random Access Memory Using Magnetic Tunnel Junctions. Proc. IEEE 2003, 91, 703. [Google Scholar] [CrossRef]
- Apalkov, A.; Dieny, B.; Slaughter, J.M. Magnetoresistive Random Access Memory. Proc. IEEE 2016, 104, 1796. [Google Scholar] [CrossRef]
- Slonczewski, J.C. Current-Driven Excitation of Magnetic Multilayers. J. Magn. Magn. Mater. 1996, 159, L1. [Google Scholar] [CrossRef]
- Berger, L. Emission of Spin Waves by a Magnetic Multilayer Traversed by a Current. Phys. Rev. B 1996, 54, 9353. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, S.; Sbiaa, R.; Hirohata, A.; Ohno, H.; Fukami, S.; Piramanayagam, S.N. Spintronics Based Random Access Memory: A Review. Mater. Today 2017, 20, 530. [Google Scholar] [CrossRef]
- Ko, S.; Shim, J.; Park, J.H.; Lim, W.; Jung, H.; Bak, J.H. Key Technologies of Scaling Embedded MRAM to 8nm Logic and Beyond for Automotive Application. In Proceedings of the 2024 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Fiorentini, S.; Bendra, M.; Ender, J.; de Orio, R.L.; Goes, W.; Selberherr, S.; Sverdlov, V. Spin and Charge Drift-Diffusion in Ultra-Scaled MRAM Cells. Sci. Rep. 2022, 12, 20958. [Google Scholar] [CrossRef] [PubMed]
- Fiorentini, S.; Jørstad, N.P.; Ender, J.; de Orio, R.L.; Selberherr, S.; Bendra, M.; Goes, W.; Sverdlov, V. Finite Element Approach for the Simulation of Modern MRAM Devices. Micromachines 2023, 14, 898. [Google Scholar] [CrossRef] [PubMed]
- Bendra, M.; Orio, R.L.; Selberherr, S.; Goes, W.; Sverdlov, V. A Multi-Level Cell for Ultra-Scaled STT-MRAM Realized by Back-Hopping. Solid-State Electron. 2025, 223, 109027. [Google Scholar] [CrossRef]
- Dyakonov, M.I.; Perel, V.I. Possibility of Orientating Electron Spins with Current. Sov. Phys. JETP Lett. 1971, 13, 467. [Google Scholar] [CrossRef]
- Nguyen, V.D.; Rao, S.; Wostyn, K.; Couet, S. Recent Progress in Spin-orbit Torque Magnetic Random-access Memory. npj Spintron. 2024, 2, 48. [Google Scholar] [CrossRef]
- Jørstad, N.P.; Goes, W.; Selberherr, S.; Sverdlov, V. Modeling Torques in Systems with Spin-Orbit Coupling. Trans. Magn. 2025, 61, 1300404. [Google Scholar] [CrossRef]
- Parkin, S.S.P.; Hayashi, M.; Thomas, L. Magnetic Domain-Wall Racetrack Memory. Science 2008, 320, 29. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.H.; Ryu, K.S.; Parkin, S.S.P. Domain-Wall Velocities of up to 750 ms−1 Driven by Exchange-Coupling Torque in Synthetic Antiferromagnets. Nat. Nanotechnol. 2015, 10, 221. [Google Scholar] [CrossRef]
- Gu, K.; Guan, Y.; Hazra, B.K.; Deniz, H.; Migliorini, A.; Zhang, W.; Parkin, S.S.P. Three-dimensional Racetrack Memory Devices Designed from Freestanding Magnetic Heterostructures. Nat. Nanotechnol. 2022, 17, 1065. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, B.B.; Sorée, B.; Couet, S.; Temst, K.; Nguyen, V.D. Progress in Spin Logic Devices Based on Domain-Wall Motion. Micromachines 2024, 15, 696. [Google Scholar] [CrossRef] [PubMed]
- Khitun, A. Magnetic Interconnects Based on Composite Multiferroics. Micromachines 2022, 13, 1991. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Velvaluri, P.; Liu, Y.; Sun, N.-X. Magnetoelectric BAW and SAW Devices: A Review. Micromachines 2024, 15, 1471. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, Y.; Jeong, J.; Jang, D.; Kim, D.; Chung, S. Acoustic Bubble and Magnetic Actuation-Based Microrobot for Enhanced Multiphase Drug Delivery Efficiency. Micromachines 2023, 14, 2169. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sverdlov, V. Editorial for the Topic on Magnetic Materials and Devices. Micromachines 2025, 16, 831. https://doi.org/10.3390/mi16070831
Sverdlov V. Editorial for the Topic on Magnetic Materials and Devices. Micromachines. 2025; 16(7):831. https://doi.org/10.3390/mi16070831
Chicago/Turabian StyleSverdlov, Viktor. 2025. "Editorial for the Topic on Magnetic Materials and Devices" Micromachines 16, no. 7: 831. https://doi.org/10.3390/mi16070831
APA StyleSverdlov, V. (2025). Editorial for the Topic on Magnetic Materials and Devices. Micromachines, 16(7), 831. https://doi.org/10.3390/mi16070831